CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 587

_id ecaade2015_22
id ecaade2015_22
authors Keles, Hacer Yalim
year 2015
title Embedding Parts in Sketches Using a Parallel Evolutionary Approach
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 269-276
doi https://doi.org/10.52842/conf.ecaade.2015.1.269
wos WOS:000372317300029
summary Detection of emergent shapes in sketches requires extensive exploration of the design space. Automating this process with computational methods enables locating various alternatives sequentially or all at once simultaneously via high computational power. This not only helps efficient design space exploration but also provides a systematic way for keeping track of the design process. However, it is a challenge to define a generic computational method which optimizes the design space searches in time and space. The approaches that are based on optimization may suffer from time efficiency and local minima problems. These problems are substantially solved in this work by performing comprehensive parallel searches in the design space with a genetic algorithm. Advantage of this approach is that the local minima problem is reduced significantly without increasing the execution times.
series eCAADe
email
last changed 2022/06/07 07:52

_id cf2015_240
id cf2015_240
authors Aksoy, Yazgi Badem; Çagdas, Gülen and Balaban, Özgün
year 2015
title A model for sustainable site layout design of social housing with Pareto Genetic Algorithm: SSPM
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 240.
summary Nowadays as the aim to reduce the environmental impact of buildings becomes more apparent, a new architectural design approach is gaining momentum called sustainable architectural design. Sustainable architectural design process includes some regulations itself, which requires calculations, comparisons and consists of several possible conflicting objectives that need to be considered together. A successful green building design can be performed by the creation of alternative designs generated according to all the sustainability parameters and local regulations in conceptual design stage. As there are conflicting criteria's according to LEED and BREAM sustainable site parameters, local regulations and local climate conditions, an efficient decision support system can be developed by the help of Pareto based non-dominated genetic algorithm (NSGA-II) which is used for several possibly conflicting objectives that need to be considered together. In this paper, a model which aims to produce site layout alternatives according to sustainability criteria for cooperative apartment house complexes, will be mentioned.
keywords Sustainable Site Layout Design, Multi Objective Genetic Algorithm, LEED-BREEAM.
series CAAD Futures
type normal paper
email
last changed 2015/06/29 09:30

_id ecaade2015_77
id ecaade2015_77
authors Bialkowski, Sebastian and Kepczynska-Walczak, Anetta
year 2015
title Engineering Tools Applied in Architecture - Challenges of Topology Optimization Implementation
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 261-268
doi https://doi.org/10.52842/conf.ecaade.2015.1.261
wos WOS:000372317300028
summary Computation, in the context of a digital designing process, is redefining architectural practice. Architects are developing new sets of tools which are dramatically changing the typical way of design procedure. The paper describes the research assumptions, problems and solutions proposition, aimed at creation of a real-time form finding tool for architects based on engineering methods. Through intersecting architectural form evaluation with engineering analysis and optimisation tools it is highly intended to offer the opportunity to variety of architects and designers to use the exceedingly complex and compound process for their design improvement. The form finding tool, to be effective and reliable, has to provide immediate feedback to a designer. This requirement enforces a software developer to use more sophisticated solutions. The paper focuses on possibilities of already known engineering procedures acceleration such as Finite Element Method or Topology Optimization for effective implementation in architectural design process.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=1337360e-702e-11e5-90b6-cbdace47c7fb
last changed 2022/06/07 07:52

_id ecaade2015_268
id ecaade2015_268
authors Pasternak, Agata and Kwiecinski, Krystian
year 2015
title High-rise Building Optimization - A Design Studio Curriculum
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 305-314
doi https://doi.org/10.52842/conf.ecaade.2015.1.305
wos WOS:000372317300033
summary The paper presents an educational method used in teaching design of high-rise buildings in the city center. The author outlines the processes developed by students, the tools they used and the final results of design studio project and the supporting seminar, focused on exploring information processes in design. For the purpose of the design studio the students developed their own generative strategies that allowed incorporating optimization procedures into the design process. Within the framework of the seminar classes students developed individual optimization tools with the use of genetic algorithms in order to explore the search space and select the best possible architectural solutions for the specified criteria. The students used the above-mentioned tools mostly during the building's form-finding design stage or attempted to optimize just the building structure.
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=79cd6f3c-702e-11e5-b2b4-9f809b2513cf
last changed 2022/06/07 07:59

_id caadria2015_168
id caadria2015_168
authors Tong, Ziyu
year 2015
title A Genetic Algorithm Approach to Optimizing the Distribution of Buildings in Urban Green Space
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 147-156
doi https://doi.org/10.52842/conf.caadria.2015.147
summary Certain buildings are required in urban green space according to the Chinese regulations, and their area depends on the type and area of the green space. The scale of the single building or the disperse extent of the building group dramatically influences the local ecological environment and landscape. However, it is lack of effective methods to evaluate the distribution of buildings, and it is hard to plan and manage the buildings in the green space. According to the description of distribution features of geographic objects in geostatistics, this study presents the Index of Distribution (IOD) to describe the distribution pattern of buildings in the green space. Yuhuatai Park and Qingliangshan Park of Nanjing are chosen as cases to verify the effectiveness of IOD. Based on the genetic algorithm, the paper also presents a generating model, which can generate the plan of the buildings corresponding with the specific IOD. The model is effective to respond with the flexibility of location of the building. The results of the model can be used as the valuable reference to the planning of buildings in the green space.
keywords Genetic algorithm; index of distribution; green space.
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2015_8.41
id sigradi2015_8.41
authors Valencia, Lorena Troncoso; Alvarado, Rodrigo García; Bernal, Alberto Nope; Arellano, Ricardo
year 2015
title Solar attic by parametric optimization and digital fabrication for NZE dwellings
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 317-321.
summary In order to support the usual enlargement of houses in developing countries and proper integration of renewable sources, this paper exposes a parametric design of attic with insulated timber boards and integrated solar panels. The proposal is based on urban map of solar potential available on-line (www.msc.ubiobio.cl), that for single houses suggest a solar attic customized to each dwelling shape and orientation, with industrialized timber construction elements. The calculation of optimal volume by house is developed with a multi-objective genetic algorithm (NSGA-II) and dynamic simulation, which provides different buildings alternatives with digital manufacturing.
keywords Solar Energy, Timber Building, Housing, Genetic Algorithm, Building Integrated Solar Energy
series SIGRADI
email
last changed 2016/03/10 10:02

_id acadia20_238
id acadia20_238
authors Zhang, Hang
year 2020
title Text-to-Form
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 238-247.
doi https://doi.org/10.52842/conf.acadia.2020.1.238
summary Traditionally, architects express their thoughts on the design of 3D architectural forms via perspective renderings and standardized 2D drawings. However, as architectural design is always multidimensional and intricate, it is difficult to make others understand the design intention, concrete form, and even spatial layout through simple language descriptions. Benefiting from the fast development of machine learning, especially natural language processing and convolutional neural networks, this paper proposes a Linguistics-based Architectural Form Generative Model (LAFGM) that could be trained to make 3D architectural form predictions based simply on language input. Several related works exist that focus on learning text-to-image generation, while others have taken a further step by generating simple shapes from the descriptions. However, the text parsing and output of these works still remain either at the 2D stage or confined to a single geometry. On the basis of these works, this paper used both Stanford Scene Graph Parser (Sebastian et al. 2015) and graph convolutional networks (Kipf and Welling 2016) to compile the analytic semantic structure for the input texts, then generated the 3D architectural form expressed by the language descriptions, which is also aided by several optimization algorithms. To a certain extent, the training results approached the 3D form intended in the textual description, not only indicating the tremendous potential of LAFGM from linguistic input to 3D architectural form, but also innovating design expression and communication regarding 3D spatial information.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cf2015_279
id cf2015_279
authors Abdelmohsen, Sherif M. and Massoud, Passaint M.
year 2015
title Making Sense of those Batteries and Wires: Parametric Design between Emergence and Autonomy
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 279-296.
summary This paper reports on the process and outcomes of a digital design studio that integrates parametric design and generative systems in architectural and urban design projects. It explores the interrelationship between the emergence of innovative formal representations using parametric design systems on the one hand, and design autonomy; more specifically the conscious process of generating and developing an architectural concept, on the other. Groups of undergraduate students working on an architectural project are asked to identify a specific conceptual parti that addresses an aspect of architectural quality, define strategies that satisfy those aspects, and computational methodologies to implement those strategies, such as rule-based systems, self-organization systems, and genetic algorithms. The paper describes the educational approach and studio outcomes, discusses implications for CAAD education and curricula, and addresses issues to be considered for parametric and generative software development.
keywords Parametric modeling, generative design, emergence, autonomy, design exploration, CAAD curriculum.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_048
id caadria2015_048
authors Austin, Matthew and Gavin Perin
year 2015
title The Other Digital
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 829-838
doi https://doi.org/10.52842/conf.caadria.2015.829
summary The paper compares the implications of glitch aesthetics as an alternative digital design process to the more the commonly used algorithmic processes. It will argue the synthetic nature of architectural production in the digital age is used typically to privilege the representation of form through lines and curves, while the production of glitches rely on the image. This reliance on the image means that the pixel comes to the forefront as a possible new medium of architectural drawing. This paper therefore aims to outline the advantages and problems with using ‘glitches’ within architectural production.
keywords Glitch aesthetics; Processing; theory; algorithmic design; process.
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2015_237
id caadria2015_237
authors Bazalo, Frano. and Tane J. Moleta
year 2015
title Responsive Algorithms
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 209-218
doi https://doi.org/10.52842/conf.caadria.2015.209
summary An algorithm is a process of addressing a problem in a finite number of steps. In the context of architectural design, algorithmic thinking means taking on an interpretive role to understand the results in relation to design criteria, knowing how to modify the code to explore new options, and speculating on further design potentials. The application of algorithms within architecture often addresses the developed design stages, primarily to optimise structure, test environmental performance or to resolve complex construction. This research aims to explore algorithmic tools with a focus on early stage design. This design stage is often developed using traditional processes and is where algorithmic applications have been less successfully executed. The objectives are to algorithmically explore the areas of space planning, programme layout, form finding and form optimisation within early stage architectural design. Through the combination of a range of diverse algorithms, this research has an ultimate aim of integrating a computational workflow into practice at the early design stage.
keywords Computational design, Early stage design
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia15_195
id acadia15_195
authors Belesky, Philip; Monacella, Rosalea; Burry, Mark; Burry, Jane
year 2015
title A Field in Flux: Exploring the Application of Computational Design Techniques to Landscape Architectural Design Problems
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 195-202
doi https://doi.org/10.52842/conf.acadia.2015.195
summary Landscape architectural design problems are under-served by the current canon of computational design techniques. More investigations into modeling landscape phenomena would improve the capabilities of designers working in this field. This paper introduces some of the problems specific to the intersection of computational design and landscape architecture through a case study in generating planting plans using parametric techniques. This illustrates issues of temporality, complexity, and dynamism that distinguish land form from built form alongside the opportunities and challenges found in adapting computation to the design of natural systems.
keywords Landscape modeling, ecological modeling, landscape architecture, systems design, environmental simulation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2017_155
id caadria2017_155
authors Cichocka, Judyta Maria, Browne, Will Neil and Rodriguez, Edgar
year 2017
title Optimization in the Architectural Practice - An International Survey
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 387-396
doi https://doi.org/10.52842/conf.caadria.2017.387
summary For several years great effort has been devoted to the study of Architectural Design Optimization (ADO). However, although in the recent years ADO has attracted much attention from academia, optimization methods and tools have had a limited influence on the architectural profession. The aim of the study is to reveal users' expectations from the optimization tools and define limitations preventing wide-spread adaptation of the optimization solvers in the architectural practice. The paper presents the results of the survey "Optimization in the architectural practice" conducted between December 2015 and February 2016 on 165 architectural trainees and practising architects from 34 countries. The results show that there is a need for an interactive multi-objective optimization tool, as 78% respondents declared that a multi-objective optimization is more necessary in their practice than a single objective one and 91% of them acknowledged the need for choice of promising solutions during optimization process. Finally, it has been found that daylight, structure and geometry are three top factors which architects are interested in optimizing.
keywords Architectural Design Optimization; Optimizaiton Techniques; Generic Solvers; Multi-criteria Decision Making
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_180
id ecaade2015_180
authors Doe, Robert and Aitchison, Mathew
year 2015
title Multi-criteria Optimisation in the Design of Modular Homes - From Theory to Practice
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 295-304
doi https://doi.org/10.52842/conf.ecaade.2015.1.295
wos WOS:000372317300032
summary Multi-criteria optimisation searches by a genetic algorithm define a Pareto optimal front, a state in which one objective can only be improved at the expense of another. But optimisation is not a search for the best but for better - the goal is to improve performance by trading-off conflicting criteria or objectives. A live case study is the focus of this search with parameters behaving as genes and objectives as the environmental shapers of the phenotype. The genetic algorithm is an effective and powerful tool in the computational design tool box, one which can improve the design process and the fitness of its outcomes.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=664d6b1a-702e-11e5-b8a2-47f249933b51
last changed 2022/06/07 07:55

_id caadria2015_233
id caadria2015_233
authors Fernando, Ruwan and Robin Drogemuller
year 2015
title Recapitulation in Generating Spatial Layouts
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 199-207
doi https://doi.org/10.52842/conf.caadria.2015.199
summary The noted 19th century biologist, Ernst Haeckel, put forward the idea that the growth (ontogenesis) of an organism recapitulated the history of its evolutionary development. While this idea is defunct within biology, the idea has been promoted in areas such as education (the idea of an education being the repetition of the civilizations before). In the research presented in this paper, recapitulation is used as a metaphor within computer-aided design as a way of grouping together different generations of spatial layouts. In most CAD programs, a spatial layout is represented as a series of objects (lines, or boundary representations) that stand in as walls. The relationships between spaces are not usually explicitly stated. A representation using Lindenmayer Systems (originally designed for the purpose of modelling plant morphology) is put forward as a way of representing the morphology of a spatial layout. The aim of this research is not just to describe an individual layout, but to find representations that link together lineages of development. This representation can be used in generative design as a way of creating more meaningful layouts which have particular characteristics. The use of genetic operators (mutation and crossover) is also considered, making this representation suitable for use with genetic algorithms.
keywords Generative Design, Lindenmayer Systems, Spatial Layouts
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2015_226
id cf2015_226
authors Gallas, Mohamed-Anis and Delfosse, Vincent
year 2015
title Sketch-based and parametric modeling: Association of two-externalization processes for early daylight optimization
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 226-238.
summary This paper focuses on sketch-based and parametric modeling as two externalization devices used in architectural design practice. The first part of this paper addresses features and ability of these externalization tools to support design activities during the early design steps. The second part proposes an association process of a sketch-based modeling tool (SketSha-Archi®) and a parametric modeling tool (Grasshopper®) to create an advanced process for daylight optimization. The process aimed to associate the hand-sketching freedom with the precise exploration functions of digital tools (parametric modeling and evaluation tools).
keywords Sketch-based modeling; parametric modeling; early design stages; daylight simulation; optimization process.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_200
id ecaade2015_200
authors Gargaro, Silvia and Fioravanti, Antonio
year 2015
title Towards a Context Knowledge Taxonomy - Combined Methodologies to Improve a Fast-Search Concept Extraction for an Ontology Population
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 137-147
doi https://doi.org/10.52842/conf.ecaade.2015.1.137
wos WOS:000372317300015
summary Context in Architectural Design can be defined-related-comparable to hypothesis and boundary conditions in mathematics. An eco-system that influences it by means of natural and artificial events, space and time dimension. The research has the aim to analyze the critical issues related to Context by providing a contribution to the study of interactions between Context Knowledge and Architectural Design and how it can be used to improve the performance of the buildings and reducing design mistakes. The research focusing on formal ontologies, has developed a model that enables a semantic approach to design application programs, to manage information, to answer design questions and to have a clear relation between the formal representation of the context domain and its meanings. This context model provides an advancement on the state of the art in simplified design assumptions, in term of ontology ambiguity and complexity reduction, by using algorithms to extract and optimize branches of the graph. The extraction does not limit the number of relations, that can be extended and improve context taxonomy coherency and accuracy.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c8741aa2-702c-11e5-a273-83f9e53dafcf
last changed 2022/06/07 07:51

_id caadria2015_105
id caadria2015_105
authors Hosny, A.; N. Jacobson and Z. Seibold
year 2015
title Voxel Beam
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 755-764
doi https://doi.org/10.52842/conf.caadria.2015.755
summary Voxelbeam explores precedents in the optimization of architectural structures, namely the Sydney Opera house Arup beam. The authors research three areas crucial to conceiving an innovative contemporary reinterpretation of the beam: A shift in structural analysis techniques from analytical to numerical models such as topology optimization, the fundamental differences between digital and analog representations of structural forces, and the translation of structural analysis data into methods for digital fabrication. The research aims to re-contextualize the structural beam within contemporary digital platforms, explores the architectural implications of topology optimization, and proposes two fabrication strategies based on the analysis results – including automated off-site pre-casting and multi-material 3d printing.
keywords Digital Fabrication, Topology Optimization, Multi-material 3D Printing, Emergent Structural Design, Arup Beam.
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2015_211
id cf2015_211
authors Hu, Yongheng
year 2015
title The Computation Turn in Structural Performance Based Architecture Design
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 211-225.
summary It is necessary for an architect to engage closely with structural design, to interpret their design idea thoroughly, and it requires carefully collaboration between architect and engineer. The structural performance based design is not only to obey structure principle but to explore different possibilities of engineer and architectural innovation. Architects could apply this method in the earlier stage of design, and it could provide the efficient solution for structure, create a new spatial experience and further improve the construction quality in the later phase of development. In comparison to structural performance-based design in history, the computational technology has made it possible for architects to implement further the structural knowledge in more dynamic and sophisticated environment. This paper will discuss the history development and current transformation of this method. Three research project will explain the current experimental design process and back the idea of this method.
keywords Performance Based Architecture design, Computational Design, Structural Optimization
series CAAD Futures
type normal paper
email
last changed 2015/07/28 20:41

_id acadia15_407
id acadia15_407
authors Kim, Dongil; Lee, Seojoo
year 2015
title A Systemized Aggregation with Generative Growth Mechanism in Solar Environment
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 407-415
doi https://doi.org/10.52842/conf.acadia.2015.407
summary The paper demonstrates a work-in-progress research on an agent-based aggregation model for architectural applications with a system of assembly based on environmental data acted as a driver for a growth mechanism. Even though the generative design and algorithms have been widely employed in the field of art and architecture, such applications tend to stay in morphological explorations. This paper examines an aggregation model based on Diffusion Limited Aggregation system incorporating solar environment analysis for global perspective of aggregation, the geometry research for lattice systems, and morphological principles of unit module in agent scale. The later part of this research paper demonstrates the potential of a design process through the “Constructed Cloud” case study, including site-specific applications and the implementation of the systematized rule set.
keywords Aggregation, Generative Algorithm, Diffusion Limited Aggregation, Responsive Growth Mechanism, Solar Environment, Responsive System / Algorithm, Adaptable Architecture, Data Analysis, Systemized Architecture, Truncated Octahedron, Sun Oriented Aggregation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id caadria2015_179
id caadria2015_179
authors Kim, Eonyong; Jongtaek Yun and Sanghyun Cho
year 2015
title Integrated Space and Asset Management System for Large Scale Airport
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 807-816
doi https://doi.org/10.52842/conf.caadria.2015.807
summary Large-scale airports such as Incheon International Airport have large-scale terminals, annex buildings, and numerous open spaces. An integrated space management system is required to manage these buildings and spaces efficiently. Thus, Incheon International Airport Corporation developed a 3D computer-aided design (CAD)-based integrated space management system. The major system development goal was to provide intuitive 3D-based visual information, thereby realizing an integrated space and asset management system that does not require expert knowledge of any specific field, such as architecture. This paper discusses the construction of the system and the problems that had to be resolved to achieve this goal.
keywords Space and asset management, airport, 3D CAD, BIM
series CAADRIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_197605 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002