CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 572

_id caadria2015_213
id caadria2015_213
authors Kornkasem, Sorachai and John B. Black
year 2015
title CAAD, Cognition & Spatial Thinking Training
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 561-570
doi https://doi.org/10.52842/conf.caadria.2015.561
summary The current study explored different spatial training methods and investigated the sequence of processed-based mental simulation that was facilitated by various structures of external spatial representations, including 3D technology in Computer Aided-Architectural Design (CAAD), spatial cues, and/or technical languages. The goal was to better understand how these components fostered planning experiences and affected spatial ability acquisition framed as the formation of spatial mental models, for further developing spatial training environments fundamental to Science, Technology, Engineering, and Mathematics (STEM) education, specifically for architecture education and cognition. Two experiments were conducted using a between-subjects design to examine the effects of spatial training methods on spatial ability performance. Across both studies learners improved in their spatial skills, specifically the learners in the 3D-augmented virtual environments over the 3D-direct physical manipulation conditions. This study is built upon the work in the fields of computer-user interface, visuospatial thinking and human learning.
keywords Spatial thinking training; cognitive processes; CAAD.
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2015_119
id ecaade2015_119
authors Dokonal, Wolfgang; Knight, Michael W. and Dengg, Ernst Alexander
year 2015
title New Interfaces - Old Models
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 101-106
doi https://doi.org/10.52842/conf.ecaade.2015.1.101
wos WOS:000372317300011
summary The rapid development of new Virtual Reality (VR) devices such as the Oculus Rift and Google Cardboard together with Augmented Reality (AR) applications such as 3Dplus (by the Finnish company advice) or gaming software such as Unity3D and Unreal Engine 4 raises the question of how we can use these new interfaces and applications to access our increasingly data-rich models. In this paper we will summarise the results of a joint international workshop where students explored the use of these new interfaces on existing models. During the course of the workshop, the students built their own VR environments to test spatial perception and then used different types of housing models with these interfaces to find out what kind of information inside those data rich models is best suited to be accessed using these new interfaces. The question will be if there is any added value - besides the novelty factor - in using these new devices in combination with old models. To give an extra dimension to the virtual nature of the workshop, students collaborated with some of the tutors primarily digitally using the virtual models and other online tools (Skype/Twitter/discussion boards). By having collaboration through the medium of the virtual interactive model as the core communication method, the amount, type and methods of presenting the information is tested and evaluated. This is work in progress and we had to experience several problems that we could not overcome in the available time.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=54a3a8e0-702c-11e5-9592-c7c2b292a6cf
last changed 2022/06/07 07:55

_id ecaade2015_18
id ecaade2015_18
authors Agkathidis, Asterios
year 2015
title Generative Design Methods - Implementing Computational Techniques in Undergraduate Architectural Education
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 47-55
doi https://doi.org/10.52842/conf.ecaade.2015.2.047
wos WOS:000372316000007
summary In continuation to the Deceptive Landscape Installation research project (Agkathidis, Kocatürk 2014), this paper investigates the implementation of generative design techniques in undergraduate architectural design education. After reviewing the main definitions of generative design synoptically, we have assessed the application of a modified generative method on a final year, undergraduate design studio, in order to evaluate its potential and its suitability within the framework of a research led design studio, leading to an RIBA accredited Part I degree. Our research findings based on analysis of the design outputs, student performance, external examiners reports as well as student course evaluation surveys indicate a positive outcome on the studio's design approach, as well as its suitability for an undergraduate design studio. They initiate a flourishing debate about accomplishments and failures of a design methodology, which still remains alien to many undergraduate curricula.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e6f673d4-6e8e-11e5-be22-93874392c2e4
last changed 2022/06/07 07:54

_id caadria2015_090
id caadria2015_090
authors Altabtabai, Jawad and Wei Yan
year 2015
title A User Interface for Parametric Architectural Design Reviews
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 65-74
doi https://doi.org/10.52842/conf.caadria.2015.065
summary Architectural form and performance are affected by the designer's graphical representation methods. Parametric CAD systems, as design and representation tools, have become ubiquitous in architectural practice and education. Literature in the area of parametric design reviews is scarce and focused within building inspection and construction coordination domains. Additionally, platforms marketed as design review tools lack basic functionality for conducting comprehensive, parametric, and performance-based reviews. We have developed a user interface prototype where geometric and non-geometric information of a Building Information Model were translated into an interactive gaming environment. The interface allows simultaneous occupation and simulation of spatial geometry, enabling the user to engage with object parameters, as well as, performance-based, perspectival, diagrammatic, and orthographic representations for total spatial and performance comprehension.
keywords Design cognition; Virtual/augmented reality and interactive environments; Human-computer interaction.
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2015_130
id ecaade2015_130
authors Asl, Mohammad Rahmani; Stoupine, Alexander, Zarrinmehr, Saied and Yan, Wei
year 2015
title Optimo: A BIM-based Multi-Objective Optimization Tool Utilizing Visual Programming for High Performance Building Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 673-682
doi https://doi.org/10.52842/conf.ecaade.2015.1.673
wos WOS:000372317300073
summary Within the architecture, engineering, and construction (AEC) industry, the application of multidisciplinary optimization methods has been shown to reach significant improvements in building performance compared to conventional design methods. As a result, the use of multidisciplinary optimization in the process of design is growing and becoming a common method that provides desired performance feedback for decision making. However, there is a lack of BIM-based multidisciplinary optimization tools that use the rich information stored in Building Information Models (BIM) to help designers explore design alternatives across multiple competing design criteria. In this paper we introduce Optimo, an open-source visual programming-based Multi-Objective Optimization (MOO) tool, which is developed to parametrically interact with Autodesk Revit for BIM-based optimization. The paper details the development process of Optimo and also provides the initial validation of its results using optimization test functions. Finally, strengths, limitations, current adoption by academia and industry, and future improvements of Optimo for building performance optimization are discussed.
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia17_202
id acadia17_202
authors Cupkova, Dana; Promoppatum, Patcharapit
year 2017
title Modulating Thermal Mass Behavior Through Surface Figuration
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 202-211
doi https://doi.org/10.52842/conf.acadia.2017.202
summary This research builds upon a previous body of work focused on the relationship between surface geometry and heat transfer coefficients in thermal mass passive systems. It argues for the design of passive systems with higher fidelity to multivariable space between performance and perception. Rooted in the combination of form and matter, the intention is to instrumentalize design principles for the choreography of thermal gradients between buildings and their environment from experiential, spatial and topological perspectives (Figure 1). Our work is built upon the premise that complex geometries can be used to improve both the aesthetic and thermodynamic performance of passive building systems (Cupkova and Azel 2015) by actuating thermal performance through geometric parameters primarily due to convection. Currently, the engineering-oriented approach to the design of thermal mass relies on averaged thermal calculations (Holman 2002), which do not adequately describe the nuanced differences that can be produced by complex three-dimensional geometries of passive thermal mass systems. Using a combination of computational fluid dynamic simulations with physically measured data, we investigate the relationship of heat transfer coefficients related to parameters of surface geometry. Our measured results suggest that we can deliberately and significantly delay heat absorption re-radiation purely by changing the geometric surface pattern over the same thermal mass. The goal of this work is to offer designers a more robust rule set for understanding approximate thermal lag behaviors of complex geometric systems, with a focus on the design of geometric properties rather than complex thermal calculations.
keywords design methods; information processing; physics; smart materials
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia19_234
id acadia19_234
authors Grewal, Neil; Escallon, Miguel; Chaudhary, Abhinav; Hramyka, Alina
year 2019
title INFRASONIC
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 234-245
doi https://doi.org/10.52842/conf.acadia.2019.234
summary In 2015, an earthquake of 7.8 magnitude displaced over 6.6 million people in Kathmandu, Nepal. Three years later, the country continues in its struggle to rebuild its capital. The aim of this study is to investigate a construction system, produced from locally sourced materials, that can aggregate and deploy as self-built, habitable infrastructure. The study focused on the relationship between material resonance, earthquake resistant structures, and fabrication strategies. An agent-based form-finding algorithm was developed using knowledge acquired through physical prototyping of mycelium-based composites to generate earthquake resistant geometries, optimize material usage, and enhance spatial performance. The results show compelling evidence for a construction methodology to design and construct a 3-4 story building that holds a higher degree of resistance to earthquakes. The scope of work contributes to advancements in bioengineering, confirming easy-to-grow, light-weight mycelium-composites as viable structural materials for construction.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2015_218
id caadria2015_218
authors Ku, Kihong and Daniel Chung
year 2015
title Digital Fabrication Methods of Composite Architectural Panels for Complex Shaped Buildings
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 703-712
doi https://doi.org/10.52842/conf.caadria.2015.703
summary Composite materials have been explored in architecture for their high performance characteristics that allow customization of functional properties of lightness, strength, stiffness and fracture toughness. Particularly, engineering advancements and better understanding of fiber composites have resulted in growing applications for architectural structures and envelopes. As most developments started outside the realm of architecture such as automobile and aeronautical industries, there is need to advance knowledge in architectural design to take advantage of this new technology. In this paper, the authors introduce preliminary results of new digitally driven fabrication methods for fiber-reinforced composite sandwich panels for complex shaped buildings. This research examined the material properties, manufacturing methods and fabrication techniques needed to develop a proof of concept system using off-the-shelf production technology that ultimately can be packaged into a containerized facility for on-site panel production. Experiments focused on developing a digitally controlled deformable mold to create composite relief structures for highly customized geometrical façade components. Research findings of production materials, methods, assembly techniques, are discussed to offer insights into novel opportunities for architectural composite panel fabrication and commercialization.
keywords Fiber reinforced polymer; fiber composites; adjustable mold; architectural panel; complex shape.
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2015_79
id ecaade2015_79
authors Sauda, Eric; Hess, Trevor, Danchenka, Evan, Christian, Scott and Beorkrem, Chris
year 2015
title Prepared Music Field: Interactive Spatial Music Performances
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 707-714
doi https://doi.org/10.52842/conf.ecaade.2015.2.707
wos WOS:000372316000078
summary As part of ongoing research, the Digital Arts Center at UNC Charlotte has commissioned of a new music composition by Andy Akiho, a fellow at the American Academy in Rome. The presentation of this piece will begin with a premiere in Charlotte, followed by performances in Rome, New York ,Cleveland and Charleston. This collaboration focuses on responsive architecture (an interweaving of space and digital media as a critical element in contemporary architecrue) and expanded musical performance venues (an engaging, inclusive and unique atmosphere for both performers and audience). To accomplish these goals, we have created a “prepared music field” that will allow the audience to move through the space using their smart phones to engage both with live performers and digitally delivered augmented compositional elements. Audience members will have a unique listening experience depending upon their position and movement during the performance. In this work, we reconnect music with its temporal dimension by using digital methods to create a real time experience.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e268f938-6e91-11e5-a2a9-00190f04dc4c
last changed 2022/06/07 07:57

_id ecaade2015_38
id ecaade2015_38
authors Stavrakantonaki, Marina
year 2015
title A Framework for Input Data Processing During Building Energy Model Calibration. A Case Study
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 625-634
doi https://doi.org/10.52842/conf.ecaade.2015.1.625
wos WOS:000372317300068
summary Key parameter of a reasoning process supporting real time performance is the use of active heuristics that facilitate the achievement of goals in a timely manner (Dodiawala et al. 1989). A real time approach should incorporate speed, timeliness and adaptation during the execution of tasks. Speed and efficient knowledge processing are addressed for the solution of complex building engineering problems, such as the calibration of Building Energy Models (BEM) to the actual performance data. During retrofit projects, calibrated BEM models aid the design process, and provide a solid base for performative assessments. Despite the demand for building performance evaluations, BEM calibration remains a work-intensive task (Lam et al. 2014). This study proposes a time efficient framework for BEM calibration input data management based on the methodology of a blackboard artificial intelligence knowledge processing system. The resulting model was used for sequential data mining for the energy assessment during the renovation of a commercial building.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e440bdd6-7021-11e5-bdb0-00190f04dc4c
last changed 2022/06/07 07:56

_id caadria2015_078
id caadria2015_078
authors Yanagawa, Kane
year 2015
title Confluence of Parametric Design and Digital Fabrication Restructuring Manufacturing Industries
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 13-22
doi https://doi.org/10.52842/conf.caadria.2015.013
summary The positive consumer reception of 3D printed products suggests that the coupling of digital fabrication technology and parametric design methodologies presents opportunities and challenges to traditional modes of industrial manufacturing. This paper outlines the manner in which parametrically defined constraints of components within design hysteresis can be implemented to maintain conformation to real world constraints. The study challenged ten architectural designers to develop parametric definitions using conventional CAD software and visual programming languages to describe the geometric logic of a simple pendant lamp while permitting some consumer defined shape parameters. The assessment of submitted design descriptions suggests that defining such a system parametrically for manufacturing requires the development of an approach that is capable of not only intelligently managing interdisciplinary dependencies but also evaluating performance factors within implicit design space. During the next phase of this research, focus will be on the application of the proposed constrained design hysteresis methodology in collaboration with a major manufacturing industry partner to further develop and explore its potential in real world implementation. If proven effective, it can be expected that adoption of the combination of parametric design tools and digital fabrication among major manufacturing industries will be pervasive in the coming years.
keywords Parametric design; digital fabrication; collaborative design; mass-customization; constrained design hysteresis
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2015_230
id ecaade2015_230
authors Yazici, Sevil
year 2015
title A Course on Biomimetic Design Strategies
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 111-118
doi https://doi.org/10.52842/conf.ecaade.2015.2.111
wos WOS:000372316000014
summary Although redesigning curricula by integrating the CAD tools into architectural education has been an ongoing interest, a new understanding towards solving design problems holistically should be investigated in architectural education. Because natural systems offer design strategies to increase performance and effectiveness with an extensive formal repertoire; incorporating multi-faceted biomimetic principles into the design process is necessary. It is critical to increase skills of students towards algorithmic thinking, as well as to deal with performance issues and sustainability. This paper aims to discuss an undergraduate elective course titled “Sustainable Design and Environment through Biomimicry” which was taught by the author in architectural degree program of Ozyegin University Faculty of Architecture and Design in Fall 2014-2015. Following the exploration of individual research topics, findings were implemented into design problems. The challenges encountered in the teaching process and future lines of the work are discussed in the paper.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c96be63a-6f80-11e5-8f6b-e7a3874d691b
last changed 2022/06/07 07:57

_id ecaade2015_86
id ecaade2015_86
authors Zboinska, Malgorzata A.; Cudzik, Jan, Juchnevic, Robert and Radziszewski, Kacper
year 2015
title A Design Framework and a Digital Toolset Supporting the Early-Stage Explorations of Responsive Kinetic Building Skin Concepts
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 715-725
doi https://doi.org/10.52842/conf.ecaade.2015.2.715
wos WOS:000372316000079
summary In this paper we present the first phase of our research on the development of a framework for early-stage responsive kinetic building skin design. The aims of this study were: to formulate a methodological and instrumental basis for the construction of the framework, to conduct an initial pre-assessment of its features, and finally to provide the first example of how the framework could be applied in practice. Importantly, at this point our goal was not yet to indicate the framework's effectiveness, but rather focus on formulating its foundations. A pilot design experiment, aimed at the probing of the framework's characteristics, suggests the emergence of its two noteworthy features. Firstly, it allows to freely but at the same time also systematically explore six design aspects of responsive architecture: form, functionality, performance, kinetic behaviors, system mechanics and responsiveness. Secondly, it helps to explore these six aspects using diverse means: parametric models, digital simulations, computational analyses, physical models and interactive prototypes. These features suggest that the framework could be a valid and useful means of supporting designers in the complex task of creating architectural concepts of responsive kinetic structures.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=0d8a987e-6e92-11e5-84ad-00190f04dc4c
last changed 2022/06/07 07:57

_id ascaad2010_097
id ascaad2010_097
authors Kenzari, Bechir
year 2010
title Generative Design and the Reduction of Presence
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 97-106
summary Digital design/fabrication is slowly emancipating architectural design from its traditional static/representational role and endowing it instead with a new, generative function. In opposition to the classical isomorphism between drawings and buildings, wherein the second stand as translations of the first, the digital design/fabrication scenario does not strictly fall within a semiotic frame as much as within a quasi biological context, reminiscent of the Aristotelian notion of entelechy. For the digital data does not represent the building as much it actively works to become the building itself. Only upon sending a given file to a machine does the building begin to materialize as an empirical reality, And eventually a habitable space as we empirically know it. And until the digital data actualizes itself, the building qua building is no more than one single, potential possibility among many others. This new universe of digital design/fabrication does not only cause buildings to be produced as quick, precise, multiply-generated objects but also reduces their presence as original entities. Like cars and fashion items, built structures will soon be manufactured as routinely-consumed items that would look original only through the subtle mechanisms of flexibility: frequent alteration of prototype design (Style 2010, Style 2015..) and “perpetual profiling” (mine, yours, hers,..). The generic will necessarily take over the circumstantial. But this truth will be veiled since “customized prototypes” will be produced or altered to individual or personal specifications. This implies that certain “myths” have to be generated to speed up consumption, to stimulate excessive use and to lock people into a continuous system which can generate consumption through a vocabulary of interchangeable, layered and repeatable functions. Samples of “next season’s buildings” will be displayed and disseminated to enforce this strategy of stimulating and channeling desire. A degree of manipulation is involved, and the consumer is flattered into believing that his or her own free assessment of and choice between the options on offer will lead him or her to select the product the advertiser is seeking to sell. From the standpoint of the architect as a maker, the rising upsurge of digital design and fabrication could leave us mourning the loss of what has been a personal stomping ground, namely the intensity of the directly lived experiences of design and building. The direct, sensuous contact with drawings, models and materials is now being lost to a (digital) realm whose attributes refer to physical reality only remotely. Unlike (analogue) drawings and buildings, digital manipulations and prototypes do not exercise themselves in a real space, and are not subjected in the most rigorous way to spatial information. They denote in this sense a loss of immediacy and a withering of corporal thought. This flexible production of space and the consequent loss of immediate experience from the part of the designer will be analyzed within a theoretical framework underpinned mainly by the works of Walter Benjamin. Samples of digitally-produced objects will be used to illustrate this argument.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2015_144
id ecaade2015_144
authors Kim, Sun-Joong; Choi, Yuri and Lee, Ji-Hyun
year 2015
title Architectural Bioinspired Design: Functional Assessment of Design Terminologies to Support a Biological System Search - Functional Assessment of Design Terminologies to Support a Biological System Search
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 467-476
doi https://doi.org/10.52842/conf.ecaade.2015.2.467
wos WOS:000372316000053
summary In this study, the semantic relationship of lexicons from the architectural design domain and function words frequently used in the bioinspired design domain were quantitatively extracted. Even though bioinspired design for the architecture domain has a lot of possibility of use, it is not comparably accessible because the design supportive systems were focused on engineering design domain. Therefore, the semantic relatedness between function words from the engineering domain and lexicons from the architectural domain were quantified in order to develop a lexicon based biological system search tool. The lexicons were extracted from the texts of the International Building Code and natural language processing techniques supported the task. And the semantic relatedness between the lexicons and function words were quantified by the semantic network analysis using the WordNet system.
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2015_303
id ecaade2015_303
authors Coroado, Luís; Pedro, Tiago, D'Alpuim, Jorge, Eloy, Sara and Dias, MiguelSales
year 2015
title VIARMODES: Visualization and Interaction in Immersive Virtual Reality for Architectural Design Process
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 125-134
doi https://doi.org/10.52842/conf.ecaade.2015.1.125
wos WOS:000372317300014
summary The complexity of today´s architecture solutions brings the need to integrate, in the design process, digital tools for creation, visualization, representation and evaluation of design solutions. This paper proposes the adoption of a new Virtual Reality (VR) tool, referred to as VIARmodes, to support the architectural design process with an improved communication across different specialities, towards the facilitation of the project decision process. This tool allows a complete visualization of the design, specifically useful during the detailed design phase, including the architecture design and of other engineering specialities, progressively and interactively adapting the project visualization to the information needed for each discipline. With a set of 3 different visualization modes simulated in real scale within a Virtual Environment (VE), and adopting natural human-computer interaction by using speech, the system allows a team of architect and engineers, to visualize and interact with the proposed design during a collaborative design brief. We carried a usability evaluation study with 12 architects. The study showed that the tool was perceived to be effective and its use efficient during the design process, especially during the detailed design phase.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4129cbae-70c8-11e5-be63-27454208986c
last changed 2022/06/07 07:56

_id cf2015_135
id cf2015_135
authors Cuperschmid, Ana Regina M.; Ruschel, Regina C. and Monteiro, Ana Maria R. de G.
year 2015
title Augmented Reality: Recognition of Multiple Models Simultaneously
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 135-154.
summary The problem at hand is to ensure that the perception by means of Augmented Reality (AR) is hence reliable and opinions resulting from a Participatory Design (PD) mediated by this technology could be incorporated into the design solution. This paper presents the evaluation of multiple 3D models recognition in AR, with or without an auxiliary projection. Leisure area designs involve urban equipment of various dimensions that are visualized simultaneously. Therefore, it was necessary to verify if the participants were capable of recognizing them and which would be the best way to visualize: exclusively with the iPad screen or with the iPad associated with an external projection – to verify whether the visualization using an external projection would amplify the visualization area. The results obtained in the evaluation were used to improve the AR application and also, to develop guidelines for the AR use in a PD.
keywords Augmented Reality, Recognition, User Experience Evaluation.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_304
id ecaade2015_304
authors Rossini, Francesco Livio; Fioravanti, Antonio and Trento, Armando
year 2015
title Project Risk Modelling Information and Management Framework
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 577-584
doi https://doi.org/10.52842/conf.ecaade.2015.1.577
wos WOS:000372317300062
summary The building industry is a field even more complex, characterized by different risks which can deeply influence the success of a building construction process. Aim of this paper is to demonstrate how the risk, declined in the main aspects that affects the construction industry, can be properly modelled and reduced thanks to the innovation of existing design methods and tools.The goal is to enhance the BIM models with AR (augmented reality), in order to intervene in the risk management process, increasing the level of knowledge exchanged between actors and, consequently, reduce defects related to misunderstandings. This can be possible using AR visualizations on site and/or Virtual Reality (VR) simulations, oriented to inform via the easier perceptive channel -the sight- actors involved in the process.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=3f1cf5a8-7022-11e5-8dc1-00190f04dc4c
last changed 2022/06/07 07:56

_id eaea2015_t3_paper04
id eaea2015_t3_paper04
authors Breen, Jack
year 2015
title Thematic Visualisation Studies: The AA Variations
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.309-318
summary The underlying thesis of the research described in this paper is that imaginative, model-based explorations may help us better understand iconic architectural artefacts, such as cultural heritage projects. In order to systematically consider and study architectural artefacts, it is essential for academics to reach a level of clarity – and potentially even consensus – concerning the domains of architectural design that may be considered relevant and to question - often implicitly – shared conceptions. This paper intends to communicate the results and findings of an in-depth case-based exploration on the basis of ten design artefacts, using a specially developed conceptual framework. Furthermore, the aim was to draw conclusions concerning the benefits and potentials of this approach in the context of heritage-based architectural research in an academic environment.
keywords iconic architecture; 3D modelling; design education
series EAEA
email
last changed 2016/04/22 11:52

_id ecaade2018_243
id ecaade2018_243
authors Gardner, Nicole
year 2018
title Architecture-Human-Machine (re)configurations - Examining computational design in practice
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 139-148
doi https://doi.org/10.52842/conf.ecaade.2018.2.139
summary This paper outlines a research project that explores the participation in, and perception of, advanced technologies in architectural professional practice through a sociotechnical lens and presents empirical research findings from an online survey distributed to employees in five large-scale architectural practices in Sydney, Australia. This argues that while the computational design paradigm might be well accepted, understood, and documented in academic research contexts, the extent and ways that computational design thinking and methods are put-into-practice has to date been less explored. In engineering and construction, technology adoption studies since the mid 1990s have measured information technology (IT) use (Howard et al. 1998; Samuelson and Björk 2013). In architecture, research has also focused on quantifying IT use (Cichocka 2017), as well as the examination of specific practices such as building information modelling (BIM) (Cardoso Llach 2017; Herr and Fischer 2017; Son et al. 2015). With the notable exceptions of Daniel Cardoso Llach (2015; 2017) and Yanni Loukissas (2012), few scholars have explored advanced technologies in architectural practice from a sociotechnical perspective. This paper argues that a sociotechnical lens can net valuable insights into advanced technology engagement to inform pedagogical approaches in architectural education as well as strategies for continuing professional development.
keywords Computational design; Sociotechnical system; Technology adoption
series eCAADe
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_356012 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002