CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 584

_id ecaade2015_227
id ecaade2015_227
authors Ireland, Tim
year 2015
title An Artificial Life Approach to Configuring Architectural Space
doi https://doi.org/10.52842/conf.ecaade.2015.2.581
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 581-590
summary This paper presents a method of configuring architectural space that articulates the coupling of an organism with its environment; expressing the spatiality of unfolding engagement in the world. The premise is that space is a consequence of cohesion, effected through constraints and processes of enaction. An Artificial Life model is presented as an analogue of a bottom-up approach to architectural design that takes into account that we as organisms interact with our ever present changing environment and redefine our spatial domain depending on our sensory interaction with said environment.
wos WOS:000372316000065
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia15_137
id acadia15_137
authors Ireland, Tim
year 2015
title A Cell-Inspired Model of Configuration
doi https://doi.org/10.52842/conf.acadia.2015.137
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 137-148
summary This paper presents a bottom-up approach to organising architectural-space, which offers a fresh outlook on the automatic generation of architectural layouts. Artificial creatures, modelled on Eukaryotic cells, are used as components with which to generate configurations articulating patterns of habitation. These components represent discrete activities. Activity is perceived to be the basic building block of spatial configuration in architecture. Attributes, pertaining to input and outputs, establish activities as occurring in chains of action; affected by that which has preceded and affecting that which is to transpire. Being artificial creatures these activity-components have the capacity to interact with their environment and each other, and self-organise to form aggregations. The model demonstrates an ecological approach to designing in a manner that unites computational design with biological and semiotic theory. The theoretical basis of the model is first outlined, and then the computer model is presented and described.
keywords Agents, Artificial Life, Configuration, Spatial Organisation, Behaviour of Organisms, Activity Diagrams
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id ecaade2015_200
id ecaade2015_200
authors Gargaro, Silvia and Fioravanti, Antonio
year 2015
title Towards a Context Knowledge Taxonomy - Combined Methodologies to Improve a Fast-Search Concept Extraction for an Ontology Population
doi https://doi.org/10.52842/conf.ecaade.2015.1.137
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 137-147
summary Context in Architectural Design can be defined-related-comparable to hypothesis and boundary conditions in mathematics. An eco-system that influences it by means of natural and artificial events, space and time dimension. The research has the aim to analyze the critical issues related to Context by providing a contribution to the study of interactions between Context Knowledge and Architectural Design and how it can be used to improve the performance of the buildings and reducing design mistakes. The research focusing on formal ontologies, has developed a model that enables a semantic approach to design application programs, to manage information, to answer design questions and to have a clear relation between the formal representation of the context domain and its meanings. This context model provides an advancement on the state of the art in simplified design assumptions, in term of ontology ambiguity and complexity reduction, by using algorithms to extract and optimize branches of the graph. The extraction does not limit the number of relations, that can be extended and improve context taxonomy coherency and accuracy.
wos WOS:000372317300015
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c8741aa2-702c-11e5-a273-83f9e53dafcf
last changed 2022/06/07 07:51

_id ecaade2024_35
id ecaade2024_35
authors Agkathidis, Asterios; Song, Yang; Symeonidou, Ioanna
year 2024
title AI-Assisted Design: Utilising artificial intelligence as a generative form-finding tool in architectural design studio teaching
doi https://doi.org/10.52842/conf.ecaade.2024.2.619
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 619–628
summary Artificial Intelligence (AI) tools are currently making a dynamic appearance in the architectural realm. Social media are being bombarded by word-to-image/image-to-image generated illustrations of fictive buildings generated by tools such as ‘Midjourney’, ‘DALL-E’, ‘Stable Diffusion’ and others. Architects appear to be fascinated by the rapidly generated and inspiring ‘designs’ while others criticise them as superficial and formalistic. In continuation to previous research on Generative Design, (Agkathidis, 2015), this paper aims to investigate whether there is an appropriate way to integrate these new technologies as a generative tool in the educational architectural design process. To answer this question, we developed a design workflow consisting of four phases and tested it for two semesters in an architectural design studio in parallel to other studio units using conventional design methods but working on the same site. The studio outputs were evaluated by guest critics, moderators and external examiners. Furthermore, the design framework was evaluated by the students through an anonymous survey. Our findings highlight the advantages and challenges of the utilisation of AI image synthesis tools in the educational design process of an architectural design approach.
keywords AI, GAI, Generative Design, Design Education
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2015_269
id ecaade2015_269
authors Gago, Ricardo and Romão, Luís
year 2015
title Geometric Identity of Living Structures Translated to an Architectural Design Process
doi https://doi.org/10.52842/conf.ecaade.2015.2.591
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 591-600
summary Biological life manifests in space through a large diversity of physical structures perfectly bind and identifiable in the environment. This reveals that all share a common generative design process which allows them the same physical identity in all the shapes that generates, The human ecological design process used in architecture is not able yet to reach this design identity neither the spontaneous integration associates to it. Why? Because the geometrical design process used in ecological architecture and living structures are not similar. Thus, this paper proposes, through the identification of some geometrical characteristics from the growth mechanism of living structures, a process of shape generation through shape grammar. With this generation process is possible to generate, only in geometrical terms, a large diversity of architectural models with a common identity, that reveals some geometrical characteristics of spatial integration that living structures share with the surround environment.
wos WOS:000372316000066
series eCAADe
email
last changed 2022/06/07 07:50

_id cf2015_325
id cf2015_325
authors Lo, Tian Tian; Schnabel, Marc Aurel and Gao, Yan
year 2015
title ModRule: A user-centric mass housing design platform
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 325.
summary This paper presents a novel platform, ModRule, designed and developed to promote and facilitate collaboration between architects and future occupants during the design stage of mass housing buildings. Architects set the design-framework and parameters of the system, which allows the users to set their space requirements, budgets, etc., and define their desired way of living. The system utilizes gamification methodologies as a reference to promote incentives and user-friendliness for the layperson who has little or no architectural background. This enhanced integration of a both bottom-up approach (user-centric/player) with a top-down approach (architect-centric/game-maker) will greatly influence how architects design high rise living. By bridging the gap between the architect and the user, this development aims to instill a greater sense of belonging to people, as well as providing architects with a better understanding of how to give people more control over their living spaces. The paper also presents an evaluation of a design process that employed ModRule.
keywords Mass housing, collaborative design, participatory system.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_127
id ecaade2015_127
authors Marcos, Carlos L. and Fernández, AngelJ
year 2015
title Spacing Time - Engaging Temporality in the Realm of Architectural Space
doi https://doi.org/10.52842/conf.ecaade.2015.2.613
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 613-622
summary The paper is a theoretical approach regarding digital architecture, performance and time. It tries to reflect on the philosophical taxonomy of time -cosmological, phenomenological and narrative- and how digitally conscious architectural design developed by architects, media artists, engineers and multidisciplinary teams address the engagement of the architectural space in real-time. The traditional static conception of architecture is altered through performativity and the ideals of permanence and endurance radically questioned. The research also constitutes a reflection on interaction, participation and performance in an ample sense with regard to performative architecture and some urban implications it may entail. Various examples addressing these topics mainly installed or built during the last decade exemplify the different issues that the paper reflects on. A critical reading of the installations and the intelligent-façades commented is posed to the reader together with the conceptual implications the different performative approaches involve and the goals they may achieve. The question remains if buildings instead of being or meaning should, more than ever, perform.
wos WOS:000372316000068
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=5a611bf8-693a-11e5-b815-00190f04dc4c
last changed 2022/06/07 07:59

_id ijac201513102
id ijac201513102
authors Takizawa, Atsushi Yushi Miyata, Naoki Katoh
year 2015
title Enumeration of Floor Plans Based on a Zero-Suppressed Binary Decision Diagram
source International Journal of Architectural Computing vol. 13 - no. 1, 25–44
summary This paper presents novel algorithms for enumerating architectural floor plans. The enumeration approach attempts to generate all feasible solutions that satisfy given constraints. Therefore, such a method might usefully reveal the potential diversity of Open Building floor plans. However, combinatorial enumeration solutions easily explode even for small problem sizes. We represent a space by a set of cells and organize some cells into polyomino-like configurations. We then enumerate all cell combinations that can be tiled in the given space using an efficient search algorithm for combinatorial problems. We also propose queries for extracting specific floor plans that satisfy additional constraints from all enumerated floor plans without re-enumeration. Our approach solves a 56-cell configuration space within a realistic timeframe.
series journal
last changed 2019/05/24 09:55

_id cf2015_061
id cf2015_061
authors van Stralen, Mateus de Sousa and Cezarino, Cristiano
year 2015
title Woka: Towards a dialogical design of future cities
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 61-76.
summary This paper presents an experiment on an open source construction system named Woka, which allows anyone to design and produce dwellings using standard CNC techniques. Woka was developed as a dialogical design process that empowers self-builders to act in a more autonomous way, expanding the traditional role of design practice and the way buildings are created. The advent and popularization of new design and fabrication processes have encouraged a flux of new theories and project strategies based on computing, each with its promise of changing the architectural practice. Some of these resulted in intellectually seductive; visually provocative and complex shaped architectures, generating a new formal repertoire, but doesn’t indicate a paradigm shift in the process of production of architectural space, still based on authorship. Woka challenges this traditional process proposing dialogue as a design approach, shifting the focus from the object to intersubjectivity, amplifying the potential for novelty to arise.
keywords Parametric design, digital fabrication, dialogical design, autonomous building
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_078
id caadria2015_078
authors Yanagawa, Kane
year 2015
title Confluence of Parametric Design and Digital Fabrication Restructuring Manufacturing Industries
doi https://doi.org/10.52842/conf.caadria.2015.013
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 13-22
summary The positive consumer reception of 3D printed products suggests that the coupling of digital fabrication technology and parametric design methodologies presents opportunities and challenges to traditional modes of industrial manufacturing. This paper outlines the manner in which parametrically defined constraints of components within design hysteresis can be implemented to maintain conformation to real world constraints. The study challenged ten architectural designers to develop parametric definitions using conventional CAD software and visual programming languages to describe the geometric logic of a simple pendant lamp while permitting some consumer defined shape parameters. The assessment of submitted design descriptions suggests that defining such a system parametrically for manufacturing requires the development of an approach that is capable of not only intelligently managing interdisciplinary dependencies but also evaluating performance factors within implicit design space. During the next phase of this research, focus will be on the application of the proposed constrained design hysteresis methodology in collaboration with a major manufacturing industry partner to further develop and explore its potential in real world implementation. If proven effective, it can be expected that adoption of the combination of parametric design tools and digital fabrication among major manufacturing industries will be pervasive in the coming years.
keywords Parametric design; digital fabrication; collaborative design; mass-customization; constrained design hysteresis
series CAADRIA
email
last changed 2022/06/07 07:57

_id cf2015_279
id cf2015_279
authors Abdelmohsen, Sherif M. and Massoud, Passaint M.
year 2015
title Making Sense of those Batteries and Wires: Parametric Design between Emergence and Autonomy
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 279-296.
summary This paper reports on the process and outcomes of a digital design studio that integrates parametric design and generative systems in architectural and urban design projects. It explores the interrelationship between the emergence of innovative formal representations using parametric design systems on the one hand, and design autonomy; more specifically the conscious process of generating and developing an architectural concept, on the other. Groups of undergraduate students working on an architectural project are asked to identify a specific conceptual parti that addresses an aspect of architectural quality, define strategies that satisfy those aspects, and computational methodologies to implement those strategies, such as rule-based systems, self-organization systems, and genetic algorithms. The paper describes the educational approach and studio outcomes, discusses implications for CAAD education and curricula, and addresses issues to be considered for parametric and generative software development.
keywords Parametric modeling, generative design, emergence, autonomy, design exploration, CAAD curriculum.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_280
id ecaade2015_280
authors Adilenidou, Yota
year 2015
title Error as Optimization - Using Cellular Automata Systems to Introduce Bias in Aggregation Models through Multigrids
doi https://doi.org/10.52842/conf.ecaade.2015.2.601
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 601-610
summary This paper is focusing on the idea of error as the origin of difference in form but also as the path and the necessity for optimization. It describes the use of Cellular Automata (CA) for a series of structural and formal elements, whose proliferation is guided through sets of differential grids (multigrids) and leads to the buildup of big span structures and edifices as, for example, a cathedral. Starting from the error as the main idea/tool for optimization, taxonomies of morphological errors occur and at a next step, they are informed with contextual elements to produce an architectural system. A toolbox is composed that can be implemented in different scales and environmental parameters, providing variation, optimization, complexity and detail density. Different sets of experiments were created starting from linear structural elements and continuing to space dividers and larger surface components.
wos WOS:000372316000067
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=5cf73be0-6e8f-11e5-b7a4-1b188b87ef84
last changed 2022/06/07 07:54

_id ecaade2015_18
id ecaade2015_18
authors Agkathidis, Asterios
year 2015
title Generative Design Methods - Implementing Computational Techniques in Undergraduate Architectural Education
doi https://doi.org/10.52842/conf.ecaade.2015.2.047
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 47-55
summary In continuation to the Deceptive Landscape Installation research project (Agkathidis, Kocatürk 2014), this paper investigates the implementation of generative design techniques in undergraduate architectural design education. After reviewing the main definitions of generative design synoptically, we have assessed the application of a modified generative method on a final year, undergraduate design studio, in order to evaluate its potential and its suitability within the framework of a research led design studio, leading to an RIBA accredited Part I degree. Our research findings based on analysis of the design outputs, student performance, external examiners reports as well as student course evaluation surveys indicate a positive outcome on the studio's design approach, as well as its suitability for an undergraduate design studio. They initiate a flourishing debate about accomplishments and failures of a design methodology, which still remains alien to many undergraduate curricula.
wos WOS:000372316000007
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e6f673d4-6e8e-11e5-be22-93874392c2e4
last changed 2022/06/07 07:54

_id ecaade2015_278
id ecaade2015_278
authors Aguiar, Rita and Gonçalves, Afonso
year 2015
title Programming for Architecture: The Students’ Point of View
doi https://doi.org/10.52842/conf.ecaade.2015.2.159
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 159-168
summary The following paper presents a reflection on computational design education in Architecture schools. For approaching this subject, the specific case of the Programming for Architecture course taught at Instituto Superior Técnico - Universty of Lisbon is presented and analyzed through the students' point of view. The aim of the course is to focus on representation methods through programming, introducing the fundamentals of computational approach to architectural design. We will explain and discuss the subject teaching methods, the structure of the course and the school environment. Also we will express the students' opinion regarding the class organization, the contents of the program and the usefulness of programming, as well as suggestions for an improved strategy for teaching computational methods to Architecture students.
wos WOS:000372316000020
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=833a3bb0-6f78-11e5-9635-174d5ee09923
last changed 2022/06/07 07:54

_id ecaade2015_235
id ecaade2015_235
authors Ahmar, Salma El and Fioravanti, Antonio
year 2015
title Biomimetic-Computational Design for Double Facades in Hot Climates - A Porous Folded Façade for Office Buildings
doi https://doi.org/10.52842/conf.ecaade.2015.2.687
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 687-696
summary Biomimetic design is an approach that is gaining momentum among architects and designers. Computational design and performance simulation software represent powerful tools that help in applying biomimetic ideas in architectural design and in understanding how such proposals would behave. This paper addresses the challenge of reducing cooling loads while trying to maintain daylight needs of office buildings in hot climatic regions. Specifically, it focuses on double skin facades whose application in hot climates is somewhat controversial. Ideas from nature serve as inspiration in designing a porous, folded double façade for an existing building, aiming at increasing heat lost by convection in the façade cavity as well as reducing heat gained by radiation. The cooling loads and daylight autonomy of an office room are compared before and after the proposed design to evaluate its performance.
wos WOS:000372316000076
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=f87306fc-6e90-11e5-845a-00190f04dc4c
last changed 2022/06/07 07:54

_id cf2015_240
id cf2015_240
authors Aksoy, Yazgi Badem; Çagdas, Gülen and Balaban, Özgün
year 2015
title A model for sustainable site layout design of social housing with Pareto Genetic Algorithm: SSPM
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 240.
summary Nowadays as the aim to reduce the environmental impact of buildings becomes more apparent, a new architectural design approach is gaining momentum called sustainable architectural design. Sustainable architectural design process includes some regulations itself, which requires calculations, comparisons and consists of several possible conflicting objectives that need to be considered together. A successful green building design can be performed by the creation of alternative designs generated according to all the sustainability parameters and local regulations in conceptual design stage. As there are conflicting criteria's according to LEED and BREAM sustainable site parameters, local regulations and local climate conditions, an efficient decision support system can be developed by the help of Pareto based non-dominated genetic algorithm (NSGA-II) which is used for several possibly conflicting objectives that need to be considered together. In this paper, a model which aims to produce site layout alternatives according to sustainability criteria for cooperative apartment house complexes, will be mentioned.
keywords Sustainable Site Layout Design, Multi Objective Genetic Algorithm, LEED-BREEAM.
series CAAD Futures
type normal paper
email
last changed 2015/06/29 09:30

_id caadria2015_202
id caadria2015_202
authors Amtsberg, Felix; Felix Raspall and Andreas Trummer
year 2015
title Digital-Material Feedback in Architectural Design
doi https://doi.org/10.52842/conf.caadria.2015.631
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 631-640
summary This paper studies the architectural potential of the implementation of material feedback using computer vision before and during an automated fabrication process. The combination of an industrial robot and a 3D camera is used expand the typical one-way design and fabrication process (from a digital design to a physical output), to a feedback loop, where specific material information becomes the main trigger of design decisions and fabrication processes. Several projects developed by the authors and tested during a robotic workshop aim to unveil different aspects of material feedback in architectural design, opening a discussion for the benefit and challenges of this new approach to design and fabrication.
keywords Material feedback; robotic fabrication; computer vision; digital workflow; robotic workshop;
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia15_123
id acadia15_123
authors Askarinejad, Ali; Chaaraoui, Rizkallah
year 2015
title Spatial Nets: the Computational and Material Study of Reticular Geometries
doi https://doi.org/10.52842/conf.acadia.2015.123
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 123-135
summary Reticular systems are in many aspects a distinct taxonomy of volumetric geometries. In comparison with the conventional embodiment of a ‘volume’ that encapsulates a certain quantity of space with a shell reticular geometries emerge from the accumulation of micro elements to define a gradient of space. Observed in biological systems, such structures result from their material properties and formation processes as well as often ‘simple’ axioms that produce complex results. In micro or macro levels, from forest tree canopies to plant cell walls these porous volumes are not shaped to have a singular ‘solution’ for a purpose; they provide the fundamental geometric characteristics of a ‘line cloud’ that is simultaneously flexible in response to its environment, porous to other systems (light, air, liquids) and less susceptible to critical damage. The porosity of such systems and their volumetric depth also result in kinetic spatial qualities in a 4D architectural space. Built upon a ‘weaving’ organization and the high performance material properties of carbon fiber composite, this research focuses on a formal grammar that initiates the complex system of a reticular volume. A finite ‘lexical’ axiom is consisted of the basic characters of H, M and L responding to the anchor points on the highest, medium and lower levels of the extruding loom. The genome thus produces a string of data that in the second phase of programming are assigned to 624 points on the loom. The code aims to distribute the nodes across the flat line cloud and organize the sequence for the purpose of overlapping the tensioned strings. The virtually infinite results are then assessed through an evolutionary solver for confining an array of favorable results that can be then selected from by the designer. This research focuses on an approximate control over the fundamental geometric characteristics of a reticular system such as node density and directionality. The proposal frames the favorable result of the weave to be three-dimensional and volumetric – avoiding distinctly linear or surface formations.
keywords Reticular Geometries, Weaving, Line Clouds, Three-dimensional Form-finding, Carbon fiber, Prepreg composite, Volumetric loom, Fiberous Materials, Weaving fabrication, Formal Language, Lexical design, Evolutionary solver
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_126
id caadria2015_126
authors Aydin, Serdar and Marc Aurel Schnabel
year 2015
title Fusing Conflicts Within Digital Heritage Through the Ambivalence of Gaming
doi https://doi.org/10.52842/conf.caadria.2015.839
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 839-848
summary Digital Heritage is amphibian by spanning between unreal-real (digital) and real-real (actual) environments. Or its amphiboly derives from a fact that relies not on contrasting realities but a hub from which an oscillation occurs between the real and the actual. Inferring to Baudrillard’s criticism of contemporary art, this paper presents these disparities and ambivalent conditions found in digital heritage by examining a full-dome media-art application called Look-Up. Touching upon the authenticity issue in cultural heritage, a design research project, Augmenting Kashgar, is then introduced on the basis of the claim that a design manner can fuse conflicts within Digital Heritage. Developed within the special context of Kashgar, China’s westernmost city, the methodology of the project that follows a Research through Design (RtD) approach is provided. Making use of the architectural features of Kashgar, designing a digital game as a counter-strategy to existing cultural heritage programmes is discussed with references to Baudrillard’s perspective on video games and gamers.
keywords Digital Heritage; Research through Design; game design; Augmenting Kashgar Project; Baudriallard.
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2015_333
id ecaade2015_333
authors Baerlecken, Daniel and Gokmen, Sabri
year 2015
title Osteotectonics - Trabecular Bone Structures and Their Adaptation for Customized Structural Nodes Using Additive Manufacturing Techniques
doi https://doi.org/10.52842/conf.ecaade.2015.2.439
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 439-448
summary This paper discusses an approach to adapting trabecular bone structures for the design of complex architectural components exemplified through structural nodes. Based on the paradigm shift in additive fabrication, namely the ability to print structural metals, this paper identifies new methods for architectural and structural design that allow to create porous, intricate architectural components. Those components are designed in analogy to bone structures. The paper presents a metaball-based application, programmed in Processing, which allows creating n-legged nodes using parametric gradient maps. The approach aims at reduction of weight and waste, while exploring the novel aesthetic properties of such bio-constructed networks.
wos WOS:000372316000050
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=b1066644-70d7-11e5-b019-7f01fe8cb7bc
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_456725 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002