CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id caadria2015_145
id caadria2015_145
authors Yuan, Philip F. and Hua Chai
year 2015
title Reverse Rafter
doi https://doi.org/10.52842/conf.caadria.2015.693
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 693-702
summary With the rapid development of the digital fabrication technology, structural performance based design shows broad application prospects. Based on the research project "Reverse rafter", this paper aims to explore the possibility of simulating and re-applying Chinese traditional wood tectonics with structure performance based computational technology. Taking "eaves rafter" as research prototype, this project employed topology optimization as research method and “Millipede” as analysis tool. Through the comparison between the analysis results of traditional structure calculation and topology optimization method, this project revealed the underlying structural principles of "eaves rafter", based on which a modern reciprocal structure installation was generated through digital design method. CNC cutting technology was employed to ensure the fabrication accuracy in digital fabrication processes.
keywords Structural Performance, Wood Tectonics, Simulation, Topology Optimization, Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2015_235
id ecaade2015_235
authors Ahmar, Salma El and Fioravanti, Antonio
year 2015
title Biomimetic-Computational Design for Double Facades in Hot Climates - A Porous Folded Façade for Office Buildings
doi https://doi.org/10.52842/conf.ecaade.2015.2.687
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 687-696
wos WOS:000372316000076
summary Biomimetic design is an approach that is gaining momentum among architects and designers. Computational design and performance simulation software represent powerful tools that help in applying biomimetic ideas in architectural design and in understanding how such proposals would behave. This paper addresses the challenge of reducing cooling loads while trying to maintain daylight needs of office buildings in hot climatic regions. Specifically, it focuses on double skin facades whose application in hot climates is somewhat controversial. Ideas from nature serve as inspiration in designing a porous, folded double façade for an existing building, aiming at increasing heat lost by convection in the façade cavity as well as reducing heat gained by radiation. The cooling loads and daylight autonomy of an office room are compared before and after the proposed design to evaluate its performance.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=f87306fc-6e90-11e5-845a-00190f04dc4c
last changed 2022/06/07 07:54

_id caadria2015_054
id caadria2015_054
authors Joseph, Daniel; Alan Kim, Andrew Butler and M. Hank Haeusler
year 2015
title Optimisation for Sport Stadium Designs
doi https://doi.org/10.52842/conf.caadria.2015.573
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 573-582
summary Applying computational optimisation tools for sport stadium designs has become common practice. However, optimizations often occur only on a macro level (analysing stadium as a whole) and not on a micro level (a view from each seat). Consequently, items on a micro level with design details like guardrails can be overlooked, leading to financial losses for operators. Hence, the research argues that every seat is encouraged to have a clear field of view to avoid financial complications. In order to address this problem the research team developed and evaluated a script that allowed importing an existing design into Rhino. Firstly, the script evaluates the view of each seat via a colour coded response system. Secondly, the designer can select the respective seat, and view the sightline from the occupant’s sightline to various spots on the field to analyse where the obstruction is occurring. This ‘binocular view’ enables the designer to evaluate blind spots from each seat prior to project completion. As the script allows the designer to automate the micro level analysis, the research arguably provides a significant improvement for stadium design by comparing the time used for a design optimisation in a conventional method with the automated one.
keywords Stadium design; Design optimisation; Design analysis; Customised software development; Grasshopper scripting.
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2015_069
id caadria2015_069
authors Lin, Chieh-Jen
year 2015
title Design Criteria Modeling
doi https://doi.org/10.52842/conf.caadria.2015.479
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 479-488
summary This paper proposed an ontology-based parametric modeling tool, “Design Criteria Modeling (DCM),” which applies a graphic predicative tool and semantic ontologies of architectural topology. DCM was intended to help architects in representing, exploring, and validating design criteria with parametric 3D model at the early design stage. By applying a reasoner of semantic ontology, architects could use DCM to determine whether conceptual models meet the semantic ontology of proposed design criteria.
keywords Architectural information modeling; architectural design criteria; semantic ontology; parametric design.
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2015_250
id ecaade2015_250
authors Parthenios, Panagiotis; Mania, Katerina and Petrovski, Stefan
year 2015
title Reciprocal Transformations Between Music and Architecture As a Real-Time Supporting Mechanism in Urban Design
doi https://doi.org/10.52842/conf.ecaade.2015.1.493
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 493-499
wos WOS:000372317300053
summary The more complex our cities become the more difficult it is for designers to use traditional tools for understanding and analyzing the inner essence of an eco-system such as the contemporary urban environment. Even many of the recently crafted digital tools fail to address the necessity for a more holistic design approach which captures the virtual and the physical, the immaterial and the material. Handling of massive chunks of information, classification and assessment of diverse data is nowadays more crucial than ever before. We see a significant potential in combining the fields of composition in music and architecture through the use of information technology. Merging the two fields has the intense potential to release new, innovative tools for urban designers. This paper describes an innovative tool developed at the Technical University of Crete, through which an urban designer can work on the music transcription of a specific urban environment applying music compositional rules and filters in order to identify discordant entities, highlight imbalanced parts and make design corrections. Our cities can be tuned.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=3ca02f64-70d8-11e5-adc5-5392ac8ecb2b
last changed 2022/06/07 08:00

_id ecaade2015_332
id ecaade2015_332
authors Vinšová, Ivana; Achten, Henri and Matejovská, Dana
year 2015
title Integrating BIM in Education: Lessons Learned
doi https://doi.org/10.52842/conf.ecaade.2015.2.127
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 127-131
wos WOS:000372316000016
summary Although we teach BIM since 2006 at the Faculty of architecture at Czech Technical University in Prague, the education has never been fully integrated into the curriculum of the school. In 2013/2014 this changed, and three tracks were initialized to integrate BIM: (1) teaching BIM in the first year; (2) applying BIM in a selected first year design studio; and (3) applying BIM in a selected third year Bachelor graduation design studio. The implementation of the work is described, results are presented, and we draw conclusions for future work.
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=ed86b00e-6f80-11e5-bc5a-63b53b0dc061
last changed 2022/06/07 07:58

_id ecaade2015_237
id ecaade2015_237
authors Vrouwe, Ivo; Luyten, Laurens and Pak, Burak
year 2015
title Teaching and Learning CAAD and CAM in a Fluid Era - Tools and Strategies for the Analysis and Synthesis of Ill-Defined Construction Problems
doi https://doi.org/10.52842/conf.ecaade.2015.2.119
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 119-126
wos WOS:000372316000015
summary In this paper we discuss a series of tools and strategies to support learner-centred construction education in the complexity of the era today (Bauman, 2000). By using these tools in the education of CAD and CAM in construction education at universities for the arts, design and architecture, we aim to support the student in the abstract aspects of Bloom's (1956) cognitive learning domain. In order to present a coherent spectrum of educational tools and strategies, we start with the introduction of a tool for problem-analysis. The tool is explained by applying it to the context of spatial design construction, digital design and fabrication. Then we shortly discuss the process of design-evaluation. Next we introduce three models for design-synthesis. Afterwards, a test case is used to elaborate on the different tools and strategies which are tested and evaluated.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=d75a9f02-6f80-11e5-bc83-9bf4aa35f970
last changed 2022/06/07 07:58

_id caadria2015_073
id caadria2015_073
authors Yu, Rongrong and John Gero
year 2015
title An Empirical Foundation for Design Patterns in Parametric Design
doi https://doi.org/10.52842/conf.caadria.2015.551
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 551-560
summary This paper presents the results from exploring the impact of using a parametric design tool on designers’ behaviour in terms of using design patterns in the early conceptual development stage. It is based on an empirical cognitive study in which eight architectural designers were asked to complete two architectural design tasks with similar complexity respectively in a parametric design environment (PDE) and a Geometric modelling environment (GME). Protocol analysis was employed to study the designers’ behaviour. To explore the development of design patterns during the design process, we utilise the technique of Markov model analysis. Through Markov models analysis of the PDE and GME results, we found that there are significantly more Function to Structure transitions in PDE than in GME. During this transition process, designers select an existing structure/solution for the particular function/design problem based on their experience or knowledge, which is a process of applying an existing design pattern to the problem. From this result we can infer that when architects apply programming and scripting in their design, such as in a PDE, they exhibit the characteristic of using design patterns.
keywords Design pattern; parametric modelling; protocol studies.
series CAADRIA
email
last changed 2022/06/07 07:57

_id ijac201513105
id ijac201513105
authors Yu, Rongrong; John Gero, Ning Gu
year 2015
title Architects' Cognitive Behaviour in Parametric Design
source International Journal of Architectural Computing vol. 13 - no. 1, 83–102
summary This paper presents the results of a protocol study of professional architects' cognitive behaviour in a parametric design environment. A design experiment was conducted in which eight professional architects completed an architectural conceptual design task in a typical parametric design environment -Rhino and Grasshopper. Protocol analysis was then applied to analyse the cognitive behaviour of the architects. In analysing the protocol data, the FBS ontology adopted for developing the coding scheme was sub-divided into design knowledge and rule algorithm classes as the means to capture designers' cognitive behaviour. Applying the method of cumulative analysis, results of the relative cognitive effort expended on design knowledge and rule algorithm classes have been compared and are discussed in the paper.
series journal
last changed 2019/05/24 09:55

_id ecaade2015_83
id ecaade2015_83
authors Fukuda, Tomohiro; Mori, Keisuke and Imaizumi, Jun
year 2015
title Integration of CFD, VR, AR and BIM for Design Feedback in a Design Process - An Experimental Study
doi https://doi.org/10.52842/conf.ecaade.2015.1.665
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 665-672
wos WOS:000372317300072
summary To improve indoor thermal environment, it is necessary to promote a lean design process, so forecasting and consensus building by experiment and numerical calculation from the design stage have become essential. Rapid advances in software and hardware allow feedback to be generated on novel design alternatives, rather than relying on simulation results based on past designs. However, this concept has not been fully verified. Therefore, this study presents an integrated design tool which consists of Computational Fluid Dynamics (CFD), Virtual Reality (VR), Augmented Reality (AR) and Building Information Modeling (BIM). The tool was applied to the problems of an actual housing design project. Both the content of design feedback on design problems revealed through simulations in the project, and the features in the feedback process were discussed.
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia15_161
id acadia15_161
authors Baharlou, Ehsan; Menges, Achim
year 2015
title Toward a Behavioral Design System: An Agent-Based Approach for Polygonal Surfaces Structures
doi https://doi.org/10.52842/conf.acadia.2015.161
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 161-172
summary The following research investigates the development of an agent-based design method as an integrative design tool for polygonal surface structures. The aim of this research is to develop a computational tool that self-organizes the emergence of polygonal surface structures from interaction between its constitutive lattices. This research focuses on the ethological level of morphogenesis that is relevant to the animal or insect societies, whereby agents mediate the material organizations with environmental aspects. Meanwhile, behavior-based approaches are investigated as a bottom-up system to develop a computational framework in which the lower-level features constantly interact. The lower-level features such as material properties (e.g., geometric descriptions) are abstracted into building blocks or agents to construct the agent’s morphology. The abstracted principles, which define the agent’s morphology, are aggregated into a generative tool to explore the emergent complexities. This exploration coupled with the generative constraint mechanisms steers the collective agents system toward the cloud of solutions; hence, the collective behaviors of agents constitute the polygonal surface structures. This polygonal system is a bottom up approach of developing the complex surface that emerges through topological and topographical interaction between cells and their surrounding environment. Subsequently, the integrative system is developed through agent-based parametric modelling, in which the knowledge-based system as a top-down approach is substituted with the agent system together with its morphological features and significant behaviors.
keywords Agent-Based System, Behavioral-Based System, Polygonal Surface Structures, Self-Organization and Emergence
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2015_467
id cf2015_467
authors Benrós, Deborah; Eloy, Sara and Duarte, José Pinto
year 2015
title Re-inventing ceramic tiles: Using shape grammars as a generative method and the impact on design methodology
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 467.
summary The following paper describes the process and results achieved with the workshop entitled ‘Re-inventing Portuguese ceramic tiles’ reflecting on design methodology and design teaching. Workshop participants were invited to rethink ceramic tile patterns developing a different process which used shape grammars as a generative system. Each participant group developed a three stage task using shape grammars principles and methodology. The preliminary results the work developed are of particular relevance in shape grammar research: firstly shape grammar formulae does not constitute an intuitive process to most creative designers which are often trained to design singular solutions for a specific problem, secondly more than one operative shape grammar can be formulated to represent the same corpus of solutions and lastly the generative potential of grammars transcends the normal capacities of the original grammarist aiding in design exploration and enlarging the corpus of feasible solutions. This paper also reflects on the impact of shape grammars as a design methodology.
keywords Shape grammar, patterns, ceramic tiles, 2d, 3d
series CAAD Futures
email
last changed 2015/06/29 07:55

_id sigradi2015_sp_10.16
id sigradi2015_sp_10.16
authors Bertoldi, Cristiane Aun; Hanns, Daniela Kutschat
year 2015
title Using Photographs of Physical Models to Visualize Design Opportunities and Problems
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 810-814.
summary This paper looks at photographic documentation as a resource for detecting errors, identifying possible design principles and providing guidance for the development of student projects in the course AUP2418 – Three Dimensional Models of the undergraduate curriculum at the Faculty of Architecture and Urban Studies at USP in S?o Paulo, Brazil. This article deals with teaching industrial design models and describes the methodological basis adopted. It also offers examples and analyzes the construction and use of models in order to demonstrate the relevance of photographic documentation during the design process.
keywords Physical Models, Design, Photography, Teaching, FAUUSP
series SIGRADI
email
last changed 2016/03/10 09:47

_id ijac201513204
id ijac201513204
authors Cupkova, Dana and Nicolas Azel
year 2015
title Mass Regimes: Geometric Actuation of Thermal Behavior
source International Journal of Architectural Computing vol. 13 - no. 2, 169-194
summary The Mass Regimes is a research project that investigates the effect of complex geometry on processes of passive heat distribution in thermal mass systems. In the context of systems thinking, this research intends to instrumentalize design principles that engage a wider range of design tactics for choreographing thermal gradients between buildings and their environment. Research for this project has brought about a deeper understanding of how specific geometric manipulations of surface area over the same mass (Figure 1) affect the rate of thermal transfer. Leveraging physical simulations of geometric populations, along with current computational and design tools, the project sheds light on performative trends that may enhance creative design explorations in the use of passive systems. Preliminary analysis of varied geometric populations suggest an exciting trend and the possibility for a more synthetic incorporation of morphology, one in which surface geometry can be passively utilized to generate effects with more fidelity over the pace of thermal absorption and the release of sensible heat.
series journal
last changed 2019/05/24 09:55

_id acadia17_202
id acadia17_202
authors Cupkova, Dana; Promoppatum, Patcharapit
year 2017
title Modulating Thermal Mass Behavior Through Surface Figuration
doi https://doi.org/10.52842/conf.acadia.2017.202
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 202-211
summary This research builds upon a previous body of work focused on the relationship between surface geometry and heat transfer coefficients in thermal mass passive systems. It argues for the design of passive systems with higher fidelity to multivariable space between performance and perception. Rooted in the combination of form and matter, the intention is to instrumentalize design principles for the choreography of thermal gradients between buildings and their environment from experiential, spatial and topological perspectives (Figure 1). Our work is built upon the premise that complex geometries can be used to improve both the aesthetic and thermodynamic performance of passive building systems (Cupkova and Azel 2015) by actuating thermal performance through geometric parameters primarily due to convection. Currently, the engineering-oriented approach to the design of thermal mass relies on averaged thermal calculations (Holman 2002), which do not adequately describe the nuanced differences that can be produced by complex three-dimensional geometries of passive thermal mass systems. Using a combination of computational fluid dynamic simulations with physically measured data, we investigate the relationship of heat transfer coefficients related to parameters of surface geometry. Our measured results suggest that we can deliberately and significantly delay heat absorption re-radiation purely by changing the geometric surface pattern over the same thermal mass. The goal of this work is to offer designers a more robust rule set for understanding approximate thermal lag behaviors of complex geometric systems, with a focus on the design of geometric properties rather than complex thermal calculations.
keywords design methods; information processing; physics; smart materials
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia15_173
id acadia15_173
authors Erdine, Elif
year 2015
title Generative Processes in Tower Design: Simultaneous Integration of Tower Subsystems Through Biomimetic Analogies
doi https://doi.org/10.52842/conf.acadia.2015.173
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 173-184
summary The research presented in the paper formulates part of the methodological approach of a recently completed PhD thesis. The principle aim of the thesis is to achieve simultaneous integration of tower subsystems which can coherently adapt to their internal and external context during the initial phases of the design process. In this framework, the tower subsystems are grouped as the structural system, floor system, vertical circulation system, facade system, and environmental system. The paper focuses on the implementation of the specific biomimetic analogies towards the integration of tower subsystems through computationally generated dynamic systems. The biomimetic analogies are the mechanical and organizational properties of branched constructions, the mechanical properties of the bamboo stem, and the micro-structure of the porcupine quill/ hedgehog spine. Each biomimetic analogy is described in relation to the design domain. Methods of employing the mathematical and geometrical principles of the biomimetic analogies during design explorations are elaborated. Outcomes of the design output are outlined and discussed with a concentration on achieving tower subsystem integration, differentiation, and co-adaptation properties.
keywords Tower, integration, biomimetics, minimal detours, bamboo stem, porcupine quill, hedgehog spine, generative
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2015_296
id ecaade2015_296
authors Erdine, Elif
year 2015
title Tower Revisited: Simultaneous Integration of Tower Subsystems During Conceptual Design Phase
doi https://doi.org/10.52842/conf.ecaade.2015.1.179
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 179-188
wos WOS:000372317300019
summary The research presented in this paper formulates the major methodological approach of a recently completed PhD thesis. It is witnessed that the high level of complexity encountered in the initial phase of tower design is not managed in its entirety by establishing connections between multiple design parameters which have the potential to control the performance of all tower subsystems, revealing that presently there is partial integration of tower subsystems during the conceptual design phase. As such, the research focuses on the incorporation of the functional parameters of the tower system with principles of biological models in order to propose computationally generated dynamic systems for the tower typology. The principle aim is to achieve simultaneous integration of tower subsystems which can coherently adapt to their internal and external context during the initial phases of the design process.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=2e8daee8-702d-11e5-a16f-cf72c54d6d6d
last changed 2022/06/07 07:55

_id ecaade2015_247
id ecaade2015_247
authors Garcia, Manuel Jimenez and Retsin, Gilles
year 2015
title Design Methods for Large Scale Printing
doi https://doi.org/10.52842/conf.ecaade.2015.2.331
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 331-339
wos WOS:000372316000039
summary With an exponential increase in the possibilities of computation and computer-controlled fabrication, high density information is becoming a reality in digital design and architecture. However, construction methods and industrial fabrication processes have not yet been reshaped to accommodate the recent changes in those disciplines. Although it is possible to build up complex simulations with millions of particles, the simulation is often disconnected from the actual fabrication process. Our research proposes a bridge between both stages, where one drives the other, producing a smooth transition from design to production. A particle in the digital domain becomes a drop of material in the construction method.The architect's medium of expression has become much more than a representational tool in the last century, and more recently it has evolved even beyond a series of rules to drive from design to production. The design system is the instruction itself; embedding structure, material and tectonics and gets delivered to the very end of the construction chain, where it gets materialised. The research showcased in this paper investigates tectonic systems associated with large scale 3D printing and additive manufacturing methods, inheriting both material properties and fabrication constraints at all stages from design to production. Computational models and custom design software packages are designed and developed as strategies to organise material in space in response to specific structural and logistical input.Although the research has developed a wide spectrum of 3D printing methods, this paper focuses only on two of the most recent projects, where different material and computational logics were investigated. The first, titled Filamentrics, intends to develop free-form space frames, overcoming their homogeneity by introducing robotic plastic extrusion. Through the use of custom made extruders a vast range of high resolution prototypes were developed, evolving the design process towards the fabrication of precise structures that can be materialised using additive manufacturing but without the use of a layered 3D printing method. Instead, material limitations were studied and embedded in custom algorithms that allow depositing material in the air for internal connectivity. The final result is a 3x2x2.5m structure that demonstrates the viability of this construction method for being implemented in more industrial scenarios.While Filamentrics is reshaping the way we could design and build light weight structures, the second project Microstrata aims to establish new construction methods for compression based materials. A layering 3D printing method combines both the deposition of the binder and the distribution of an interconnected network of capillaries. These capillaries are organised following structural principles, configuring a series of channels which are left empty within the mass. In a second stage aluminium is cast in this hollow space to build a continuous tension reinforcement.
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=07a6d8e0-6fe7-11e5-9994-cb14cd908012
last changed 2022/06/07 07:51

_id acadia15_407
id acadia15_407
authors Kim, Dongil; Lee, Seojoo
year 2015
title A Systemized Aggregation with Generative Growth Mechanism in Solar Environment
doi https://doi.org/10.52842/conf.acadia.2015.407
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 407-415
summary The paper demonstrates a work-in-progress research on an agent-based aggregation model for architectural applications with a system of assembly based on environmental data acted as a driver for a growth mechanism. Even though the generative design and algorithms have been widely employed in the field of art and architecture, such applications tend to stay in morphological explorations. This paper examines an aggregation model based on Diffusion Limited Aggregation system incorporating solar environment analysis for global perspective of aggregation, the geometry research for lattice systems, and morphological principles of unit module in agent scale. The later part of this research paper demonstrates the potential of a design process through the “Constructed Cloud” case study, including site-specific applications and the implementation of the systematized rule set.
keywords Aggregation, Generative Algorithm, Diffusion Limited Aggregation, Responsive Growth Mechanism, Solar Environment, Responsive System / Algorithm, Adaptable Architecture, Data Analysis, Systemized Architecture, Truncated Octahedron, Sun Oriented Aggregation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ecaade2015_253
id ecaade2015_253
authors Ligler, Heather and Economou, Athanassios
year 2015
title Entelechy I - Towards a Formal Specification of John Portman's Domestic Architecture
doi https://doi.org/10.52842/conf.ecaade.2015.1.445
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 445-452
wos WOS:000372317300048
summary John Portman's work attracts much interest, although little scholarship exists that directly engages his contribution in formal composition. Most of the discussion of Portman's architecture tends to focus on his commercial work and hotels, although a key to understanding his work is found in his personal domestic projects where he has had the freedom to explore his architectural ideas. This study focuses on his first residence, Entelechy I, to begin outlining his design principles formally. The ambition is to open up the whole question of his architectural contribution in the United States and at large.
series eCAADe
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_525811 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002