CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 562

_id ecaade2015_144
id ecaade2015_144
authors Kim, Sun-Joong; Choi, Yuri and Lee, Ji-Hyun
year 2015
title Architectural Bioinspired Design: Functional Assessment of Design Terminologies to Support a Biological System Search - Functional Assessment of Design Terminologies to Support a Biological System Search
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 467-476
doi https://doi.org/10.52842/conf.ecaade.2015.2.467
wos WOS:000372316000053
summary In this study, the semantic relationship of lexicons from the architectural design domain and function words frequently used in the bioinspired design domain were quantitatively extracted. Even though bioinspired design for the architecture domain has a lot of possibility of use, it is not comparably accessible because the design supportive systems were focused on engineering design domain. Therefore, the semantic relatedness between function words from the engineering domain and lexicons from the architectural domain were quantified in order to develop a lexicon based biological system search tool. The lexicons were extracted from the texts of the International Building Code and natural language processing techniques supported the task. And the semantic relatedness between the lexicons and function words were quantified by the semantic network analysis using the WordNet system.
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia20_238
id acadia20_238
authors Zhang, Hang
year 2020
title Text-to-Form
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 238-247.
doi https://doi.org/10.52842/conf.acadia.2020.1.238
summary Traditionally, architects express their thoughts on the design of 3D architectural forms via perspective renderings and standardized 2D drawings. However, as architectural design is always multidimensional and intricate, it is difficult to make others understand the design intention, concrete form, and even spatial layout through simple language descriptions. Benefiting from the fast development of machine learning, especially natural language processing and convolutional neural networks, this paper proposes a Linguistics-based Architectural Form Generative Model (LAFGM) that could be trained to make 3D architectural form predictions based simply on language input. Several related works exist that focus on learning text-to-image generation, while others have taken a further step by generating simple shapes from the descriptions. However, the text parsing and output of these works still remain either at the 2D stage or confined to a single geometry. On the basis of these works, this paper used both Stanford Scene Graph Parser (Sebastian et al. 2015) and graph convolutional networks (Kipf and Welling 2016) to compile the analytic semantic structure for the input texts, then generated the 3D architectural form expressed by the language descriptions, which is also aided by several optimization algorithms. To a certain extent, the training results approached the 3D form intended in the textual description, not only indicating the tremendous potential of LAFGM from linguistic input to 3D architectural form, but also innovating design expression and communication regarding 3D spatial information.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia17_102
id acadia17_102
authors Aparicio, German
year 2017
title Data-Insight-Driven Project Delivery: Approach to Accelerated Project Delivery Using Data Analytics, Data Mining and Data Visualization
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 102-109
doi https://doi.org/10.52842/conf.acadia.2017.102
summary Today, 98% of megaprojects face cost overruns or delays. The average cost increase is 80% and the average slippage is 20 months behind schedule (McKinsey 2015). It is becoming increasingly challenging to efficiently support the scale, complexity and ambition of these projects. Simultaneously, project data is being captured at growing rates. We continue to capture more data on a project than ever before. Total data captured back in 2009 in the construction industry reached over 51 petabytes, or 51 million gigabytes (Mckinsey 2016). It is becoming increasingly necessary to develop new ways to leverage our project data to better manage the complexity on our projects and allow the many stakeholders to make better more informed decisions. This paper focuses on utilizing advances in data mining, data analytics and data visualization as means to extract project information from massive datasets in a timely fashion to assist in making key informed decisions for project delivery. As part of this paper, we present an innovative new use of these technologies as applied to a large-scale infrastructural megaproject, to deliver a set of over 4,000 construction documents in a six-month period that has the potential to dramatically transform our industry and the way we deliver projects in the future. This paper describes a framework used to measure production performance as part of any project’s set of project controls for accelerated project delivery.
keywords design methods; information processing; data mining; big data; data visualization
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2015_91
id ecaade2015_91
authors Correia, Hugo and Leitão, António
year 2015
title Extending Processing to CAD applications
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 159-167
doi https://doi.org/10.52842/conf.ecaade.2015.1.159
wos WOS:000372317300017
summary The Processing language was created to teach programming to the design, architecture, and electronic arts communities. Despite its success, Processing has limited applicability in the architectural realm, as no CAD (Computer-Aided Design) or BIM (Building Information Modeling) application supports Processing. As a result, architects that have learnt Processing are unable to use the language in the context of modern, script-based, architectural work. This work joins Processing with the world of CAD or BIM applications, creating a solution that allows architects to prototype new designs using Processing and generate results in a CAD or BIM application. To achieve this, we developed an implementation of Processing for the Rosetta programming environment, allowing Processing scripts to generate 2D and 3D models in a variety of CAD or BIM applications, such as AutoCAD, Rhinoceros3D, SketchUp, and Revit.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=1c251750-70c8-11e5-9996-33e39ead7b04
last changed 2022/06/07 07:56

_id cf2015_099
id cf2015_099
authors Dickinson, Susannah
year 2015
title Hybrid Connections: Computational Mapping Methodologies for Mexico City
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 99-111.
summary The digital age is facilitating an ever increasing trend of globalized language and culture. Environmental issues are no longer a static concept as climate change and population growth force concepts of adaptability. What does this mean for the academy? How do we educate students to contemplate future urban scenarios and make some organization out of this more dynamic, complex future? The following paper seeks to disseminate a spring 2014 design studio at The University of Arizona where these issues were addressed, with Mexico City as a test bed. Computation has become a vital tool in the organizational process of these complex issues and big data. Various digital tools and platforms were explored in the studio to determine which ones would be most useful in modeling, mapping, designing and processing some of the complex relationships that are present in urban environments today.
keywords digital methodologies, urban design, complexity, hybridized networks, adaptability
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_484
id cf2015_484
authors Liao, Kai; Vries, Bauke de; Kong, Jun and Zhang, Kang
year 2015
title Pattern, cognition and spatial information processing: Representations of the spatial layout of architectural design with spatial-semantic analytics
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 484.
summary In this paper, we review and extend the idea of Alexander’s “pattern language”, especially from the viewpoints of complexity theories, information systems, and human-computer interaction, to explore spatial cognition-based design representations for “intelligent and adaptive/interactive environment” in architecture and urban planning. We propose a theoretic framework of design patterns “with spatial information processing”, and attempt to incorporate state-of-the-art computational methods of information visualization/visual analytics into the conventional CAAD approaches. Focused on the spatial-semantic analytics, together with abstract syntactic pattern representation, by using “spatial-semantic aware” graph grammar formalization, i.e., Spatial Graph Grammars (SGG), the relevant models, algorithms and tool are proposed. We testify our theoretic framework and computational tool VEGGIE (a Visual Environment of Graph Grammar Induction Engineering) by using actual architectural design works (spatial layout exemplars of a small office building and the three house projects by Frank Lloyd Wright) as study cases, so as to demonstrate our proposed approach for practical applications. The results are discussed and further research is suggested.
keywords Pattern language, complex adaptive systems, spatial cognition, design representations, spatial information processing, Artificial Intelligence, visual language, Spatial Graph Grammars (SGG), spatial-semantic analytics.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_215
id ecaade2015_215
authors Balakrishnan, Bimal and Oprean, Danielle
year 2015
title Communication, Coordination and Collaboration: Media affordances and Team Performance in a Collaborative Design Environment
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 225-232
doi https://doi.org/10.52842/conf.ecaade.2015.2.225
wos WOS:000372316000027
summary Advances in digital media are encouraging designers to adopt digital tools during early stages of design ideation as well as to facilitate collaboration in design teams. Collaborative environments for design teams should take into consideration both the multimodal nature of design representation as well as the complexity of team cognition. Collaborative tools that take a “black-box” approach often limit affordances for design ideation and collaboration. We describe here a collaborative environment that we put together using a kit-of-parts approach and underlying theoretical considerations. We also describe systematic usability evaluation of the collaborative environment by constraining select media affordances and qualitatively examining the impact on a team's design process. Preliminary findings were used to improve the environment and lay the groundwork for developing tele-collaborative environments.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=d219f772-6e90-11e5-b69a-00190f04dc4c
last changed 2022/06/07 07:54

_id cf2015_323
id cf2015_323
authors Celani, Gabriela; Sedrez, Maycon; Lenz, Daniel and Macedo, Alessandra
year 2015
title The future of the architect’s employment: To which extent can architectural design be computerised?
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 323.
summary This paper was motivated by Frey and Osborne’s [1] work about the probability of different occupations being computerised in the near future, titled “The Future of Employment”. In their study, the architect’s profession had a very low probability of being automated, which does not do justice to the past fifty years of research in the field of architectural design automation. After reviewing some concepts in economics and labor, and identifying three categories of tasks in regards to automation, we propose a new estimate, by looking independently at 30 architectural tasks. We also took into account the reported advances in the automation of these tasks through scientific research. We conclude that there is presently a change in skill requirements for architects, suggesting that we have to rethink architectural education, so architects will not need to compete against the computer in the near future.
keywords Computerisation, design automation, architectural profession, architectural education.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_387
id cf2015_387
authors Fernando, Shayani; Saunders, Rob and Weir, Simon
year 2015
title Digital Stereotomy: The Rejuvenation of Stone Masonry
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 387-396.
summary This paper explores four factors contributing to the revival of stone masonry; aesthetics, externalities, representational tools and cutting technologies. The ongoing desirability of stone for architects and designers for aesthetic reasons; sustainability benefits of stone due to its potentially reducing hidden externalities of production and transportation; the development of representational tools in terms of advances in computer aided design, simulation, analysis and manufacturing; and advances in production technologies. This paper focuses on how digital technologies are making stone a viable material for architects and designers.
keywords Stereotomy, Stone, Voussoir Geometry, Arches, Robotics
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_83
id ecaade2015_83
authors Fukuda, Tomohiro; Mori, Keisuke and Imaizumi, Jun
year 2015
title Integration of CFD, VR, AR and BIM for Design Feedback in a Design Process - An Experimental Study
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 665-672
doi https://doi.org/10.52842/conf.ecaade.2015.1.665
wos WOS:000372317300072
summary To improve indoor thermal environment, it is necessary to promote a lean design process, so forecasting and consensus building by experiment and numerical calculation from the design stage have become essential. Rapid advances in software and hardware allow feedback to be generated on novel design alternatives, rather than relying on simulation results based on past designs. However, this concept has not been fully verified. Therefore, this study presents an integrated design tool which consists of Computational Fluid Dynamics (CFD), Virtual Reality (VR), Augmented Reality (AR) and Building Information Modeling (BIM). The tool was applied to the problems of an actual housing design project. Both the content of design feedback on design problems revealed through simulations in the project, and the features in the feedback process were discussed.
series eCAADe
email
last changed 2022/06/07 07:50

_id cf2015_203
id cf2015_203
authors Karakiewicz, Justyna ; Burry, Mark and Kvan,Thomas
year 2015
title The next city and complex adaptive systems
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 203.
summary Urban futures are typically conceptualized as starting anew; an urban future is usually represented as a quest for an ideal state, replacing the status quo with visionary statement about ‘better’ futures. Repeatedly, propositions reinvent the way we live, work and play. The major urban innovations for the changing cityscape from the last 100 years, however, have opportunistically taken advantage of unprecedented technical developments in infrastructure rather than be drawn from architectural inventions in their right, such as telecommunications, services, utilities, point-to-point rapid transit including the elevator. Howard’s Garden City therefore presaged the suburb, just as Le Corbusier et al proposed the erasure of significant sections of inner city Barcelona and Paris to replace them with the newly contrived towers; the city reformed as the significantly more mobile and dense ‘Ville Radieuse’. More recently Masdar emerged from virgin sand and Milton Keynes from pristine pasture, serving as counterpoints to the paradigm of erasure and rebuild. Despite all these advances in technology and science, little has changed in the paradigm of urban form; the choices we have today are largely restricted to the suburban house or the apartment in the tower. Should the “next city” offer an alternative vision for the future, and what new design processes are required to realize the next city?
keywords Urban futures, Complex Adaptive Systems, parametric urbanism.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_004
id caadria2015_004
authors Kotsopoulos, Sotirios D. and Federico Casalegno
year 2015
title Responsive Architectures
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 335-344
doi https://doi.org/10.52842/conf.caadria.2015.335
summary Real-time supply of computational power into built environments enables to re-address questions of user experience, comfort and building performance. This presentation discusses the features of responsive architecture through the example of a ‘programmable window’ that was designed and deployed in a prototype house, in Trento, N. Italy. In the example the parts and functionalities of building skins were revisited, to integrate advances in electroactive materials, information communication technologies and control systems engineering.
keywords Electroactive materials; model-based control; programmable windows.
series CAADRIA
email
last changed 2022/06/07 07:51

_id cf2015_463
id cf2015_463
authors Leblanc, François
year 2015
title Super-details: Integrated patterns from 3D printing processes to performance-based design
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 463.
summary Performance-based architecture has predominately been influenced by computational advances in simulating complex organizations. The advent of 3D printing, however, has introduced a new approach to generate complex forms, which is redirecting focus from shape-centric design to material design, namely, innovative structures and properties generated by the process itself. This article investigated the multiscale approach potential to design using extrusion-based 3D printing techniques that offer novel geometric organizations that conform to desired performance. It was found that 3D printed toolpaths adapted to extrusion-based systems render an anisotropic behavior to the architectural object that is best optimized by designing tessellated surfaces as the primary structural shape from which small-scale periodic surfaces can be embedded within a larger geometric system.
keywords 3D printing, multiscale design, extrusion-based systems, porous material, topology, CAD integration.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2022_278
id caadria2022_278
authors Ortner, F. Peter and Tay, Jing Zhi
year 2022
title Optimizing Design Circularity: Managing Complexity in Design for Circular Economy Through Single and Multi-Objective Optimisation
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 191-200
doi https://doi.org/10.52842/conf.caadria.2022.1.191
summary This paper advances the application of computational optimization to design for circular economy (CE) by comparing results of scalarized single-objective optimization (SOO) and multi-objective optimization (MOO) to a furniture design case study. A framework integrating both methods is put forward based on results of the case study. Existing design frameworks for CE emphasize optimization through an iterative process of manual assessment and redesign (Ellen MacArthur Foundation, 2015). Identifying good design solutions for CE, however, is a complex and time-consuming process. Most prominent CE design frameworks list at least nine objectives, several of which may conflict (Reike et al., 2018). Computational optimization responds to these challenges by automating search for best solutions and assisting the designer to identify and manage conflicting objectives. Given the many objectives outlined in circular design frameworks, computational optimisation would appear a priori to be an appropriate method. While results presented in this paper show that scalarized SOO is ultimately more time-efficient for evaluating CE design problems, we suggest that given the presence of conflicting circular design objectives, pareto-set visualization via MOO can initially better support designers to identify preferences.
keywords Design for Circular Economy, Computational Optimisation, Sustainability, Design Optimisation, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2015_3.43
id sigradi2015_3.43
authors Passaro, Andrés; Rohde, Clarice
year 2015
title House Magazine: open source architecture
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 70-76.
summary The new digital fabrication technologies are changing the production methods in contemporary society. The sharing of information, within a new logic of production, has the potential to change the current economic system. The present work look after the open source architecture for digital fabrication, through the constructive experience of House Magazine, developed by LAMO3d, Laboratory of 3d Models and Digital Fabrication on FAU-UFRJ. The project, sold in newsstands with the correspondent assembly instructions, aims to popularize the fabrication technologies by its absorption and transfiguration in popular culture. The open source projects and technologies promote the widening of uses of knowledge and technological advances, unlinking them from the big business and generating a dispersion of production. It is up to us to recognize its potential and shape its endless application possibilities.
keywords Open Source, Digital Fabrication, CNC, Social Housing
series SIGRADI
email
last changed 2016/03/10 09:57

_id sigradi2015_6.151
id sigradi2015_6.151
authors Sens, André Luiz; Souza, Felipe Machado de; Meürer, Mary Vonni; Fialho, Francisco
year 2015
title Contributions of archetypes for building design projects transmedia
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 207-213.
summary The mass presence of devices and interactive and collaborative environments, driven by advances in information and communication technology, intensified experiences ever more sophisticated consumption. In this context it arises transmidiaç?o, which deals with the construction of an articulated narrative universe across multiple media platforms for experiential deepening the viewer. Seeking a methodological tool that can assist in the development of transmedia design projects this paper investigates, through exploratory research and case study, the possible contributions of archetypes to create design more efficient and immersive.
keywords Design, Transmedia, Archetypes
series SIGRADI
email
last changed 2016/03/10 10:00

_id ecaade2015_240
id ecaade2015_240
authors Sousa, Jose Pedro; Varela, Pedro Azambuja and Martins, Pedro Filipe
year 2015
title Between Manual and Robotic Approaches to Brick Construction in Architecture
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 361-370
doi https://doi.org/10.52842/conf.ecaade.2015.2.361
wos WOS:000372316000042
summary Brick construction has a long and rich structural and aesthetic traditions in architecture, which can be traced back to the origins of our civilization. However, despite the remarkable works of Frank Lloyd Wright, Louis Kahn, Eladio Dieste or Alvar Aalto in the 20th century, the application of this construction process to address more irregular geometries is very difficult to be achieved by conventional manual means. In this context, the last decade assisted to emergence of robotic applications in architecture. While Gramazio & Kohler looked for solving non-standard brick structures, others, like the S.A.M. robot initiative, are interested in improving the productivity in the fabrication of regular brick structures. By surveying the recent advances on bricklaying automation, this paper is interested in reflecting on the actual role of manual brickwork. In doing so, the authors present the Brick Tower experiment developed at the DFL/CEAU/FAUP, where two different fabrications processes are critically compared: a robotic and a manual one, which is aided by a video projection technique. By describing and illustrating this experiment, the authors argue that it is possible to expand the traditional craft of bricklaying by devising simple strategies to increase the human capacity to understand and materialize more elaborated geometries. This research avenue can be relevant if one considers that manual work should remain the most common form of brickwork practice in the next decades.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e6bc50e2-6fe6-11e5-9a3c-4332809e7acb
last changed 2022/06/07 07:56

_id acadia15_263
id acadia15_263
authors Ahlquist, Sean
year 2015
title Social Sensory Architectures: Articulating Textile Hybrid Structures for Multi-Sensory Responsiveness and Collaborative Play
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 263-273
doi https://doi.org/10.52842/conf.acadia.2015.263
summary This paper describes the development of the StretchPLAY prototype as a part of the Social Sensory Surfaces research project, focusing on the design of tactile and responsive environments for children with Autism Spectrum Disorder (ASD). The project is directed specifically at issues with sensory processing, the inability of the nervous system to filter sensory input in order to indicate an appropriate response. This can be referred to as a “traffic jam” of sensory data where the intensity of such unfiltered information leads to an over-intensified sensory experience, and ultimately a dis-regulated state. To create a sensory regulating environments, a tactile structure is developed integrating physical, visual and auditory feedback. The structure is defined as a textile hybrid system integrating a seamless knitted textile to form a continuous topologically complex surface. Advancements in the fabrication of the boundary structure, of glass-fiber reinforced rods, enable the form to be more robustly structured than previous examples of textile hybrid or tent-like structures. The tensioned textile is activated as a tangible interface where sensing of touch and pressure on the surface triggers ranges of visual and auditory response. A specific child, a five-year old girl with ASD, is studied in order to tailor the technologies as a response to her sensory challenges. This project is a collaboration with students, researchers and faculty in the fields of architecture, computer science, information (human-computer interaction), music and civil engineering, along with practitioners in the field of ASD-based therapies.
keywords Textile Hybrid, Knitting, Sensory Environment, Tangible Interface, Responsive systems and environments
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2015_8.81
id sigradi2015_8.81
authors Alvarado, Rodrigo García; Lobos, Danny; Nope, Alberto; Tinapp, Frank
year 2015
title BIM + UAV Assessment of Roofs’ Solar Potential
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 336-340.
summary This paper describes a novel method for determining the capacity to generate solar energy integrated into the roofs of buildings by aerial survey using UAVs and BIM models for sizing the covering surfaces and integration of solar panels. Various digital procedures are enchained like planning of trajectories, image processing, geometric reconstitution, simulation of solar radiation and calculation of energy generation to promote on-site installation of clean energy sources in existing buildings, to ensure a more sustainable habitat.
keywords BIM, UAV, Solar Energy, Sustainable Building
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2015_485
id cf2015_485
authors Anaf, Márcia and Harris, Ana Lúcia Nogueira de Camargo
year 2015
title The geometry of Chuck Hoberman as the basis for the development of dynamic experimental structures
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 485.
summary The cognitive-theoretical foundation referring to teach drawing as a way of thinking, as well as the construction of the environment by means of drawing using transforming geometries and the formal and para-formal computational process, creating unusual geometries through generative design processes and methodologies, can be seen as some of the main possibilities in exploring dynamic experimental structures for an Adaptive Architecture. This article presents the development of a model for articulated facades, inspired by Hoberman´s Tessellates, and his Adaptive Building Initiative (ABI) project to develop facades models that respond in real time to environmental changes. In addition, we describe an experiment based on the retractable structures, inspired by Hoberman´s work and experimentations. Solutions for responsive facades can offer more flexible architectural solutions providing better use of natural light and contributing to saving energy. Using Rhinoceros and the Grasshopper for modeling and test the responsiveness, the parametric model was created to simulate geometric panels of hexagonal grids that would open and close in reaction to translational motion effects, regulating the amount of light that reaches the building.
keywords Parametric architecture, Hoberman´s Tessellates, Adaptive Building Initiative (ABI), Articulated Facades, Complex Geometries, Retractable structures, Retractable polyhedra.
series CAAD Futures
email
last changed 2015/06/29 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_873898 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002