CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 414

_id cf2015_243
id cf2015_243
authors Velasco, Rodrigo; Brakke, Aaron Paul and Chavarro, Diego
year 2015
title Dynamic façades and computation: Towards an inclusive categorization of high performance kinetic façade systems
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 243.
summary This chapter provides a panorama of the current state of computationally controlled dynamic facades through a literature review and a survey of contemporary projects. This was completed with an underlying interest in understanding how innovative design solutions with the capacity to ‘react to’ and/or ‘interact with’ the varying states of climatic conditions have been developed. An analysis of these projects was conducted, and led to the identification of tendencies, which were subsequently synthesized and articulated. While most classifications are limited to describing the movement or structure needed to achieve morphological transformation, an important recommendation is to also consider control as a determining factor. For this reason, the culmination of the investigation presented here is a proposal for a classification structure of dynamic facades, developed according to the functional modus operandi of each structure in terms of movement and control.
keywords Dynamic Facades, Kinetic Architecture, Computational Control, High Performance Building Envelopes
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_023
id caadria2015_023
authors Weizmann, Michael; Oded Amir and Yasha Jacob Grobman
year 2015
title Topological Interlocking in Architectural Design
doi https://doi.org/10.52842/conf.caadria.2015.107
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 107-116
summary The paper presents the initial results of a study that examines the potential of using the concept of topological interlocking as a structural and organizational mechanism for architecture in general, and for building façades in particular. The paper opens with a review of existing research on the notion of topological interlocking. It then presents a catalogue that characterizes the various types of topological interlocking systems and compares the potential of these types to be employed in architectural design. This is followed by a discussion regarding the results of fabrication experiments that examine the specific types, which appear to have the best potential for architectural design.
keywords Structural fragmentation, building facade, parametric design, surface tessellation, complex geometry.
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2015_86
id ecaade2015_86
authors Zboinska, Malgorzata A.; Cudzik, Jan, Juchnevic, Robert and Radziszewski, Kacper
year 2015
title A Design Framework and a Digital Toolset Supporting the Early-Stage Explorations of Responsive Kinetic Building Skin Concepts
doi https://doi.org/10.52842/conf.ecaade.2015.2.715
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 715-725
summary In this paper we present the first phase of our research on the development of a framework for early-stage responsive kinetic building skin design. The aims of this study were: to formulate a methodological and instrumental basis for the construction of the framework, to conduct an initial pre-assessment of its features, and finally to provide the first example of how the framework could be applied in practice. Importantly, at this point our goal was not yet to indicate the framework's effectiveness, but rather focus on formulating its foundations. A pilot design experiment, aimed at the probing of the framework's characteristics, suggests the emergence of its two noteworthy features. Firstly, it allows to freely but at the same time also systematically explore six design aspects of responsive architecture: form, functionality, performance, kinetic behaviors, system mechanics and responsiveness. Secondly, it helps to explore these six aspects using diverse means: parametric models, digital simulations, computational analyses, physical models and interactive prototypes. These features suggest that the framework could be a valid and useful means of supporting designers in the complex task of creating architectural concepts of responsive kinetic structures.
wos WOS:000372316000079
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=0d8a987e-6e92-11e5-84ad-00190f04dc4c
last changed 2022/06/07 07:57

_id ecaade2015_246
id ecaade2015_246
authors Andraos, Sebastian
year 2015
title DMR: A Semantic Robotic Control Language
doi https://doi.org/10.52842/conf.ecaade.2015.2.261
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 261-268
summary DMR is a semantic robot-control language that attempts to change our relationship with machines and create true human-robot collaboration through intuitive interfacing. To this end, DMR is demonstrated in the DMR Interface, an Android app, which accepts semantic vocal commands as well as containing a GUI for feedback and verification. This app is combined with a robot-mounted 3D camera to enable robotic interaction with the surroundings or compensate for unpredictable environments. This combination of tools gives users access to adaptive automation whereby a robot is no longer given explicit instructions but instead is given a job to do and will adapt its movements to execute this regardless of any slight changes to the goal or environment. The major advantages of this system come in the vagueness of the instructions given and a constant feedback of task accomplishment, approaching the manner in which we subconsciously control our bodies or would guide another person to achieve a goal.
wos WOS:000372316000031
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=1d9c3f50-6fe2-11e5-8742-0b2879594625
last changed 2022/06/07 07:54

_id ecaade2015_100
id ecaade2015_100
authors Braumann, Johannes and Brell-Cokcan, Sigrid
year 2015
title Adaptive Robot Control - New Parametric Workflows Directly from Design to KUKA Robots
doi https://doi.org/10.52842/conf.ecaade.2015.2.243
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 243-250
summary In the past years the creative industry has made great advancements in the area of robotics. Accessible robot simulation and control environments based on visual programming systems such as Grasshopper and Dynamo now allow even novice users to quickly and intuitively explore the potential of robotic fabrication, while expert users can use their programming knowledge to create complex, parametric robotic programs. The great advantage of using visual programming for robot control lies in the quick iterations that allow the user to change both geometry and toolpaths as well as machinic parameters and then simulate the results within a single environment. However, at the end of such an iterative optimization process the data is condensed into a robot control data file, which is then copied over to the robot and thus loses its parametric relationship with the code that generated it. In this research we present a newly developed system that allows a dynamic link between the robot and the controlling PC for parametrically adjusting robotic toolpaths and collecting feedback data from the robot itself - enabling entirely new approaches towards robotic fabrication by even more closely linking design and fabrication.
wos WOS:000372316000029
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=9d9da7bc-70ef-11e5-b2fd-efbb508168fd
last changed 2022/06/07 07:54

_id caadria2015_185
id caadria2015_185
authors De Oliveira, Maria João and Vasco Moreira Rato
year 2015
title From Morphogenetic Data to Performative Behaviour
doi https://doi.org/10.52842/conf.caadria.2015.765
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 765-774
summary This paper presents part of CORK’EWS, a research work developed within the framework of the Digital Architecture Advanced Program 2012/13 at ISCTE-IUL. The main goal of this investigation was to develop a parametric, customizable and adaptive wall system designed for environmental performance. Moreover, the system is based on standard industrial products: expanded cork blocks produced by Amorim Insulation industries. CAD/CAM resources were the essential tools of the research process, where fundamental and practical knowledge is integrated to understand the microstructure morphological properties of the raw material – cork – and its derivate – natural expanded cork. These properties were upscale and adapted to create a wall with an optimized solar control environmental performance. The result is a digitally fabricated prototype of a new customizable industrial product, adaptable to specific environmental conditions and installation setups being therefore easily commercialized. From microstructural morphology to macroscale construction, the research explores new application possibilities through morphogenesis and opens new possible markets for these customizable products.
keywords Morphogenesis; performance; shading systems; cork.
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2015_11.136
id sigradi2015_11.136
authors Gomes, Ana Catarina Costa; Paio, Alexandra
year 2015
title Generative Solutions: Adaptation and Flexibilization in Housing as a Qualified Social Response
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 642-648.
summary Housing for all is back on the international agenda. The economic crisis forces researchers and architects to rethink the concept of living and adopt more flexible housing design strategies as an alternative to typologies that impose rules of coexistence and do not reflect the social dynamics of a community. The introduction of rules-based housing design strategies allows the implementation of more dynamic processes. This ongoing research is a reflection on the potential of digital tools to develop spatial and formal parameters based on analysis of flexible housing models. This paper presents the initial phase of the research.
keywords Adaptive and Evolutionary Housing, Social Dynamics, Digital Tools
series SIGRADI
email
last changed 2016/03/10 09:52

_id ecaade2015_158
id ecaade2015_158
authors Kim, Do-Young; Jang, DoJin and author), Sung-AhKim
year 2015
title A Symbiotic Interaction of Virtual and Physical Models in Designing Smart Building Envelope
doi https://doi.org/10.52842/conf.ecaade.2015.2.633
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 633-642
summary The building needs to be designed to minimize its environmental footprint and to be sufficiently adaptive to changing indoor and outdoor environmental conditions. The smart building envelope is an interactive system which is adaptive to environmental conditions by transforming its shape and functions. This is a kind of machine, not like a traditional building component, which should be based on integrated engineering design methods in addition to the exploration of formal aesthetics. As artistic genius or technical skill alone cannot not fully support the design of such a novel product, the design needs to be systemized by introducing a product development method such as prototyping in other industries. Prototyping needs to be integrated in school environment, even if it requires fundamental reconfiguration of current computer-based design studios. This paper aims at proposing a teaching methodology for educating the prototyping-based design of smart building envelope system in digital design studio. This methodology allows novice designers to operate interactions between virtual-physical models. And sketches are used to share ideas to other collaborators such as programming, mechanical operations without technical knowledge. The interactions between virtual-physical models and sketches contribute to not only complement virtual models and physical models, but also achieve high-performance of smart building envelope practically.
wos WOS:000372316000070
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=215b1984-6e90-11e5-9ee8-00190f04dc4c
last changed 2022/06/07 07:52

_id sigradi2015_11.71
id sigradi2015_11.71
authors Medina, Viviana Hernaiz Diez de; Macruz, Andrea; Ginés, Pau
year 2015
title Morphogenetic processes in architectonical design
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 637-641.
summary This paper presents the relationship between morphogenetic concepts in nature and the creation of a generative system as a design process. This biomimetic approach generates an adaptive system that is able to respond to different parameters corresponding to the site where the membrane growths, contributing to the development of a new understanding of architecture in which the digital system and the performance of the material are reciprocal.
series SIGRADI
email
last changed 2016/03/10 09:55

_id caadria2015_077
id caadria2015_077
authors Shiff, Galit; Yael Gilad and Amos Ophir
year 2015
title Adaptive Polymer Based BIPV Skin
doi https://doi.org/10.52842/conf.caadria.2015.345
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 345-354
summary This study focuses on developing three-dimensional solar panels, as an alternative to traditional flat Photovoltaic (PV) surfaces in Building Integrated Photovoltaic (BIPV). We propose to increase the energy efficiency of buildings by using the entire envelope for energy production as well as by increasing the efficiency of solar energy output in orientations which were traditionally considered as non-ideal. The panels are constructed from Polycarbonate with integrated flexible photovoltaic film, solar paint or dye. The methodology included digital algorithm-based tools for achieving optimized variable three-dimensional surfaces according to local orientation and location, computational climatic simulations and comparative field tests. In addition, the structural, mechanical and thermal properties of the integration between flexible PV sheets and hard plastic curved panels were studied. Interim results demonstrate a potential improvement of 50-80% in energy production per building unit resulting from geometric variations per-se. The dependence of energy production by surface geometry was revealed and an optimized method for solar material distribution on the surface was proposed. A parametric digital tool for automatic generation of optimized three-dimensional panels was developed together with a database and material models of the optimized panels system.
keywords Building Integrated Photovoltaics; digital algorithm; climatic simulations; building envelope
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_301
id ecaade2015_301
authors Wit, Andrew John
year 2015
title The One Day House - Intelligent Systems for Adaptive Buildings
doi https://doi.org/10.52842/conf.ecaade.2015.2.643
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 643-650
summary As the global population continues to climb and environmental conditions become further unpredictable, the creation of a more robust, intelligent, adaptable yet affordable housing system will become an evermore-significant issue. Existing housing typologies find themselves lagging behind other industries such as aerospace and even automotive, lacking advanced fabrication infrastructures as well as embedded intelligent technologies that could allow for: Global interconnectivity and or manipulation, automatic software/hardware updating and physical/computational adaptability. The use of advanced tools for manufacturing resembling industrial robotics, 3D printing and as well as intelligent fabrication systems currently remains nearly non-existent. Constructed using outdated design methodologies, materials and construction techniques, the current dwelling functions merely as an enclosure for life rather then an integrated system for information, comfort and commerce. This paper questions the current typology of “house” through the rethinking of not only form and material, but by reimagining the dwelling as a whole. Rather then observing the dwelling as a static form for infrastructural permanence, this paper redefines the home as a globalized commodity, which is both physically and technologically connected and adaptable.
wos WOS:000372316000071
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7412002e-6e91-11e5-b62c-00190f04dc4c
last changed 2022/06/07 07:57

_id ecaade2015_138
id ecaade2015_138
authors Achten, Henri
year 2015
title Closing the Loop for Interactive Architecture - Internet of Things, Cloud Computing, and Wearables
doi https://doi.org/10.52842/conf.ecaade.2015.2.623
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 623-632
summary Interactive architecture occurs in buildings when part of the building engages in exchange of information with the user, in such a way that the interactive system adjusts it's assumptions about the user's needs and desires. Acquiring the user's needs and desires is no trivial task. Currently there are no techniques that will reliably make such assertions. Building a system that unobtrusively monitors the inhabitant seems to be a tall order, and making the system ask the user all the time is very distracting for the user. An alternative option has become available however: personal wearables are increasingly monitoring the user. Therefore it suffices that the interactive system of the building gets in touch with those wearables, rather than duplicating the sensing function of the wearables. The enabling technology for wearables is Internet of Things, which connects physical objects (smart objects) on a virtual level, and Cloud Computing, which provides a scalable storage environment for wearables and smart objects. In this paper we outline the implications of the convergence of these three technologies in the light of interactive architecture.
wos WOS:000372316000069
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=fdd9e706-6e8f-11e5-b1d4-00190f04dc4c
last changed 2022/06/07 07:54

_id cf2015_483
id cf2015_483
authors Caetano, Inês; Santos, Luís and Leitão, António
year 2015
title From idea to shape, from algorithm to design: A framework for the generation of contemporary façades
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 483.
summary Nowadays, there is a growing interest in buildings' envelops presenting complex geometries and patterns. This interest is related with the use of new design tools, such as Generative Design, which promotes a greater design exploration. In this paper we discuss and illustrate a structured and systematic computational framework for the generation of facade designs. This framework includes (1) a classification of facades into different categories that we consider computationally relevant, and (2) an identification and implementation of a set of algorithms and strategies that address the needs of the different designs.
keywords generative design, facades, algorithms.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_033
id caadria2015_033
authors Hadilou, Arman
year 2015
title Phototropism of Tensile Façade System through Material Agency
doi https://doi.org/10.52842/conf.caadria.2015.127
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 127-136
summary This paper researches material agencies, mechanical systems and façade designs that are able to respond to environmental changes through local interactions, inspired by biological systems. These are based on a model of distributed intelligence founded on plants and animal collectives, from which intelligent behavior emerges through simple local associations. Biological collective systems integrate material form and responsiveness and have the potential to inform new architectural and engineering strategies. The design approach of this research is based on a data-driven methodology spanning from design inception to simulation and physical modeling. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. The driving concepts are three types of evolutionary adaptation: flexibility, acclimation, and learning. The proposed façade system is a responsive textile shading structure which uses integrated actuators that moderate their local environments through simple interactions with their immediate neighbors. Computational techniques coupled to material logics create an integral design framework leading to heterogeneous environmental and structural conditions, producing local responses to environmental stimuli and ultimately effective performance of the whole system.
keywords Responsive facade; phototropism; material intelligence.
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2015_127
id ecaade2015_127
authors Marcos, Carlos L. and Fernández, AngelJ
year 2015
title Spacing Time - Engaging Temporality in the Realm of Architectural Space
doi https://doi.org/10.52842/conf.ecaade.2015.2.613
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 613-622
summary The paper is a theoretical approach regarding digital architecture, performance and time. It tries to reflect on the philosophical taxonomy of time -cosmological, phenomenological and narrative- and how digitally conscious architectural design developed by architects, media artists, engineers and multidisciplinary teams address the engagement of the architectural space in real-time. The traditional static conception of architecture is altered through performativity and the ideals of permanence and endurance radically questioned. The research also constitutes a reflection on interaction, participation and performance in an ample sense with regard to performative architecture and some urban implications it may entail. Various examples addressing these topics mainly installed or built during the last decade exemplify the different issues that the paper reflects on. A critical reading of the installations and the intelligent-façades commented is posed to the reader together with the conceptual implications the different performative approaches involve and the goals they may achieve. The question remains if buildings instead of being or meaning should, more than ever, perform.
wos WOS:000372316000068
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=5a611bf8-693a-11e5-b815-00190f04dc4c
last changed 2022/06/07 07:59

_id sigradi2015_11.34
id sigradi2015_11.34
authors Bacinoglu, Saadet Zeynep
year 2015
title From material to material with new abilities. Performative Skin: an unfinished product derived through the organizational logic as developed through research on ‘movement’
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 631-636.
summary This paper presents the process and products from research on ‘a movement behavior’, transforming the initial surface from one state to other states. The study developed an initial model of material organization inspired by nature: the adaptable exoskeleton of the armadillium vulgare. Through geometric analysis of functional variation in the exoskeleton’s unit shape, and physical model making, the underlying principle is translated into design & production rules. The generative model of ‘an adaptable segmented system’ is constructed through a geometric abstraction of the exoskeleton, achieving diverse functions such as variability in form, volume, porosity, flexibility and strength, through a distribution of ‘material geometry’ with the folding technique. The potentiality of this parametric physical model (based on simple systematicity) is questioned in relation to diverse situations that result in complex surface adaptations. This research shows the formulation of a design intention.
keywords Digital Craft, Folding, Material Computation, Informed Matter
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2015_11.166
id sigradi2015_11.166
authors Calixto, Victor; Celani, Gabriela
year 2015
title A literature review for space planning optimization using an evolutionary algorithm approach: 1992-2014
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 662-671.
summary Space planning in architecture is a field of research in which the process of arranging a set of space elements is the main concern. This paper presents a survey of 31 papers among applications and reviews of space planning method using evolutionary algorithms. The objective of this work was to organize, classify and discuss about twenty-two years of SP based on an evolutionary approach to orient future research in the field.
keywords Space Planning, Evolutionary algorithms, Generative System
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2010_097
id ascaad2010_097
authors Kenzari, Bechir
year 2010
title Generative Design and the Reduction of Presence
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 97-106
summary Digital design/fabrication is slowly emancipating architectural design from its traditional static/representational role and endowing it instead with a new, generative function. In opposition to the classical isomorphism between drawings and buildings, wherein the second stand as translations of the first, the digital design/fabrication scenario does not strictly fall within a semiotic frame as much as within a quasi biological context, reminiscent of the Aristotelian notion of entelechy. For the digital data does not represent the building as much it actively works to become the building itself. Only upon sending a given file to a machine does the building begin to materialize as an empirical reality, And eventually a habitable space as we empirically know it. And until the digital data actualizes itself, the building qua building is no more than one single, potential possibility among many others. This new universe of digital design/fabrication does not only cause buildings to be produced as quick, precise, multiply-generated objects but also reduces their presence as original entities. Like cars and fashion items, built structures will soon be manufactured as routinely-consumed items that would look original only through the subtle mechanisms of flexibility: frequent alteration of prototype design (Style 2010, Style 2015..) and “perpetual profiling” (mine, yours, hers,..). The generic will necessarily take over the circumstantial. But this truth will be veiled since “customized prototypes” will be produced or altered to individual or personal specifications. This implies that certain “myths” have to be generated to speed up consumption, to stimulate excessive use and to lock people into a continuous system which can generate consumption through a vocabulary of interchangeable, layered and repeatable functions. Samples of “next season’s buildings” will be displayed and disseminated to enforce this strategy of stimulating and channeling desire. A degree of manipulation is involved, and the consumer is flattered into believing that his or her own free assessment of and choice between the options on offer will lead him or her to select the product the advertiser is seeking to sell. From the standpoint of the architect as a maker, the rising upsurge of digital design and fabrication could leave us mourning the loss of what has been a personal stomping ground, namely the intensity of the directly lived experiences of design and building. The direct, sensuous contact with drawings, models and materials is now being lost to a (digital) realm whose attributes refer to physical reality only remotely. Unlike (analogue) drawings and buildings, digital manipulations and prototypes do not exercise themselves in a real space, and are not subjected in the most rigorous way to spatial information. They denote in this sense a loss of immediacy and a withering of corporal thought. This flexible production of space and the consequent loss of immediate experience from the part of the designer will be analyzed within a theoretical framework underpinned mainly by the works of Walter Benjamin. Samples of digitally-produced objects will be used to illustrate this argument.
series ASCAAD
email
last changed 2011/03/01 07:36

_id caadria2015_164
id caadria2015_164
authors Mcginley, Tim and Darren Fong
year 2015
title Designghosts
doi https://doi.org/10.52842/conf.caadria.2015.365
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 365-374
summary For architects, a database of typological specific occupant behaviour patterns could help in the design of buildings, through a typological specific insight into the previous use of buildings. In addition, appropriately represented occupant behaviour data in commercial buildings represent an important factor for facilities management (FM) and business information (BI) teams in the assessment the operational performance of the enterprise. Building Information Models (BIM) could provide an appropriate reference for this user data. However the mapping of user behaviour data to the BIM models is unclear. This paper presents a ‘designGhost’ information system to support the mapping of occupant behaviour to BIM models, so that the user data can be represented to the different stakeholders. To test the information system a prototype tool is presented to enable the mapping of the building use (designGhost) data to the building’s spaces in order to support architects in the design stage and to support navigation from an operational (FM/BI) perspective. This paper addressees the challenges of developing such a system and proposes directions for future work.
keywords Post occupancy evaluation; BIM; visibility graph analysis; designGhost; occupant behaviour; design science; building design and operation.
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2015_250
id ecaade2015_250
authors Parthenios, Panagiotis; Mania, Katerina and Petrovski, Stefan
year 2015
title Reciprocal Transformations Between Music and Architecture As a Real-Time Supporting Mechanism in Urban Design
doi https://doi.org/10.52842/conf.ecaade.2015.1.493
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 493-499
summary The more complex our cities become the more difficult it is for designers to use traditional tools for understanding and analyzing the inner essence of an eco-system such as the contemporary urban environment. Even many of the recently crafted digital tools fail to address the necessity for a more holistic design approach which captures the virtual and the physical, the immaterial and the material. Handling of massive chunks of information, classification and assessment of diverse data is nowadays more crucial than ever before. We see a significant potential in combining the fields of composition in music and architecture through the use of information technology. Merging the two fields has the intense potential to release new, innovative tools for urban designers. This paper describes an innovative tool developed at the Technical University of Crete, through which an urban designer can work on the music transcription of a specific urban environment applying music compositional rules and filters in order to identify discordant entities, highlight imbalanced parts and make design corrections. Our cities can be tuned.
wos WOS:000372317300053
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=3ca02f64-70d8-11e5-adc5-5392ac8ecb2b
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 20HOMELOGIN (you are user _anon_548072 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002