CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 584

_id sigradi2015_11.166
id sigradi2015_11.166
authors Calixto, Victor; Celani, Gabriela
year 2015
title A literature review for space planning optimization using an evolutionary algorithm approach: 1992-2014
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 662-671.
summary Space planning in architecture is a field of research in which the process of arranging a set of space elements is the main concern. This paper presents a survey of 31 papers among applications and reviews of space planning method using evolutionary algorithms. The objective of this work was to organize, classify and discuss about twenty-two years of SP based on an evolutionary approach to orient future research in the field.
keywords Space Planning, Evolutionary algorithms, Generative System
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_22
id ecaade2015_22
authors Keles, Hacer Yalim
year 2015
title Embedding Parts in Sketches Using a Parallel Evolutionary Approach
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 269-276
doi https://doi.org/10.52842/conf.ecaade.2015.1.269
wos WOS:000372317300029
summary Detection of emergent shapes in sketches requires extensive exploration of the design space. Automating this process with computational methods enables locating various alternatives sequentially or all at once simultaneously via high computational power. This not only helps efficient design space exploration but also provides a systematic way for keeping track of the design process. However, it is a challenge to define a generic computational method which optimizes the design space searches in time and space. The approaches that are based on optimization may suffer from time efficiency and local minima problems. These problems are substantially solved in this work by performing comprehensive parallel searches in the design space with a genetic algorithm. Advantage of this approach is that the local minima problem is reduced significantly without increasing the execution times.
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2015_237
id caadria2015_237
authors Bazalo, Frano. and Tane J. Moleta
year 2015
title Responsive Algorithms
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 209-218
doi https://doi.org/10.52842/conf.caadria.2015.209
summary An algorithm is a process of addressing a problem in a finite number of steps. In the context of architectural design, algorithmic thinking means taking on an interpretive role to understand the results in relation to design criteria, knowing how to modify the code to explore new options, and speculating on further design potentials. The application of algorithms within architecture often addresses the developed design stages, primarily to optimise structure, test environmental performance or to resolve complex construction. This research aims to explore algorithmic tools with a focus on early stage design. This design stage is often developed using traditional processes and is where algorithmic applications have been less successfully executed. The objectives are to algorithmically explore the areas of space planning, programme layout, form finding and form optimisation within early stage architectural design. Through the combination of a range of diverse algorithms, this research has an ultimate aim of integrating a computational workflow into practice at the early design stage.
keywords Computational design, Early stage design
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2015_247
id cf2015_247
authors Demir, Gozdenur
year 2015
title Analysis of Space Layout Using Attraction Force Model and Quadratic Assignment Problem
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 247-267.
summary This paper researches the usefulness of computerized space layout programs in an actual problem of space layout of more than 50 design units of unequal sizes. This was tested with two existing space layout optimization methods, Quadratic Assignment Problem (QAP) and Attraction Force Model (AFM) as well as a satisficing method, intuitive approach. Necessary inputs for the evaluation processes, the evaluation processes and the resulting space layouts were analyzed for each approach by one designer. Their performance in the design process was criticized on subjects like preparation of inputs, situations related with multiple trials, evaluation of the resulting space layouts based on given inputs and what those space layouts represented. Generating alternatives is an advantage of computerized space layout approaches so that conditioning on the resulting space layouts decreases in the process but more research has to be done for their practicality in terms of input preparation, evaluation and transfer of outputs. Possible improvements were suggested to increase their usefulness in the professional field.
keywords computerized space layout approaches, quadratic assignment problem, equilibrium method, intuitive approach
series CAAD Futures
email
last changed 2015/06/29 07:55

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id ijac201513102
id ijac201513102
authors Takizawa, Atsushi Yushi Miyata, Naoki Katoh
year 2015
title Enumeration of Floor Plans Based on a Zero-Suppressed Binary Decision Diagram
source International Journal of Architectural Computing vol. 13 - no. 1, 25–44
summary This paper presents novel algorithms for enumerating architectural floor plans. The enumeration approach attempts to generate all feasible solutions that satisfy given constraints. Therefore, such a method might usefully reveal the potential diversity of Open Building floor plans. However, combinatorial enumeration solutions easily explode even for small problem sizes. We represent a space by a set of cells and organize some cells into polyomino-like configurations. We then enumerate all cell combinations that can be tiled in the given space using an efficient search algorithm for combinatorial problems. We also propose queries for extracting specific floor plans that satisfy additional constraints from all enumerated floor plans without re-enumeration. Our approach solves a 56-cell configuration space within a realistic timeframe.
series journal
last changed 2019/05/24 09:55

_id ecaade2015_280
id ecaade2015_280
authors Adilenidou, Yota
year 2015
title Error as Optimization - Using Cellular Automata Systems to Introduce Bias in Aggregation Models through Multigrids
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 601-610
doi https://doi.org/10.52842/conf.ecaade.2015.2.601
wos WOS:000372316000067
summary This paper is focusing on the idea of error as the origin of difference in form but also as the path and the necessity for optimization. It describes the use of Cellular Automata (CA) for a series of structural and formal elements, whose proliferation is guided through sets of differential grids (multigrids) and leads to the buildup of big span structures and edifices as, for example, a cathedral. Starting from the error as the main idea/tool for optimization, taxonomies of morphological errors occur and at a next step, they are informed with contextual elements to produce an architectural system. A toolbox is composed that can be implemented in different scales and environmental parameters, providing variation, optimization, complexity and detail density. Different sets of experiments were created starting from linear structural elements and continuing to space dividers and larger surface components.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=5cf73be0-6e8f-11e5-b7a4-1b188b87ef84
last changed 2022/06/07 07:54

_id cf2015_268
id cf2015_268
authors Benedetto, Henrique; Kipper, Fabrício A.;Marques, Vinícius and Bruscato, Underléa M.
year 2015
title Development of Parklets by using parametric modeling
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 268-278.
summary The lack of urban planning has made the recreation areas increasingly smaller in the cities. Parks and squares gradually gave way to streets and avenues to try to accommodate the growing number of cars and motorcycles. An alternative that tries to balance recreation areas and urban roads was found in the city of San Francisco (USA). Parklets are temporary extensions of urban sidewalks that occupy a few parking spaces. This article aims to demonstrate the potential of parametric modeling in the development of parklets. Thus, anthropometric studies, amount of parking spaces and types of benches were used as input parameters. Rhinoceros and grasshopper programs were used for modeling, while 3D Studio Max was used for rendering. With this study it was possible to verify that when the project is parameterized the processes of creation and modification became faster, reducing design and implementation time.
keywords Grasshopper algorithm editor, Parametric model, Parklets.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_200
id ecaade2015_200
authors Gargaro, Silvia and Fioravanti, Antonio
year 2015
title Towards a Context Knowledge Taxonomy - Combined Methodologies to Improve a Fast-Search Concept Extraction for an Ontology Population
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 137-147
doi https://doi.org/10.52842/conf.ecaade.2015.1.137
wos WOS:000372317300015
summary Context in Architectural Design can be defined-related-comparable to hypothesis and boundary conditions in mathematics. An eco-system that influences it by means of natural and artificial events, space and time dimension. The research has the aim to analyze the critical issues related to Context by providing a contribution to the study of interactions between Context Knowledge and Architectural Design and how it can be used to improve the performance of the buildings and reducing design mistakes. The research focusing on formal ontologies, has developed a model that enables a semantic approach to design application programs, to manage information, to answer design questions and to have a clear relation between the formal representation of the context domain and its meanings. This context model provides an advancement on the state of the art in simplified design assumptions, in term of ontology ambiguity and complexity reduction, by using algorithms to extract and optimize branches of the graph. The extraction does not limit the number of relations, that can be extended and improve context taxonomy coherency and accuracy.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c8741aa2-702c-11e5-a273-83f9e53dafcf
last changed 2022/06/07 07:51

_id cf2017_111
id cf2017_111
authors Kepczynska-Walczak, Anetta; Pietrzak, Anna
year 2017
title An Experimental Methodology for Urban Morphology Analysis
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 111.
summary The paper presents results of a research conducted in 2015 and 2016 at Lodz University of Technology. It proposes a purpose and context fit approach towards the automation of urban data generation based on GIS tools and New Urbanism typologies. First, background studies of methods applied in urban morphology analysis are revealed. Form-Based Code planning, and subsequently Transect-Based Code are taken into account. Then, selected examples from literature are described and discussed. Finally, the research study is presented and the outcomes compared with more traditional methodology.
keywords GIS, Urban morphology, Spatial analysis, Decision support systems, Urban design, Data analytics, Modelling and simulation
series CAAD Futures
email
last changed 2017/12/01 14:37

_id cf2015_484
id cf2015_484
authors Liao, Kai; Vries, Bauke de; Kong, Jun and Zhang, Kang
year 2015
title Pattern, cognition and spatial information processing: Representations of the spatial layout of architectural design with spatial-semantic analytics
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 484.
summary In this paper, we review and extend the idea of Alexander’s “pattern language”, especially from the viewpoints of complexity theories, information systems, and human-computer interaction, to explore spatial cognition-based design representations for “intelligent and adaptive/interactive environment” in architecture and urban planning. We propose a theoretic framework of design patterns “with spatial information processing”, and attempt to incorporate state-of-the-art computational methods of information visualization/visual analytics into the conventional CAAD approaches. Focused on the spatial-semantic analytics, together with abstract syntactic pattern representation, by using “spatial-semantic aware” graph grammar formalization, i.e., Spatial Graph Grammars (SGG), the relevant models, algorithms and tool are proposed. We testify our theoretic framework and computational tool VEGGIE (a Visual Environment of Graph Grammar Induction Engineering) by using actual architectural design works (spatial layout exemplars of a small office building and the three house projects by Frank Lloyd Wright) as study cases, so as to demonstrate our proposed approach for practical applications. The results are discussed and further research is suggested.
keywords Pattern language, complex adaptive systems, spatial cognition, design representations, spatial information processing, Artificial Intelligence, visual language, Spatial Graph Grammars (SGG), spatial-semantic analytics.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_64
id ecaade2015_64
authors Nourian, Pirouz; Rezvani, Samaneh, Sariyildiz, Sevil and Hoeven, Franklinvander
year 2015
title CONFIGURBANIST - Urban Configuration Analysis for Walking and Cycling via Easiest Paths
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 553-564
doi https://doi.org/10.52842/conf.ecaade.2015.1.553
wos WOS:000372317300060
summary In a quest for promoting sustainable modes of mobility, we have revisited how feasible and suitable is it for people to walk or cycle to their destinations in a neighbourhood. We propose a few accessibility measures based on an 'Easiest Path' algorithm that provides also actual temporal distance between locations. This algorithm finds paths that are as short, flat and straightforward as possible. Considering several 'points of interest', the methods can answer such questions as “do I have a 5 minutes 'easy' walking/cycling access to all/any of these points?” or, “which is the preferred point of interest with 'easy' walking cycling access?” We redefine catchment zones using Fuzzy logics and allow for mapping 'closeness' considering preferences such as 'how far' people are willing to go on foot/bike for reaching a particular destination. The accessibility measures are implemented in the toolkit CONFIGURBANIST to provide real-time analysis of urban networks for design and planning.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=b1dffea2-70d9-11e5-8e0c-0377ddcc509c
last changed 2022/06/07 08:00

_id cf2015_205
id cf2015_205
authors Oliveira, Eduardo; Kirley, Michael; Kvan, Tom; Karakiewicz, Justyna and Vaz, Carlos
year 2015
title Distributed and heterogeneous data analysis for smart urban planning
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 205.
summary Over the past decade, ‘smart’ cities have capitalized on new technologies and insights to transform their systems, operations and services. The rationale behind the use of these technologies is that an evidence-based, analytical approach to decision-making will lead to more robust and sustainable outcomes. However, harvesting high-quality data from the dense network of sensors embedded in the urban infrastructure, and combining this data with social network data, poses many challenges. In this paper, we investigate the use of an intelligent middleware – Device Nimbus – to support data capture and analysis techniques to inform urban planning and design. We report results from a ‘Living Campus’ experiment at the University of Melbourne, Australia focused on a public learning space case study. Local perspectives, collected via crowdsourcing, are combined with distributed and heterogeneous environmental sensor data. Our analysis shows that Device Nimbus’ data integration and intelligent modules provide high-quality support for decision-making and planning.
keywords smart city, smart campus, middleware, data fusion, urban design, urban planning.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_114
id ecaade2015_114
authors Roggema, Rob and Nikolay, Popov
year 2015
title Swarm Planning: Development of Generative Spatial Planning Tool for Resilient Cities
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 519-527
doi https://doi.org/10.52842/conf.ecaade.2015.1.519
wos WOS:000372317300056
summary In dealing with unexpected impacts of climate change current spatial planning tools are irresponsive and inflexible. The outcomes of applications of these tools are very limited in number, producing static plans that if implemented are very vulnerable to climate hazards. Therefore, an innovative generative tool has been developed to support spatial planning which results in designs that are responsive and adjustable to unexpected, simulated changes. The development of the generative tool is informed by swarm planning theory, and by contemporary generative approaches in urban design and planning. The generative tool is modeled as an Agent-Based System and utilizes versions of the canonical flocking algorithm. The agents are abstract cubical units of space that represent building envelopes. The agents exist and work within an environment that represents a site in terms of topography, land value, and available/buildable land. The agents receive information from the environment and act upon this information. The unexpected climate impact is a simulated flood, which affects both the environment and the agents. The outputs of the tool are generated 'bottom-up' in order to study emergent spatial configurations, as massings of building units.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=205afb0c-7107-11e5-9c2a-17072d6ddcaa
last changed 2022/06/07 07:56

_id ecaade2015_152
id ecaade2015_152
authors Rosenberg, Moritz and Straßl, Benjamin
year 2015
title SHOPGENERATOR v2:Automated Design, Analysis and Optimization of Shopping Layouts
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 503-512
doi https://doi.org/10.52842/conf.ecaade.2015.2.503
wos WOS:000372316000057
summary In shop design a common method to maximize sales is to manipulate the customers through spatial arrangements of shelves and products. The aim of this practice is that shoppers have to spend a long time in the store and pass a high quantity of products. Using this technique requires a lot of empirical analysis of POS (point of sale) data and experimentation with product and shelf arrangements, while not upsetting the customers by guiding them through a “shopping maze”. For this reason we developed a tool that semi-automatically - just a couple of inputs concerning the type of shop are required - creates different shopping layouts which are later analyzed and optimized for visibility and product placement. This tool aims to support shop designers in an early planning stage. This is done by creating and testing a large number of different shopping layouts without having to conduct experiments in an actually built environment..
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=51e1517e-6f79-11e5-bdcf-7b685ac8d7c5
last changed 2022/06/07 07:56

_id ecaade2016_046
id ecaade2016_046
authors Tomarchio, Ludovica, Tuncer, Bige, You, Linlin and Klein, Bernhard
year 2016
title Mapping Planned and Emerging Art Places in Singapore through Social Media Feeds
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 437-446
doi https://doi.org/10.52842/conf.ecaade.2016.2.437
wos WOS:000402064400043
summary This paper presents a methodology to collect and visualize social media data about art, in order to map art locations in cities using geo-localized data, and comparing planning decisions with the actual use of spaces. As various social networks have penetrated into the daily life of people, these become one important and effective data source to understand how people perform 'arts' around the city [Shah, 2015]. The case study for this methodology is Singapore, a vibrant city where art and culture are being promoted in the light of an emerging creative economy. The Singapore government promotes art and creates 'art clusters', such as art districts, galleries, fairs and museums in the city. Additionally, artists, creative entrepreneurs, consumers, and critics seek and explore alternative spaces. Understanding where art and creativity are discussed, broadcasted and consumed in Singapore is a key point to have better insights into art space planning, and study its effects on the city.The paper will try to answer the following research question:Is it possible to discover, through social network data, spaces where art is produced, discussed, and broadcasted to an audience in Singapore? How?
keywords social- media; art; creative city; creative places
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2015_168
id caadria2015_168
authors Tong, Ziyu
year 2015
title A Genetic Algorithm Approach to Optimizing the Distribution of Buildings in Urban Green Space
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 147-156
doi https://doi.org/10.52842/conf.caadria.2015.147
summary Certain buildings are required in urban green space according to the Chinese regulations, and their area depends on the type and area of the green space. The scale of the single building or the disperse extent of the building group dramatically influences the local ecological environment and landscape. However, it is lack of effective methods to evaluate the distribution of buildings, and it is hard to plan and manage the buildings in the green space. According to the description of distribution features of geographic objects in geostatistics, this study presents the Index of Distribution (IOD) to describe the distribution pattern of buildings in the green space. Yuhuatai Park and Qingliangshan Park of Nanjing are chosen as cases to verify the effectiveness of IOD. Based on the genetic algorithm, the paper also presents a generating model, which can generate the plan of the buildings corresponding with the specific IOD. The model is effective to respond with the flexibility of location of the building. The results of the model can be used as the valuable reference to the planning of buildings in the green space.
keywords Genetic algorithm; index of distribution; green space.
series CAADRIA
email
last changed 2022/06/07 07:58

_id cf2015_061
id cf2015_061
authors van Stralen, Mateus de Sousa and Cezarino, Cristiano
year 2015
title Woka: Towards a dialogical design of future cities
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 61-76.
summary This paper presents an experiment on an open source construction system named Woka, which allows anyone to design and produce dwellings using standard CNC techniques. Woka was developed as a dialogical design process that empowers self-builders to act in a more autonomous way, expanding the traditional role of design practice and the way buildings are created. The advent and popularization of new design and fabrication processes have encouraged a flux of new theories and project strategies based on computing, each with its promise of changing the architectural practice. Some of these resulted in intellectually seductive; visually provocative and complex shaped architectures, generating a new formal repertoire, but doesn’t indicate a paradigm shift in the process of production of architectural space, still based on authorship. Woka challenges this traditional process proposing dialogue as a design approach, shifting the focus from the object to intersubjectivity, amplifying the potential for novelty to arise.
keywords Parametric design, digital fabrication, dialogical design, autonomous building
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_078
id caadria2015_078
authors Yanagawa, Kane
year 2015
title Confluence of Parametric Design and Digital Fabrication Restructuring Manufacturing Industries
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 13-22
doi https://doi.org/10.52842/conf.caadria.2015.013
summary The positive consumer reception of 3D printed products suggests that the coupling of digital fabrication technology and parametric design methodologies presents opportunities and challenges to traditional modes of industrial manufacturing. This paper outlines the manner in which parametrically defined constraints of components within design hysteresis can be implemented to maintain conformation to real world constraints. The study challenged ten architectural designers to develop parametric definitions using conventional CAD software and visual programming languages to describe the geometric logic of a simple pendant lamp while permitting some consumer defined shape parameters. The assessment of submitted design descriptions suggests that defining such a system parametrically for manufacturing requires the development of an approach that is capable of not only intelligently managing interdisciplinary dependencies but also evaluating performance factors within implicit design space. During the next phase of this research, focus will be on the application of the proposed constrained design hysteresis methodology in collaboration with a major manufacturing industry partner to further develop and explore its potential in real world implementation. If proven effective, it can be expected that adoption of the combination of parametric design tools and digital fabrication among major manufacturing industries will be pervasive in the coming years.
keywords Parametric design; digital fabrication; collaborative design; mass-customization; constrained design hysteresis
series CAADRIA
email
last changed 2022/06/07 07:57

_id cf2015_279
id cf2015_279
authors Abdelmohsen, Sherif M. and Massoud, Passaint M.
year 2015
title Making Sense of those Batteries and Wires: Parametric Design between Emergence and Autonomy
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 279-296.
summary This paper reports on the process and outcomes of a digital design studio that integrates parametric design and generative systems in architectural and urban design projects. It explores the interrelationship between the emergence of innovative formal representations using parametric design systems on the one hand, and design autonomy; more specifically the conscious process of generating and developing an architectural concept, on the other. Groups of undergraduate students working on an architectural project are asked to identify a specific conceptual parti that addresses an aspect of architectural quality, define strategies that satisfy those aspects, and computational methodologies to implement those strategies, such as rule-based systems, self-organization systems, and genetic algorithms. The paper describes the educational approach and studio outcomes, discusses implications for CAAD education and curricula, and addresses issues to be considered for parametric and generative software development.
keywords Parametric modeling, generative design, emergence, autonomy, design exploration, CAAD curriculum.
series CAAD Futures
email
last changed 2015/06/29 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_249768 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002