CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 588

_id caadria2015_048
id caadria2015_048
authors Austin, Matthew and Gavin Perin
year 2015
title The Other Digital
doi https://doi.org/10.52842/conf.caadria.2015.829
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 829-838
summary The paper compares the implications of glitch aesthetics as an alternative digital design process to the more the commonly used algorithmic processes. It will argue the synthetic nature of architectural production in the digital age is used typically to privilege the representation of form through lines and curves, while the production of glitches rely on the image. This reliance on the image means that the pixel comes to the forefront as a possible new medium of architectural drawing. This paper therefore aims to outline the advantages and problems with using ‘glitches’ within architectural production.
keywords Glitch aesthetics; Processing; theory; algorithmic design; process.
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201513204
id ijac201513204
authors Cupkova, Dana and Nicolas Azel
year 2015
title Mass Regimes: Geometric Actuation of Thermal Behavior
source International Journal of Architectural Computing vol. 13 - no. 2, 169-194
summary The Mass Regimes is a research project that investigates the effect of complex geometry on processes of passive heat distribution in thermal mass systems. In the context of systems thinking, this research intends to instrumentalize design principles that engage a wider range of design tactics for choreographing thermal gradients between buildings and their environment. Research for this project has brought about a deeper understanding of how specific geometric manipulations of surface area over the same mass (Figure 1) affect the rate of thermal transfer. Leveraging physical simulations of geometric populations, along with current computational and design tools, the project sheds light on performative trends that may enhance creative design explorations in the use of passive systems. Preliminary analysis of varied geometric populations suggest an exciting trend and the possibility for a more synthetic incorporation of morphology, one in which surface geometry can be passively utilized to generate effects with more fidelity over the pace of thermal absorption and the release of sensible heat.
series journal
last changed 2019/05/24 09:55

_id eaea2015_t2_paper07
id eaea2015_t2_paper07
authors Januszkiewicz, Krystyna; Paszkowska, Natalia E.
year 2015
title Towards the new Baroque Within the Historic Context of a City
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.186-198
summary A new approach to design - Curvilinear forms designed in synthetic digital space - indicates the direction of a new turn in architecture, interest in its structural and environmental aspect. The presented case studies show how curvilinear forms of such architecture coexist with the historic context and how they inscribe in to the existing urban fabric with a complex historical substance. Following the Zeitgeist, the new architecture reconfigures the expression, reception and materiality, as well as uses the context to validate its existence. The features of this new architecture may be referred to the achievements of the Baroque and considered in a wider context of historical changes in the urban fabric.
keywords heritage perception; curvilinear architecture; digital Baroque
series EAEA
email
last changed 2016/04/22 11:52

_id acadia15_333
id acadia15_333
authors Koltick, Nicole
year 2015
title Autonomous Botanist: the Poetic Potentials of a New Robotic Species
doi https://doi.org/10.52842/conf.acadia.2015.333
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 333-341
summary This project begins by asking questions about ethics and empathy towards robots, and contemplates the future of their behavior in ways not informed by pragmatics or economy. What if a robot had a hobby? How do robots make aesthetic decisions? What is a robot’s point of view? It seeks to shift perception of robotic agency and allow the audience to embody the robotic gardeners’ vision, behavior and influence its aesthetics. By amplifying perceptual differences between humans and robots and we allow for both tangible and virtual embodiment experiences from multiple scales and perspectives.
keywords Non-anthropocentric aesthetics, speculative realism, robotics, synthetic ecologies
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id acadia15_343
id acadia15_343
authors Roudavski, Stanislav
year 2015
title Sketching with Robots
doi https://doi.org/10.52842/conf.acadia.2015.343
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 343-355
summary Today, human activities constitute the primary environmental impact on the planet. In this context, commitments to sustainability, or minimization of damage, prove insufficient. To develop regenerative, futuring capabilities, architectural design needs to extend beyond the form and function of things and engage with the management of complex systems. Such systems involve multiple types of dynamic phenomena – biotic and abiotic, technical and cultural – and can be understood as living. Engagement with such living systems implies manipulation of pervasive and unceasing change, irrespective of whether it is accepted by design stakeholders or actively managed towards homeostatic or homeorhetic conditions. On one hand, such manipulation of continuity requires holistic and persistent design involvements that are beyond natural capabilities of human designers. On the other hand, practical, political or creative implications of reliance on automated systems capable of tackling such tasks is as yet underexplored. In response to this challenge, this paper considers an experimental approach that utilised methods of critical making and speculative designing to explore potentials of autonomous architecture. This approach combined 1) knowledge of animal architecture that served as a lens for rethinking human construction and as a source of alternative design approaches; 2) practices of creative computing that supported speculative applications of data-driven and performance-oriented design; and 3) techniques of robotics and mechatronics that produced working prototypes of autonomous devices that served as props for critical thinking about alternative futures.
keywords Intelligent robots, animal architecture, synthetic ecology
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id caadria2015_233
id caadria2015_233
authors Fernando, Ruwan and Robin Drogemuller
year 2015
title Recapitulation in Generating Spatial Layouts
doi https://doi.org/10.52842/conf.caadria.2015.199
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 199-207
summary The noted 19th century biologist, Ernst Haeckel, put forward the idea that the growth (ontogenesis) of an organism recapitulated the history of its evolutionary development. While this idea is defunct within biology, the idea has been promoted in areas such as education (the idea of an education being the repetition of the civilizations before). In the research presented in this paper, recapitulation is used as a metaphor within computer-aided design as a way of grouping together different generations of spatial layouts. In most CAD programs, a spatial layout is represented as a series of objects (lines, or boundary representations) that stand in as walls. The relationships between spaces are not usually explicitly stated. A representation using Lindenmayer Systems (originally designed for the purpose of modelling plant morphology) is put forward as a way of representing the morphology of a spatial layout. The aim of this research is not just to describe an individual layout, but to find representations that link together lineages of development. This representation can be used in generative design as a way of creating more meaningful layouts which have particular characteristics. The use of genetic operators (mutation and crossover) is also considered, making this representation suitable for use with genetic algorithms.
keywords Generative Design, Lindenmayer Systems, Spatial Layouts
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2015_6.42
id sigradi2015_6.42
authors Henriques, Gonçalo Castro
year 2015
title Responsive systems, relevance, state of the art and developments
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 200-206.
summary Responsive architecture is often seen as one that merely adapts to change. This reflects its limited and still incipient application in architecture. Given the current resource’s crisis, a systemic building management is essential. This article argues that there is no established process for creating and managing responsive architecture. Therefore, it claims is necessary to deepen knowledge about systems, computation, mathematics, biology and robotics. Despite being a vast subject, it proposes a ‘state of the art’ about systems, investigating how to operate them. Based on this, proposes a method for generating responsive systems. This method is tested in a practical case.
keywords Responsive Systems, Meta-Systems, Static Adaptation, Dynamic Adaptation, Heuristics
series SIGRADI
email
last changed 2016/03/10 09:53

_id ecaade2015_21
id ecaade2015_21
authors Klemmt, Christoph and Bollinger, Klaus
year 2015
title Cell-Based Venation Systems
doi https://doi.org/10.52842/conf.ecaade.2015.2.573
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 573-580
summary Venation structures in leaves fulfil both circulatory as well as structural functions within the organism they belong to. A possible digital simulation algorithm for the growth of venation patterns based on the leaf surface has been described by the Department of Computer Science at the University of Calgary.Cell-based growth algorithms to generate surface meshes have been developed by biological and medical scientists as well as artists, in order to gain an understanding of developmental biology or to generate artistic form. This paper suggests the combination of the two algorithms in order to generate the morphologies of leaves and other structures while at the same time generating the corresponding venation system.The resulting algorithm develops large non-manifold mesh structures based on local rules of division of the individual cells. The venation system develops in parallel based on the flow of the plant hormone auxin from those cells towards the start point or petiole of the leaf. Different local behaviours of the cells towards their adjacent neighbours, towards their rules of division and towards the rules of developing veins have been investigated. The eventual aim of the algorithms is their application as tools to develop architectural and structural morphologies.
wos WOS:000372316000064
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=29c4389a-6e8f-11e5-8666-279b88fbd56c
last changed 2022/06/07 07:52

_id ecaade2015_13
id ecaade2015_13
authors Teixeira, Frederico Fialho
year 2015
title Biology, Real Time and Multimodal Design - Cell-Signaling as a Realtime Principle in Multimodal Design
doi https://doi.org/10.52842/conf.ecaade.2015.2.551
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 551-562
summary The common understanding of morphogenesis implies a three-dimensional evolutionary change in form witnessed in the developmental process of an organism. This evolutionary process emerges from cell growth, cellular differentiation and environmental changes that generate specific conditions between genotype and phenotype. The complex nature of these aspects is intrinsic to evolutionary biology, and its accurate implementation in bio-generated architectures potentiates a twofold understanding of different morphogenetic strategies and its spatial consequences. Within this premise the morphogenetic factors of cell-differentiation and cell-signaling become a crucial aspect in a real-time communication system between an archetype and space, thus performing within particular modes in which design correlates to space. The paper hypothesizes and tests the use of Cell-Signaling as system of communication that governs fundamental cellular activities within the process of Gastrulation. This process occurs in early cell-embryo development and where communication between cells is favorably active and cellular the structure is established. The Emosphera project is a technical re-contextualization of this specific morphogenetic process. The principles denote a genetic code of the object can be scripted in a CAD environment and reproduced real-time by means of communication through a multimedia platform, which render form as a consequential aspect.
wos WOS:000372316000062
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7ba1d042-6e8e-11e5-bb2e-ab80b3ab7d57
last changed 2022/06/07 07:58

_id ecaade2015_185
id ecaade2015_185
authors Vamvakidis, Simos
year 2015
title Gradient Transparency: Marine Animals As a Source of Inspiration. - Exploring Material Bio-Mimicry through the Latest 3D Printing Technology in Architectural surfaces
doi https://doi.org/10.52842/conf.ecaade.2015.2.325
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 325-330
summary Digital fabrication technologies are changing rapidly the way we design, as any other tool would affect the way we produce space. Multi layered 3D printing is already allowing architects, designers and engineers to experiment with new design processes and new ways of production. At the same time, little research has being done in the way gradient transparency (through multiple layered surfaces) can affect the design process through computation; a field that deserves further investigation. The focus of this paper is to explore bio-inspired material finding design processes while combining biology, architecture and material science. We explore performance driven design possibilities through a study of marine animals -and specifically cephalopods- where opacity between skin layers is controlled through color pigments - while black pigments are called melanophores - which is often used as a type of camouflage. We propose a computation model that follows the logic of gradient transparency through pigments to fit complex “host surfaces”. We define a “host” surface as a basic geometry on which the pigments are computed. This study provides the methodology for the design of biomimetic surfaces with gradient transparency, using controlled and computated sub geometries analogous to the melanophores pigments. We finally propose Pigment Skin, a computational design model as an example to materialize this study.
wos WOS:000372316000038
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c9365fd6-6fe6-11e5-9146-eff39522c429
last changed 2022/06/07 07:57

_id acadia15_431
id acadia15_431
authors Winn; Kelly
year 2015
title Transient Thermal Exchange and Developmental Form for Tactile Surfaces
doi https://doi.org/10.52842/conf.acadia.2015.431
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 431-441
summary The idea of an emergent or generative form based on repeating rules of development borrowed from the field of developmental biology has provided fertile ground for inspiration for architectural theory and computational design. With simple constraints developed iteratively, complex geometry and form generation can be distilled down to a list of developmental rules or functions in order to deterministically generate form. The ideas and illustrations of naturalists on organic form and developmental biology leading back to the turn of the 20th c., such as the work of D'arcy Wentworth Thompson and Ernst Haeckel, have inspired architects from Louis Sullivan all the way to contemporary generative design. This study revisits this design tradition of biomimetic geometries based on deterministic rules for the iterative development of forms based on biological analogs and models for growth. A series of semi-regular compound patterns were developed using parametric modeling and iterative rules. These geometries were then applied to surface topologies as a decorative tactile embellishment resulting in complex thermodynamic conditions. A series of physical prototypes where then developed with different high-relief patterns and pattern densities. Positive prototype geometries were then produced using stereolithography for casting plaster molds for the production molding of finished ceramic pieces for thermal analysis using digital thermography. By studying the performance of these complex geometries as physical prototypes under controlled experimentation, high-relief surfaces and the resulting thermodynamic conditions can be understood not just qualitative experience, but also quantitatively through measured performance metrics and innovative tools for analytical analysis.
keywords Tactile surfaces, developmental biology, biomimicry, l-systems, ceramic materials, heat transfer, thermography, ergonomics
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id sigradi2015_10.177
id sigradi2015_10.177
authors Angelo, Alex Garcia Smith; Manna, Ilaria La; Hernandez, Oscar; Valdiviezo, Marlon; Lastras, Alejandra Díaz de León; Salazar, Oscar Ivan Campo; Montezuma, Vanessa; Zubieta, Marco
year 2015
title Fab Lab and Multiculturalism in Latin America: The Fab Lat Kids case and the project “Emosilla”
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 551-557.
summary This paper expresses a lecture of the experience of an investigation carried by a group of Latin American Fab Labs dedicated to the promotion of the use of modeling, digital fabrication, and network communication as tools of educational and social development of children in latin culture. This study is based on online workshop typologies with a methodological perspective that included local technological adaptations, data gathering, and exchange of knowledge on the fab lab network.
keywords Design, Digital Manufacturing, Society, Technology Learning, Collaborative Network
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_178
id ecaade2015_178
authors Decker, Martina
year 2015
title Soft Robotics and Emergent Materials in Architecture
doi https://doi.org/10.52842/conf.ecaade.2015.2.409
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 409-416
summary This paper investigates the potential of soft robotics that are enabled by emergent materials in architecture. Distributed, adaptive soft robotics holds the promise to address many issues in architectural environments such as energy efficiency as well as user comfort and safety.Two examples out of a series of experiments conducted in the Material Dynamics Lab at the New Jersey Institute of Technology are being introduced and serve as a vehicle to explore distributed soft robotics in architectural environments. The design process and project development methods of the soft robotic systems integrated the fabrication of working proof of concept prototypes as well as their testing.
wos WOS:000372316000047
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=0a4cda54-70d7-11e5-8283-c31aaf067374
last changed 2022/06/07 07:55

_id eaea2015_t3_paper13
id eaea2015_t3_paper13
authors Ohno, Ryuzo; Yu, Yang
year 2015
title Effect of Pedestrian Observation Mode on Perceptual Continuity of the Streetscape
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.398-407
summary The results of the experimental study revealed that the impacts from the building design and their layout differ according to observation mode of the pedestrian. This may imply that the regulation of building elements should not be considered in a rigid way but in more flexible according to given situation. Establishment of more reasonable and reliable design guideline that takes the observation mode into account should contribute to renew a part of a traditional neighbourhood smoothly while preserving original streetscape that people can feel usable and comfortable atmosphere.
keywords streetscape; perceptual continuity; observation mode
series EAEA
email
last changed 2016/04/22 11:52

_id sigradi2015_12.259
id sigradi2015_12.259
authors Silva, Diego Fagundes da; Mattos, Erica Azevedo da Costa e; Kós, José Ripper
year 2015
title In Between-Labs Interface: A Dialogical Experience between Media and Technology Experimental Laboratories
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 719-723.
summary This paper explores the debate on experimental laboratories related to media and technology as promoters of collaborative, open and transdisciplinary research practices. Thus, discussing different arrangements of this specific lab concept, the paper presents an ongoing experience about an interface between a hackerspace and an educational laboratory within the Department of Architecture and Urbanism at the Federal University of Santa Catarina.
keywords Experimental Laboratories, Media Labs, LackerSpaces, Transdisciplinarity, Collaborative Spaces
series SIGRADI
email
last changed 2016/03/10 10:00

_id ecaade2015_324
id ecaade2015_324
authors Abdelmohsen, Sherif and Massoud, Passaint
year 2015
title Integrating Responsive and Kinetic Systems in the Design Studio: A Pedagogical Framework
doi https://doi.org/10.52842/conf.ecaade.2015.2.071
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 71-80
summary Responsive architecture is one of the growing areas of computational design that is not getting adequate attention in CAAD curricula. A pedagogical approach to designing responsive systems requires more than the typical knowledge, tools or skill sets in architectural design studios. This paper presents a framework for integrating responsive and kinetic systems in the architectural design studio. The framework builds on findings of two design studios conducted at The American University in Cairo, Egypt. In both studios, students were asked to design elements of responsive architecture that work towards the development of their projects. The paper demonstrates the process and outcomes of both studios. It then demonstrates how concepts of integrated project delivery are incorporated to propose a framework that engages students in designing, fabricating and operating responsive systems in different phases of the design process. A discussion follows regarding dynamics of design studio in light of the proposed framework.
wos WOS:000372316000010
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7e59e026-6e8f-11e5-9e59-876225eebea0
last changed 2022/06/07 07:54

_id cf2015_279
id cf2015_279
authors Abdelmohsen, Sherif M. and Massoud, Passaint M.
year 2015
title Making Sense of those Batteries and Wires: Parametric Design between Emergence and Autonomy
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 279-296.
summary This paper reports on the process and outcomes of a digital design studio that integrates parametric design and generative systems in architectural and urban design projects. It explores the interrelationship between the emergence of innovative formal representations using parametric design systems on the one hand, and design autonomy; more specifically the conscious process of generating and developing an architectural concept, on the other. Groups of undergraduate students working on an architectural project are asked to identify a specific conceptual parti that addresses an aspect of architectural quality, define strategies that satisfy those aspects, and computational methodologies to implement those strategies, such as rule-based systems, self-organization systems, and genetic algorithms. The paper describes the educational approach and studio outcomes, discusses implications for CAAD education and curricula, and addresses issues to be considered for parametric and generative software development.
keywords Parametric modeling, generative design, emergence, autonomy, design exploration, CAAD curriculum.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id eaea2015_t3_paper02
id eaea2015_t3_paper02
authors Acacia, Simonetta; Casanova, Marta
year 2015
title Recording and Publishing to Ensure Informed Choices for Future Generations
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.290-298
summary The paper presents the practical example of an information system applied to the built heritage, in particular to the Albergo dei Poveri, a monumental complex in the city of Genoa. A huge number of data and information have been organized in one database, in order to provide a synthesis of the building, acquainted with its complexity, and at the same time allow an in-depth knowledge; the graphical visualization by means of GIS eases to query the database. The final purpose of this work is to publish the project as a web-GIS that will allow all the interested parts to easily access and consult the wide knowledge and use it to make well-informed decisions about the conservation of built heritage.
keywords GIS; knowledge; historical building
series EAEA
email
last changed 2016/04/22 11:52

_id ecaade2015_138
id ecaade2015_138
authors Achten, Henri
year 2015
title Closing the Loop for Interactive Architecture - Internet of Things, Cloud Computing, and Wearables
doi https://doi.org/10.52842/conf.ecaade.2015.2.623
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 623-632
summary Interactive architecture occurs in buildings when part of the building engages in exchange of information with the user, in such a way that the interactive system adjusts it's assumptions about the user's needs and desires. Acquiring the user's needs and desires is no trivial task. Currently there are no techniques that will reliably make such assertions. Building a system that unobtrusively monitors the inhabitant seems to be a tall order, and making the system ask the user all the time is very distracting for the user. An alternative option has become available however: personal wearables are increasingly monitoring the user. Therefore it suffices that the interactive system of the building gets in touch with those wearables, rather than duplicating the sensing function of the wearables. The enabling technology for wearables is Internet of Things, which connects physical objects (smart objects) on a virtual level, and Cloud Computing, which provides a scalable storage environment for wearables and smart objects. In this paper we outline the implications of the convergence of these three technologies in the light of interactive architecture.
wos WOS:000372316000069
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=fdd9e706-6e8f-11e5-b1d4-00190f04dc4c
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_241507 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002