CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id cf2015_331
id cf2015_331
authors Brodeschi, Michal; Pilosof, Nirit Putievsky and Kalay, Yehuda E.
year 2015
title The definition of semantic of spaces in virtual built environments oriented to BIM implementation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 331-346.
summary The BIM today can be a provider of inputs to performance analysis of different phenomena such as thermal comfort, energy consumption or winds. All these assessments are fundamental to the post occupation of the building. The attainment of approximate information of how the future building would behave under these conditions will reduce the waste of materials and energy resources. The same idea is used for evaluating the users occupation. Through simulation of human behavior is possible to evaluate which design elements can be improved. In complex structures such as hospital buildings or airports is quite complex for architects to determine optimal design solutions based on the tools available nowadays. These due to the fact users are not contemplated in the model. Part of the data used for the simulation can be derived from the BIM model. The three-dimensional model provides parametric information, however are not semantically enriched. They provide parameters to elements but not the connection between them, not the relationship. It means that during a simulation Virtual Users can recognize the elements represented in BIM models, but not what they mean, due to the lack of semantics. At the same time the built environment may assume different functions depending on the physical configuration or activities that are performed on it. The status of the space may reveal differences and these changes occur constantly and are dynamic. In an initial state, a room can be noisy and a moment later, quiet. This can determine what type of activities the space can support according to each change in status. In this study we demonstrate how the spaces can express different semantic information according to the activity performed on it. The aim of this paper is to simulate the activities carried out in the building and how they can generate different semantics to spaces according to the use given to it. Then we analyze the conditions to the implementation of this knowledge in the BIM model.
keywords BIM, Virtual Sensitive Environments, Building Use Simulation, Semantics.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_139
id ecaade2015_139
authors Krietemeyer, Bess and Rogler, Kurt
year 2015
title Real-Time Multi-Zone Building Performance Impacts of Occupant Interaction with Dynamic Façade Systems
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 669-678
doi https://doi.org/10.52842/conf.ecaade.2015.2.669
wos WOS:000372316000074
summary Recent developments in responsive electroactive materials are increasing the rate at which next-generation façade technologies can respond to environmental conditions, building energy demands, and the actions of building occupants. Simulating the real-time performance of dynamic façade systems is critical for understanding the impacts that occupant response will have on whole-building energy performance and architectural design. This paper describes a method for real-time analysis of the multi-zone building performance impacts of occupant interaction with a dynamic façade system, the Electroactive Dynamic Display System (EDDS). The objective is to optimize EDDS implementation and define system limitations, incorporate EDDS as a dynamic factor in multi-zone building energy analyses, and provide real-time feedback of building performance data based on environmental conditions and occupant interactions. Preliminary results of parametric simulation methods demonstrate the ability of dynamic façade systems to consider real-time occupant interaction in the analysis of daylighting and thermal performance of buildings.
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2015_sp_8.326
id sigradi2015_sp_8.326
authors Urbina, Marcelo
year 2015
title Influence of the methods of energy analysis in the decision-making along the design process
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 802-806.
summary The contemporary design process is assisted by various analytical tools that through its results influence the decision-making. This research addresses the challenge of analysing the degree of influence of the methodologies and the effects they have on the decisions taken during the different stages. For this purpose, the evolution of the design process, the components of the models for energy analysis and a case study were analysed. The results of each analysis were compared to identify which variables and stages have greater impact throughout the design process, where preliminary results show that the analysis of the effects caused by the variation of the orientation and form over the energy performance allow greater savings in the early stages.of energy generation to promote on-site installation of clean energy sources in existing buildings, to ensure a more sustainable habitat.
keywords Design Process, Decision-making, Uncertainty, Energy Analysis
series SIGRADI
email
last changed 2016/03/10 10:01

_id ecaade2015_130
id ecaade2015_130
authors Asl, Mohammad Rahmani; Stoupine, Alexander, Zarrinmehr, Saied and Yan, Wei
year 2015
title Optimo: A BIM-based Multi-Objective Optimization Tool Utilizing Visual Programming for High Performance Building Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 673-682
doi https://doi.org/10.52842/conf.ecaade.2015.1.673
wos WOS:000372317300073
summary Within the architecture, engineering, and construction (AEC) industry, the application of multidisciplinary optimization methods has been shown to reach significant improvements in building performance compared to conventional design methods. As a result, the use of multidisciplinary optimization in the process of design is growing and becoming a common method that provides desired performance feedback for decision making. However, there is a lack of BIM-based multidisciplinary optimization tools that use the rich information stored in Building Information Models (BIM) to help designers explore design alternatives across multiple competing design criteria. In this paper we introduce Optimo, an open-source visual programming-based Multi-Objective Optimization (MOO) tool, which is developed to parametrically interact with Autodesk Revit for BIM-based optimization. The paper details the development process of Optimo and also provides the initial validation of its results using optimization test functions. Finally, strengths, limitations, current adoption by academia and industry, and future improvements of Optimo for building performance optimization are discussed.
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2015_55
id ecaade2015_55
authors Chen, KianWee; Janssen, Patrick and Schlueter, Arno
year 2015
title Analysing Populations of Design Variants Using Clustering and Archetypal Analysis
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 251-260
doi https://doi.org/10.52842/conf.ecaade.2015.1.251
wos WOS:000372317300027
summary In order to support exploration in the early stages of the design process, researchers have proposed the use of population-based multi-objective optimisation algorithms. This paper focuses on analysing the resulting population of design variants in order to gain insights into the relationship between architectural features and design performance. The proposed analysis method uses a combination of k-means clustering and Archetypal Analysis in order to partition the population of design variants into clusters and then to extract exemplars for each cluster. The results of the analysis are then visualised as a set of charts and as design models. A demonstration of the method is presented that explores how self-shading geometry, envelope materials, and window area affect the overall performance of a simplified building type. The demonstration shows that although it is possible to derive general knowledge linking architectural features to design performance, the process is still not straightforward. The paper ends with a discussion on how the method can be further improved.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=09a711e6-70f5-11e5-af69-2b8082624d42
last changed 2022/06/07 07:55

_id caadria2015_067
id caadria2015_067
authors Choi, Jungsik; Minchan Kim and Inhan Kim
year 2015
title A Methodology of Mapping Interface for Energy Performance Assessment Based on Open BIM
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 417-426
doi https://doi.org/10.52842/conf.caadria.2015.417
summary Early design phase energy modelling is used to provide the design team with feedback about the impact of various building configurations. For better energy-conscious and sustainable building design and operation, the construction of BIM data interoperability for energy performance assessment in the early design phase is important. The purpose of this study is to suggest a development of BIM data interoperability for energy performance assessment based on BIM. To archive this, the authors have investigated advantages of BIM-based energy performance assessment through comparison with traditional energy performance assessment; and suggest requirements for development of Open BIM environment such as BIM data creation and BIM data application. In addition, the authors also suggested on BIM data interoperability system and developed mapping interface.
keywords Building Information Modelling (BIM); Energy Performance Assessment (EPA); Data Interoperability; Energy Property; Industry Foundation Classes (IFC).
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_265
id ecaade2015_265
authors Hosey, Shannon; Beorkrem, Christopher, Damiano, Ashley, Lopez, Rafael and McCall, Marlena
year 2015
title Digital Design for Disassembly
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 371-382
doi https://doi.org/10.52842/conf.ecaade.2015.2.371
wos WOS:000372316000043
summary The construction and building sector is now widely known to be one of the biggest energy consumers, carbon emitters, and creators of waste. Some architectural agendas for sustainability focus on energy efficiency of buildings that minimize their energy intake during their lifetime - through the use of more efficient mechanical systems or more insulative wall systems. One issue with these sustainability models is that they often ignore the hierarchy of energy within architectural design. The focus on the efficiency is but one aspect or system of the building assembly, when compared to the effectiveness of the whole, which often leads to ad-hoc ecology and results in the all too familiar “law of unintended consequences” (Merton, 1936). As soon as adhesive is used to connect two materials, a piece of trash is created. If designers treat material as energy, and want to use energy responsibly, they can prolong the lifetime of building material by designing for disassembly. By changing the nature of the physical relationship between materials, buildings can be reconfigured and repurposed all the while keeping materials out of a landfill. The use of smart joinery to create building assemblies which can be disassembled, has a milieu of new possibilities created through the use of digital manufacturing equipment. These tools afford designers and manufacturers the ability to create individual joints of a variety of types, which perform as well or better than conventional systems. The concept of design for disassembly is a recognizable goal of industrial design and manufacturing, but for Architecture it remains a novel approach. A classic example is Kieran Timberlake's Loblolly House, which employed material assemblies “that are detailed for on-site assembly as well as future disassembly and redeployment” (Flat, Inc, 2008). The use of nearly ubiquitous digital manufacturing tools helps designers create highly functional, precise and effective methods of connection which afford a building to be taken apart and reused or reassembled into alternative configurations or for alternative uses. This paper will survey alternative energy strategies made available through joinery using digital manufacturing and design methods, and will evaluate these strategies in their ability to create diassemblable materials which therefore use less energy - or minimize the entropy of energy over the life-cycle of the material.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4075520a-6fe7-11e5-bcc8-f7d564ea25ed
last changed 2022/06/07 07:50

_id acadia15_381
id acadia15_381
authors Jabi, Wassim
year 2015
title The Potential of Non-Manifold Topology in the Early Design Stages
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 381-493
doi https://doi.org/10.52842/conf.acadia.2015.381
summary The importance of decisions made during the early design stages has prompted researchers to advocate the use of building performance simulation (BPS) during that stage. This paper investigates non-manifold topology (NTM) as a novel approach to 3D modelling that has the potential to be highly compatible with the early design stages and with the input requirements for BPS. The proposed approach avoids the process of simplifying polyhedral models produced by Building Information Modelling (BIM) software to conduct BPS. In particular, NTM allows for a clear segmentation of a building, unambiguous space boundaries, and perfectly matched surfaces and glazing subsurfaces. The NTM approach was tested through a software prototype that integrates 3D modelling software and an energy simulation engine.
keywords Early design stage, Non-manifold topology, Building performance simulation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id ecaade2015_158
id ecaade2015_158
authors Kim, Do-Young; Jang, DoJin and author), Sung-AhKim
year 2015
title A Symbiotic Interaction of Virtual and Physical Models in Designing Smart Building Envelope
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 633-642
doi https://doi.org/10.52842/conf.ecaade.2015.2.633
wos WOS:000372316000070
summary The building needs to be designed to minimize its environmental footprint and to be sufficiently adaptive to changing indoor and outdoor environmental conditions. The smart building envelope is an interactive system which is adaptive to environmental conditions by transforming its shape and functions. This is a kind of machine, not like a traditional building component, which should be based on integrated engineering design methods in addition to the exploration of formal aesthetics. As artistic genius or technical skill alone cannot not fully support the design of such a novel product, the design needs to be systemized by introducing a product development method such as prototyping in other industries. Prototyping needs to be integrated in school environment, even if it requires fundamental reconfiguration of current computer-based design studios. This paper aims at proposing a teaching methodology for educating the prototyping-based design of smart building envelope system in digital design studio. This methodology allows novice designers to operate interactions between virtual-physical models. And sketches are used to share ideas to other collaborators such as programming, mechanical operations without technical knowledge. The interactions between virtual-physical models and sketches contribute to not only complement virtual models and physical models, but also achieve high-performance of smart building envelope practically.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=215b1984-6e90-11e5-9ee8-00190f04dc4c
last changed 2022/06/07 07:52

_id ecaade2015_202
id ecaade2015_202
authors Kim, Hyoungsub; Asl, Mohammad Rahmani and Yan, Wei
year 2015
title Parametric BIM-based Energy Simulation for Buildings with Complex Kinetic Façades
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 657-664
doi https://doi.org/10.52842/conf.ecaade.2015.1.657
wos WOS:000372317300071
summary This paper aims to investigate a new methodology for analysing energy performance of buildings with complex kinetic façades. In this research, the flexible movements of individual kinetic façades in a building is determined by the façades' opening ratios and the sun path. The platform development is conducted through a visual programing environment in BIM, and the process is presented with a case study. Finally, the building's energy performance is compared with a building having static façades using whole building energy analysis tool.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=2e70ba2e-7021-11e5-9015-00190f04dc4c
last changed 2022/06/07 07:52

_id caadria2015_164
id caadria2015_164
authors Mcginley, Tim and Darren Fong
year 2015
title Designghosts
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 365-374
doi https://doi.org/10.52842/conf.caadria.2015.365
summary For architects, a database of typological specific occupant behaviour patterns could help in the design of buildings, through a typological specific insight into the previous use of buildings. In addition, appropriately represented occupant behaviour data in commercial buildings represent an important factor for facilities management (FM) and business information (BI) teams in the assessment the operational performance of the enterprise. Building Information Models (BIM) could provide an appropriate reference for this user data. However the mapping of user behaviour data to the BIM models is unclear. This paper presents a ‘designGhost’ information system to support the mapping of occupant behaviour to BIM models, so that the user data can be represented to the different stakeholders. To test the information system a prototype tool is presented to enable the mapping of the building use (designGhost) data to the building’s spaces in order to support architects in the design stage and to support navigation from an operational (FM/BI) perspective. This paper addressees the challenges of developing such a system and proposes directions for future work.
keywords Post occupancy evaluation; BIM; visibility graph analysis; designGhost; occupant behaviour; design science; building design and operation.
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2015_6.387
id sigradi2015_6.387
authors Pramanik, Adetania; Haymaker, John; Swarts, Matthew; Zimring, Craig
year 2015
title Integrating clinic process flow, space syntax and space adjacency analysis: Formalization of computational method in building programming
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 262-272.
summary This paper presents a computational space adjacency analysis method by integrating information and analysis from process flow methods used in the healthcare system with space syntax methods used in architecture. These methods involve similar conceptual properties related to activity, space and flow. However, their implementation in the building programming process is disconnected, and relies solely on experience and expert opinions. The basic approach for the integration was by abstracting these similar properties in the process flow diagram, space connectivity diagram, and justified plan graph into nodes and edges representations. A case study of a clinic that is currently in the construction phase was used to develop the integration procedure and comparison analysis with the actual floorplan.
keywords Spatial Adjacency, Process Flow, Space Syntax, Graph Theory, Building Programming
series SIGRADI
email
last changed 2016/03/10 09:58

_id acadia15_497
id acadia15_497
authors Sandoval Olascoaga, Carlos; Victor-Faichney, John
year 2015
title Flows, Bits, Relationships: Construction of Deep Spatial Understanding
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 497-512
doi https://doi.org/10.52842/conf.acadia.2015.497
summary The number of variables acting upon urban landscapes is numerous and interconnected, closely resembling complex systems in constant dynamic transformation. Current analytical methods and descriptions of the city are domain specific, limited in scope, and discretize the city into quantifiable individual representations, resulting in an equally limited urban policy and design. If we are to produce urban systems capable of contributing to the robustness and resiliency of cities, we ought to understand and represent the comprehensive network of actors that construct contemporary urban landscapes. On one hand, the natural sciences approach the analysis of complex systems by primarily focusing on the development of models capable of describing their stochastic formation, remaining agnostic to the contextual properties of their individual components and oftentimes discretizing the otherwise continuous relationships among parts. signers work in groups. They need to share information either synchronously or asynchronously as they work with parametric modeling software, as with all computer-aided design tools. Receiving information from collaborators while working may intrude on their work and thought processes. Little research exists on how the reception of design updates influences designers in their work. Nor do we know much about designer preferences for collaboration. In this paper, we examine how sharing and receiving design updates affects designers’ performances and preferences. We present a system prototype to share changes on demand or in continuous mode while performing design tasks. A pilot study measuring the preferences of nine pairs of designers for different combinations of control modes and design tasks shows statistically significant differences between the task types and control modes. The types of tasks affect the preferences of users to the types of control modes. In an apparent contradiction, user preference of control modes contradicts task performance time.
keywords Networks, graphs, web-mapping, GIS, urban mapping, spatial analysis, urban databases, visual representation, spatial cognition
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2015_38
id ecaade2015_38
authors Stavrakantonaki, Marina
year 2015
title A Framework for Input Data Processing During Building Energy Model Calibration. A Case Study
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 625-634
doi https://doi.org/10.52842/conf.ecaade.2015.1.625
wos WOS:000372317300068
summary Key parameter of a reasoning process supporting real time performance is the use of active heuristics that facilitate the achievement of goals in a timely manner (Dodiawala et al. 1989). A real time approach should incorporate speed, timeliness and adaptation during the execution of tasks. Speed and efficient knowledge processing are addressed for the solution of complex building engineering problems, such as the calibration of Building Energy Models (BEM) to the actual performance data. During retrofit projects, calibrated BEM models aid the design process, and provide a solid base for performative assessments. Despite the demand for building performance evaluations, BEM calibration remains a work-intensive task (Lam et al. 2014). This study proposes a time efficient framework for BEM calibration input data management based on the methodology of a blackboard artificial intelligence knowledge processing system. The resulting model was used for sequential data mining for the energy assessment during the renovation of a commercial building.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e440bdd6-7021-11e5-bdb0-00190f04dc4c
last changed 2022/06/07 07:56

_id ecaade2015_298
id ecaade2015_298
authors Vannini, Virgínia Czarnobay and Turcienicz, Benamy
year 2015
title Thermal Performance Associated with Materials in Early Stages of the Design Process
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 325-331
doi https://doi.org/10.52842/conf.ecaade.2015.1.325
wos WOS:000372317300035
summary This work is part of a research on decision-making processes in architecture involving computer programs in the early stages of designing the building envelope. The research involves two steps: (1) intuitive processes analysis during the handling of the building envelope components - floor, roof, walls, windows, solar protection elements - and (2) generative processes analysis of building envelopes supported by performance models. This article is the first step, analyzing four housing prototypes, designed and built for the Solar Decathlon competition. First, the building envelope elements and thermal characteristics of these prototypes were modeled; then different materials that make up the envelope were tested, aimed at assessing thermal performance against the modifications proposed in six different scenarios. The results showed that it is possible to obtain intuitive solutions that equalize temperature changes in the early stages of design with computing environments even without the use of detailed data on the characteristics of buildings, features of the later stages of the project.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=a47c739a-702e-11e5-923c-bfb1b0817050
last changed 2022/06/07 07:58

_id caadria2018_016
id caadria2018_016
authors Zahedi, Ata and Petzold, Frank
year 2018
title Utilization of Simulation Tools in Early Design Phases Through Adaptive Detailing Strategies
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 11-20
doi https://doi.org/10.52842/conf.caadria.2018.2.011
summary Decisions taken at early stages of building design have a significant effect on the planning steps for the entire lifetime of the project as well as the performance of the building throughout its lifecycle (MacLeamy 2004). Building Information Modelling (BIM) could bring forward and enhance the planning and decision-making processes by enabling the direct reuse of data hold by the model for diverse analysis and simulation tasks (Borrmann et al. 2015). The architect today besides a couple of simplified simulation tools almost exclusively uses his know-how for evaluating and comparing design variants in the early stages of design. This paper focuses on finding new ways to facilitate the use of analytical and simulation tools during the important early phases of conceptual building design, where the models are partially incomplete. The necessary enrichment and proper detailing of the design model could be achieved by means of dialogue-based interaction concepts with analytical and simulation tools through adaptive detailing strategies. This concept is explained using an example scenario for design process. A generic description of the aimed dialog-based interface to various simulation tools will also be discussed in this paper using an example scenario.
keywords BIM; Early Design Stages; Adaptive Detailing ; Communication Protocols; Design Variants
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2015_18
id ecaade2015_18
authors Agkathidis, Asterios
year 2015
title Generative Design Methods - Implementing Computational Techniques in Undergraduate Architectural Education
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 47-55
doi https://doi.org/10.52842/conf.ecaade.2015.2.047
wos WOS:000372316000007
summary In continuation to the Deceptive Landscape Installation research project (Agkathidis, Kocatürk 2014), this paper investigates the implementation of generative design techniques in undergraduate architectural design education. After reviewing the main definitions of generative design synoptically, we have assessed the application of a modified generative method on a final year, undergraduate design studio, in order to evaluate its potential and its suitability within the framework of a research led design studio, leading to an RIBA accredited Part I degree. Our research findings based on analysis of the design outputs, student performance, external examiners reports as well as student course evaluation surveys indicate a positive outcome on the studio's design approach, as well as its suitability for an undergraduate design studio. They initiate a flourishing debate about accomplishments and failures of a design methodology, which still remains alien to many undergraduate curricula.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e6f673d4-6e8e-11e5-be22-93874392c2e4
last changed 2022/06/07 07:54

_id caadria2015_090
id caadria2015_090
authors Altabtabai, Jawad and Wei Yan
year 2015
title A User Interface for Parametric Architectural Design Reviews
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 65-74
doi https://doi.org/10.52842/conf.caadria.2015.065
summary Architectural form and performance are affected by the designer's graphical representation methods. Parametric CAD systems, as design and representation tools, have become ubiquitous in architectural practice and education. Literature in the area of parametric design reviews is scarce and focused within building inspection and construction coordination domains. Additionally, platforms marketed as design review tools lack basic functionality for conducting comprehensive, parametric, and performance-based reviews. We have developed a user interface prototype where geometric and non-geometric information of a Building Information Model were translated into an interactive gaming environment. The interface allows simultaneous occupation and simulation of spatial geometry, enabling the user to engage with object parameters, as well as, performance-based, perspectival, diagrammatic, and orthographic representations for total spatial and performance comprehension.
keywords Design cognition; Virtual/augmented reality and interactive environments; Human-computer interaction.
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2015_8.81
id sigradi2015_8.81
authors Alvarado, Rodrigo García; Lobos, Danny; Nope, Alberto; Tinapp, Frank
year 2015
title BIM + UAV Assessment of Roofs’ Solar Potential
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 336-340.
summary This paper describes a novel method for determining the capacity to generate solar energy integrated into the roofs of buildings by aerial survey using UAVs and BIM models for sizing the covering surfaces and integration of solar panels. Various digital procedures are enchained like planning of trajectories, image processing, geometric reconstitution, simulation of solar radiation and calculation of energy generation to promote on-site installation of clean energy sources in existing buildings, to ensure a more sustainable habitat.
keywords BIM, UAV, Solar Energy, Sustainable Building
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2015_485
id cf2015_485
authors Anaf, Márcia and Harris, Ana Lúcia Nogueira de Camargo
year 2015
title The geometry of Chuck Hoberman as the basis for the development of dynamic experimental structures
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 485.
summary The cognitive-theoretical foundation referring to teach drawing as a way of thinking, as well as the construction of the environment by means of drawing using transforming geometries and the formal and para-formal computational process, creating unusual geometries through generative design processes and methodologies, can be seen as some of the main possibilities in exploring dynamic experimental structures for an Adaptive Architecture. This article presents the development of a model for articulated facades, inspired by Hoberman´s Tessellates, and his Adaptive Building Initiative (ABI) project to develop facades models that respond in real time to environmental changes. In addition, we describe an experiment based on the retractable structures, inspired by Hoberman´s work and experimentations. Solutions for responsive facades can offer more flexible architectural solutions providing better use of natural light and contributing to saving energy. Using Rhinoceros and the Grasshopper for modeling and test the responsiveness, the parametric model was created to simulate geometric panels of hexagonal grids that would open and close in reaction to translational motion effects, regulating the amount of light that reaches the building.
keywords Parametric architecture, Hoberman´s Tessellates, Adaptive Building Initiative (ABI), Articulated Facades, Complex Geometries, Retractable structures, Retractable polyhedra.
series CAAD Futures
email
last changed 2015/06/29 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_681987 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002