CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 383

_id ecaade2016_043
id ecaade2016_043
authors Wit, Andrew and Kim, Simon
year 2016
title rolyPOLY - A Hybrid Prototype for Digital Techniques and Analog Craft in Architecture
doi https://doi.org/10.52842/conf.ecaade.2016.1.631
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 631-638
summary The rapid emergence of computational design tools, advanced material systems and robotic fabrication within the disciplines of architecture and construction has granted designers immense freedom in form and assembly, while retaining pronounced control over output quality throughout the entirety of the design and fabrication process. Simultaneously, the complexity inherent within these tools and processes can lead to a loss of craft though the production of methodologies, forms and artifacts left with extremely recognizable residues from tooling processes utilized during their production. This paper investigates the fecund intersection of digital technologies and handcraft through core-less carbon fiber reinforced polymer (CFRP) winding as a means of creating a new typology of digital craft blurring the line between human and machine. Through the lens of an innovative wound CFRP shelter rolyPOLY completed during the winter of 2015, this paper will show the exigencies and affordances between the realms of digital and analog methodologies of CFRP winding on large-scale structures.
wos WOS:000402063700068
keywords additive manufacturing; composites; form finding; craft; analog / digital
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2017_031
id caadria2017_031
authors Crolla, Kristof, Williams, Nicholas, Muehlbauer, Manuel and Burry, Jane
year 2017
title SmartNodes Pavilion - Towards Custom-optimized Nodes Applications in Construction
doi https://doi.org/10.52842/conf.caadria.2017.467
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 467-476
summary Recent developments in Additive Manufacturing are creating possibilities to make not only rapid prototypes, but directly manufactured customised components. This paper investigates the potential for combining standard building materials with customised nodes that are individually optimised in response to local load conditions in non-standard, irregular, or doubly curved frame structures. This research iteration uses as a vehicle for investigation the SmartNodes Pavilion, a temporary structure with 3D printed nodes built for the 2015 Bi-City Biennale of Urbanism/Architecture in Hong Kong. The pavilion is the most recent staged output of the SmartNodes Project. It builds on the findings in earlier iterations by introducing topologically constrained node forms that marry the principals of the evolved optimised node shape with topological constraints imposed to meet the printing challenges. The 4m high canopy scale prototype structure in this early design research iteration represents the node forms using plastic Fused Deposition Modelling (FDM).
keywords Digital Fabrication; Additive Manufacturing; File to Factory; Design Optimisation; 3D printing for construction
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_247
id ecaade2015_247
authors Garcia, Manuel Jimenez and Retsin, Gilles
year 2015
title Design Methods for Large Scale Printing
doi https://doi.org/10.52842/conf.ecaade.2015.2.331
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 331-339
summary With an exponential increase in the possibilities of computation and computer-controlled fabrication, high density information is becoming a reality in digital design and architecture. However, construction methods and industrial fabrication processes have not yet been reshaped to accommodate the recent changes in those disciplines. Although it is possible to build up complex simulations with millions of particles, the simulation is often disconnected from the actual fabrication process. Our research proposes a bridge between both stages, where one drives the other, producing a smooth transition from design to production. A particle in the digital domain becomes a drop of material in the construction method.The architect's medium of expression has become much more than a representational tool in the last century, and more recently it has evolved even beyond a series of rules to drive from design to production. The design system is the instruction itself; embedding structure, material and tectonics and gets delivered to the very end of the construction chain, where it gets materialised. The research showcased in this paper investigates tectonic systems associated with large scale 3D printing and additive manufacturing methods, inheriting both material properties and fabrication constraints at all stages from design to production. Computational models and custom design software packages are designed and developed as strategies to organise material in space in response to specific structural and logistical input.Although the research has developed a wide spectrum of 3D printing methods, this paper focuses only on two of the most recent projects, where different material and computational logics were investigated. The first, titled Filamentrics, intends to develop free-form space frames, overcoming their homogeneity by introducing robotic plastic extrusion. Through the use of custom made extruders a vast range of high resolution prototypes were developed, evolving the design process towards the fabrication of precise structures that can be materialised using additive manufacturing but without the use of a layered 3D printing method. Instead, material limitations were studied and embedded in custom algorithms that allow depositing material in the air for internal connectivity. The final result is a 3x2x2.5m structure that demonstrates the viability of this construction method for being implemented in more industrial scenarios.While Filamentrics is reshaping the way we could design and build light weight structures, the second project Microstrata aims to establish new construction methods for compression based materials. A layering 3D printing method combines both the deposition of the binder and the distribution of an interconnected network of capillaries. These capillaries are organised following structural principles, configuring a series of channels which are left empty within the mass. In a second stage aluminium is cast in this hollow space to build a continuous tension reinforcement.
wos WOS:000372316000039
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=07a6d8e0-6fe7-11e5-9994-cb14cd908012
last changed 2022/06/07 07:51

_id acadia15_185
id acadia15_185
authors Mogas-Soldevila, Laia; Duro-Royo, Jorge; Oxman, Neri
year 2015
title Form Follows Flow: A Material-Driven Computational Workflow for Digital Fabrication of Large-Scale Hierarchically Structured Objects
doi https://doi.org/10.52842/conf.acadia.2015.185
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 185-193
summary In the natural world, biological matter is structured through growth and adaptation, resulting in hierarchically structured forms with tunable material computation. Conventional digital design tools and processes, by contrast, prioritize shape over matter, lacking integration between modeling, analysis, and fabrication. We present a novel computational environment and workflow for the design and additive manufacturing of large-scale hierarchically structured objects. The system, composed by custom multi-barrel deposition attached to robotic positioning, integrates material properties, fabrication constraints and environmental forces to design and construct full-scale architectural components. Such components are physically form-found by digitally extruding natural polymers with functionally graded mechanical and optical properties informed by desired functionality and executed through flow-based fabrication. In this approach, properties such as viscosity, velocity, and pressure embed information in two-dimensional printing patterns and induce three-dimensional shape formation of the fabricated part. As a result, the workflow associates physical material and fabrication constraints to virtual design tools for modeling and analysis, challenging traditional design workflows and prioritizing flow over form.
keywords Material-driven Design, Additive Manufacturing, Integrated Design Workflows, Digital Fabrication, Digital Design Process, Material Ecology
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2015_129
id ecaade2015_129
authors Mostafavi, Sina; Bier, Henriette, Bodea, Serban and Anton, AnaMaria
year 2015
title Informed Design to Robotic Production Systems - Developing Robotic 3D Printing System for Informed Material Deposition
doi https://doi.org/10.52842/conf.ecaade.2015.2.287
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 287-296
summary This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out resulting in the production of a one-to-one scale prototype. In this context, design materiality has been approached from both digital and physical perspectives. At digital materiality level, a customized computational design framework is implemented for form finding of compression only structures combined with a material distribution optimization method. Moreover, the chained connection between parametric design model and robotic production setup has led to a systematic study of certain aspects of physicality that cannot be fully simulated in the digital medium, which then establish a feedback loop for underrating material behaviors and properties. As a result, the D2RP system proposes an alternative method of robotic material deposition to create an informed material architecture.
wos WOS:000372316000034
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=9b8d34a6-6fe6-11e5-be92-57ca3f902ce9
last changed 2022/06/07 07:58

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
doi https://doi.org/10.52842/conf.acadia.2019.168
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia15_223
id acadia15_223
authors Brell-Cokcan, Sigrid; Braumann, Johannes
year 2015
title Toward Adaptive Robot Control Strategies
doi https://doi.org/10.52842/conf.acadia.2015.223
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 223-231
summary Within just a few years, industrial robots have become a significant field of research within the creative industry. Due to their inherent multi-functionality they are now being used for a wide range of applications, from conceptualized ideas of human-robot interaction, to interactive media and full-scale fabrication. A significant enabling factor has been the development of designer-centric visual programming environments that make it possible for users from the creative industry to program robotic arms in an accessible and intuitive fashion. In our ongoing research we are exploring new possibilities for industrial robots in the creative industry by branching into two opposite directions: Using custom software to compensate for the limitations of used, cheap industrial robots by outsourcing computation-intensive operations, and developing new interfaces for adaptive robot control, thus dynamically coupling the robot with the visual programming environment itself.
keywords Adaptive robot control, visual programming, interfaces, industrial robots
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2015_303
id ecaade2015_303
authors Coroado, Luís; Pedro, Tiago, D'Alpuim, Jorge, Eloy, Sara and Dias, MiguelSales
year 2015
title VIARMODES: Visualization and Interaction in Immersive Virtual Reality for Architectural Design Process
doi https://doi.org/10.52842/conf.ecaade.2015.1.125
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 125-134
summary The complexity of today´s architecture solutions brings the need to integrate, in the design process, digital tools for creation, visualization, representation and evaluation of design solutions. This paper proposes the adoption of a new Virtual Reality (VR) tool, referred to as VIARmodes, to support the architectural design process with an improved communication across different specialities, towards the facilitation of the project decision process. This tool allows a complete visualization of the design, specifically useful during the detailed design phase, including the architecture design and of other engineering specialities, progressively and interactively adapting the project visualization to the information needed for each discipline. With a set of 3 different visualization modes simulated in real scale within a Virtual Environment (VE), and adopting natural human-computer interaction by using speech, the system allows a team of architect and engineers, to visualize and interact with the proposed design during a collaborative design brief. We carried a usability evaluation study with 12 architects. The study showed that the tool was perceived to be effective and its use efficient during the design process, especially during the detailed design phase.
wos WOS:000372317300014
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4129cbae-70c8-11e5-be63-27454208986c
last changed 2022/06/07 07:56

_id ecaade2018_243
id ecaade2018_243
authors Gardner, Nicole
year 2018
title Architecture-Human-Machine (re)configurations - Examining computational design in practice
doi https://doi.org/10.52842/conf.ecaade.2018.2.139
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 139-148
summary This paper outlines a research project that explores the participation in, and perception of, advanced technologies in architectural professional practice through a sociotechnical lens and presents empirical research findings from an online survey distributed to employees in five large-scale architectural practices in Sydney, Australia. This argues that while the computational design paradigm might be well accepted, understood, and documented in academic research contexts, the extent and ways that computational design thinking and methods are put-into-practice has to date been less explored. In engineering and construction, technology adoption studies since the mid 1990s have measured information technology (IT) use (Howard et al. 1998; Samuelson and Björk 2013). In architecture, research has also focused on quantifying IT use (Cichocka 2017), as well as the examination of specific practices such as building information modelling (BIM) (Cardoso Llach 2017; Herr and Fischer 2017; Son et al. 2015). With the notable exceptions of Daniel Cardoso Llach (2015; 2017) and Yanni Loukissas (2012), few scholars have explored advanced technologies in architectural practice from a sociotechnical perspective. This paper argues that a sociotechnical lens can net valuable insights into advanced technology engagement to inform pedagogical approaches in architectural education as well as strategies for continuing professional development.
keywords Computational design; Sociotechnical system; Technology adoption
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2015_010
id caadria2015_010
authors Gámez, Oscar; Jean-Claude Bignon and Gilles Duchanois
year 2015
title Assisted Construction of Non-Standard Wooden Walls and Envelope Structures by Parametric Modeling
doi https://doi.org/10.52842/conf.caadria.2015.653
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 653-662
summary The non-standard approach, widely discussed in the past years as Architecture progressively uses alternative design methods different from the Euclidean paradigm, has allowed architects to transform the way architecture is conceived and materialized. Such evolution uses computer-aided design along with automation in production to originate the environment for the aided architectural conception field in which we present a method, in its early development stage, intended to create non-standard walls and envelopes based on cellular patterns using wood as base material. We present the results obtained from modeling and building two full-scale prototypes of non-standard wooden walls.
keywords Non-standard walls; parametric modeling; CNC fabrication; cellular structures; wood construction.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2015_221
id ecaade2015_221
authors Junk, Stefan and Matt, Rebecca
year 2015
title Workshop Digital Manufacturing - A New and Practical Approach to Combine CAAD and Digital Manufacturing in Architectural Design Education
doi https://doi.org/10.52842/conf.ecaade.2015.2.103
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 103-110
summary The opportunities for the use of Digital Manufacturing in the field of architecture have increased tremendously over the past years. Today, already a large variety of methods and processes are used for the production of architectural models or even prototypes and design models. By now, this new technology has also become firmly established in the education of students. In this context, especially the theoretical basics of digital manufacturing, that is to say the integration of CAAD with the manufacturing process, and the special characteristics of the additive manufacturing, i.e. assembly in layers, are taught. As a demonstration of the practical application of the new technology of 3D printing, this paper will focus on the Workshop Digital Manufacturing. Due to the new approach of this workshop, which relies on the assembly of a 3D printer from an assembly kit, the students gain profound insights into the technology and functionality of 3D printers. In a next step, the students realize various models with the 3D-printer and in doing so develop design guidelines for additive manufacturing autonomously.
wos WOS:000372316000013
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=52a83db6-6fe7-11e5-992c-a7fd95009077
last changed 2022/06/07 07:52

_id caadria2015_064
id caadria2015_064
authors Meyer, J.; G. Duchanois, J-C. Bignon and A. Bouali
year 2015
title Computer Design and Digital Manufacturing of Folded Architectural Structures Composed of Wood Panels
doi https://doi.org/10.52842/conf.caadria.2015.641
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 641-650
summary The research presented in this paper revolves around the experimental development of the morpho-structural potential of folded architectural structures made of wood. The aims are to develop an innovative system for timber used in sustainable construction and to increase the inventory of wood architectural tectonics. Laminated timber panels associated with "digital production line" approach have opened up new perspectives for the building industry in creating prefabricated wooden structures. This article provides a characterization of the digital chain associated to the development of non-standard folded structures which consist of wood panels by way of a full-scale experimental pavilion. The purpose is the study of architectural design process from parametric modeling (through CNC machining) and assembly operations to production. Towards the completion of the pavilion, a number of analytical experiments have been performed.
keywords Architecture, folded structure, robotic fabrication, computational design, parametric modeling, wood panels.
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2015_3.268
id sigradi2015_3.268
authors Naboni, Roberto; Mirante, Lorenzo
year 2015
title Metamaterial computation and fabrication of auxetic patterns for architecture
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 129-136.
summary The paper investigates the potential of auxetics in architectural applications by means of computational design and additive manufacturing. This class of metamaterials expresses interesting behaviour related to the unusual characteristics of a negative Poisson’s ratio. Different patterns have been studied through a design workflow based on parametric software and the use of Particle Spring systems to support the form-finding process of bending-active auxetic structures. An advanced understanding of their bending capacity is explored with the use of variable infill patterns informed by structural analysis. Furthermore, principles for the design and fabrication of auxetic gridshells are discussed.
keywords Auxetics, Computational Design, Form-Finding, Synclastic Shell, 3D-printing
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2015_155
id ecaade2015_155
authors Rosenberg, Eliot; Haeusler, M Hank, Araullo, Rebekah and Gardner, Nicole
year 2015
title Smart Architecture-Bots & Industry 4.0 Principles for Architecture
doi https://doi.org/10.52842/conf.ecaade.2015.2.251
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 251-259
summary Industrial robots from the automotive industry are being repurposed for use in architecture fabrication research in academic institutions around the globe. They are adapted for a variety of fabrication techniques due to the versatility of their 6-axis arm configuration. Though their physical versatility is an advantage in research, their computational and sensory capabilities are rudimentary and have not evolved significantly in the past forty years of their existence. In the meantime the manufacturing industry has moved on by introducing new forms of manufacturing namely Industry 4.0. In this position paper we look at the characteristics necessary to bring architecture robotics into line with Industry 4.0 standards. By presenting the fabrication process as a relationship model of 'tool-process-outcome' we will examine the way in which these entities and their interrelations might be augmented vis-a-vis Cyber-Physical Systems (CPS), Social Robotics and Human-Computer Interaction (HCI) approaches such as the Tangible User Interface (TUI).
wos WOS:000372316000030
series eCAADe
email
last changed 2022/06/07 07:56

_id eaea2015_t2_paper13
id eaea2015_t2_paper13
authors Rumiez, Agnieszka; Klosinski, Krzysztof
year 2015
title City-Palimpsest and the Depth of Human Identity
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.250-258
summary The paper aims to address issues of heritage protection confronting macro and micro scale of a problem. Authors claim that there is a mezzanine level which they call spatial heritage of people. To assess the problem of its definition, they use a tripartite model of place attachment by Scannell & Gifford (2010). Architectural standpoint is confronted with the one of the psychologist.
keywords place attachment; architecture; heritage protection
series EAEA
email
last changed 2016/04/22 11:52

_id ecaade2015_72
id ecaade2015_72
authors Seiler, Uwe Tobias; Koch, Volker and Both, Petravon
year 2015
title Immersive Virtual Simulation of Spaces
doi https://doi.org/10.52842/conf.ecaade.2015.1.077
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 77-88
summary We describe a scalable multi layered projection room for immersive experiences of virtual architecture that combines visual, acoustic, olfactoric, climatic and haptic effects in a comprehensive test environment. The paper starts by summarizing main historic installations, which aimed to improve sensual experiences in addition to exclusively visual presentations. It continues with introducing practical tests and evaluations to identify possible ways to integrate other human senses into virtual spaces. The project group therefor set up a flexible test room in the scale of 1:5 in which physical effects like heat, odour, acoustic,air movement correspond to a visual representation of an architectural example. The article reports then tests about settings and first evaluation of this ongoing project and closes with a listing of further steps concerning a possible enlargement of the installation into 1:1 scale.
wos WOS:000372317300009
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=157c1d3c-702c-11e5-99de-f728a67a27f8
last changed 2022/06/07 07:56

_id ecaade2015_240
id ecaade2015_240
authors Sousa, Jose Pedro; Varela, Pedro Azambuja and Martins, Pedro Filipe
year 2015
title Between Manual and Robotic Approaches to Brick Construction in Architecture
doi https://doi.org/10.52842/conf.ecaade.2015.2.361
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 361-370
summary Brick construction has a long and rich structural and aesthetic traditions in architecture, which can be traced back to the origins of our civilization. However, despite the remarkable works of Frank Lloyd Wright, Louis Kahn, Eladio Dieste or Alvar Aalto in the 20th century, the application of this construction process to address more irregular geometries is very difficult to be achieved by conventional manual means. In this context, the last decade assisted to emergence of robotic applications in architecture. While Gramazio & Kohler looked for solving non-standard brick structures, others, like the S.A.M. robot initiative, are interested in improving the productivity in the fabrication of regular brick structures. By surveying the recent advances on bricklaying automation, this paper is interested in reflecting on the actual role of manual brickwork. In doing so, the authors present the Brick Tower experiment developed at the DFL/CEAU/FAUP, where two different fabrications processes are critically compared: a robotic and a manual one, which is aided by a video projection technique. By describing and illustrating this experiment, the authors argue that it is possible to expand the traditional craft of bricklaying by devising simple strategies to increase the human capacity to understand and materialize more elaborated geometries. This research avenue can be relevant if one considers that manual work should remain the most common form of brickwork practice in the next decades.
wos WOS:000372316000042
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e6bc50e2-6fe6-11e5-9a3c-4332809e7acb
last changed 2022/06/07 07:56

_id acadia15_69
id acadia15_69
authors Wilcox, Glenn; Trandafirescu, Anca
year 2015
title C-Lith: Carbon Fiber Architectural Units
doi https://doi.org/10.52842/conf.acadia.2015.069
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 69-79
summary C-LITH is the reconsideration of the architectural building unit through the exploration of new composite techniques and materials. Our project develops individual compo- nents that exploit the strength, lightness, and variability possible with carbon ber laments when paired with computation, digital fabrication, and hand assembly. Traditionally, architectural units made of brick or concrete are small and multiple, heavy, dif cult to vary, and are much better in compression than tension. Using carbon ber laments to create variable units allows for larger individual units that can vary in both shape and structural performance as needed. Our units, developed through winding pre-preg carbon ber tow around disposable molds, bene t structurally from the quasi-isotropic properties that are developed through the winding patterns. The specific structural capacities of the units remain to be understood through further testing and analysis, which falls outside the scope of this current research. At this junction, structural capacities have been determined empirically, i.e. will it stand? Most importantly, as a formal study, our units address the use of carbon ber at the scale of architectural production. A majority of the effort involved in materializing C-LITH was the development of a two-fold prototypical manufacturing process that produces the components and assembly. For this we invented a method to quickly and cheaply construct variable cardboard molds that could withstand the wound casting and baking steps, but could also be easily weakened through water immersion to be removed. For the assembly we developed a rigid dummy-jig system to hold the joint plates in position with a high level of precision but could also incrementally absorb the adjustment errors unavoidable in hand assembly systems. Using a simple pin connection the resultant structures can be easily disassembled for transportation and reassembly elsewhere.
keywords Carbon Fiber Composite, Variability, Fabrication, Computation, Coding, Molds, Jigging, Assembly
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id sigradi2015_3.370
id sigradi2015_3.370
authors Bem, Gabriel Moraes de; Pupo, Regiane Trevisan
year 2015
title Printing the environment for visually impaired users: a systematic review
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 148-152.
summary This paper presents the results of a systematic review of 13 databases that aimed to identify which rapid prototyping techniques (RP) have been applied to development of tactile maps and tactile models. For this purpose were adopted the key words tactile map; tactile model; tactile scale model; additive manufacturing; digital fabrication; and rapid prototyping. Only 11 results deal with the PR in the manufacture of the devices. As a result of four cases reviewed, there are benefits from psychological and learning fields and also technical such as the resolution of the elements, its legibility and quality control in manufacturing.
keywords Visually Impaired User, Mobility, Way finding, Digital Prototyping
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_122
id ecaade2015_122
authors Agirbas, Asli
year 2015
title The Use of Digital Fabrication as a Sketching Tool in the Architectural Design Process - A Case Study
doi https://doi.org/10.52842/conf.ecaade.2015.2.319
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 319-324
summary Computer-aided manufacturing (CAM) technologies including computer numerically controlled (CNC) milling, laser cutting and 3D printing are becoming cheaper and globally more accessible. Accordingly, many design professionals, academics and students have been able to experience the benefits and challenges of using digital fabrication in their designs. The use of digital fabrication in the education of architecture students has become normal in many schools of architecture, and there is a growing demand for computer-aided manufacturing (CAM) logic and fabrication knowledge in student learning. Clearly, architecture students are acquiring material base-thinking, time management, production methods and various software skills through this digital fabrication. However, it appears to be the case that architecture students use digital fabrication mainly in the final stage of their design or in their finishing work. In this study, computer-aided manufacturing (CAM) technologies have been used as a sketch tool rather than simply for fabricating a final product in the architectural design process and the advantages of this educational practice are demonstrated.
wos WOS:000372316000037
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=79005d78-6fe6-11e5-b555-13a7f78815dc
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 19HOMELOGIN (you are user _anon_580517 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002