CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id caadria2015_213
id caadria2015_213
authors Kornkasem, Sorachai and John B. Black
year 2015
title CAAD, Cognition & Spatial Thinking Training
doi https://doi.org/10.52842/conf.caadria.2015.561
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 561-570
summary The current study explored different spatial training methods and investigated the sequence of processed-based mental simulation that was facilitated by various structures of external spatial representations, including 3D technology in Computer Aided-Architectural Design (CAAD), spatial cues, and/or technical languages. The goal was to better understand how these components fostered planning experiences and affected spatial ability acquisition framed as the formation of spatial mental models, for further developing spatial training environments fundamental to Science, Technology, Engineering, and Mathematics (STEM) education, specifically for architecture education and cognition. Two experiments were conducted using a between-subjects design to examine the effects of spatial training methods on spatial ability performance. Across both studies learners improved in their spatial skills, specifically the learners in the 3D-augmented virtual environments over the 3D-direct physical manipulation conditions. This study is built upon the work in the fields of computer-user interface, visuospatial thinking and human learning.
keywords Spatial thinking training; cognitive processes; CAAD.
series CAADRIA
email
last changed 2022/06/07 07:51

_id cf2015_226
id cf2015_226
authors Gallas, Mohamed-Anis and Delfosse, Vincent
year 2015
title Sketch-based and parametric modeling: Association of two-externalization processes for early daylight optimization
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 226-238.
summary This paper focuses on sketch-based and parametric modeling as two externalization devices used in architectural design practice. The first part of this paper addresses features and ability of these externalization tools to support design activities during the early design steps. The second part proposes an association process of a sketch-based modeling tool (SketSha-Archi®) and a parametric modeling tool (Grasshopper®) to create an advanced process for daylight optimization. The process aimed to associate the hand-sketching freedom with the precise exploration functions of digital tools (parametric modeling and evaluation tools).
keywords Sketch-based modeling; parametric modeling; early design stages; daylight simulation; optimization process.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ijac201513202
id ijac201513202
authors Su; Zhouzhou and Wei Yan
year 2015
title Creating and Improving a Closed Loop: Design Optimization and Knowledge Discovery in Architecture
source International Journal of Architectural Computing vol. 13 - no. 2, 123-142
summary This paper presents computational methods for creating and improving a closed loop of design optimization and knowledge discovery in architecture. It first introduces a design knowledge-assisted optimization improvement method with the technique - offline simulation - to reduce the computing time and improve the efficiency of the design optimization process utilizing architectural domain knowledge. It then describes a new design knowledge discovery system where design knowledge can be discovered from optimization through an automatic data mining approach. The discovered knowledge has the potential to further help improve the efficiency of the optimization method, thus forming a closed loop of improving optimization and knowledge discovery. The demonstration and validation of both methods are presented in the context of a case study with parametric form-finding for a nursing unit design with two design objectives: minimizing the nurses’ travel distance and maximizing daylighting performance in patient rooms.
series journal
last changed 2019/05/24 09:55

_id caadria2015_145
id caadria2015_145
authors Yuan, Philip F. and Hua Chai
year 2015
title Reverse Rafter
doi https://doi.org/10.52842/conf.caadria.2015.693
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 693-702
summary With the rapid development of the digital fabrication technology, structural performance based design shows broad application prospects. Based on the research project "Reverse rafter", this paper aims to explore the possibility of simulating and re-applying Chinese traditional wood tectonics with structure performance based computational technology. Taking "eaves rafter" as research prototype, this project employed topology optimization as research method and “Millipede” as analysis tool. Through the comparison between the analysis results of traditional structure calculation and topology optimization method, this project revealed the underlying structural principles of "eaves rafter", based on which a modern reciprocal structure installation was generated through digital design method. CNC cutting technology was employed to ensure the fabrication accuracy in digital fabrication processes.
keywords Structural Performance, Wood Tectonics, Simulation, Topology Optimization, Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2015_215
id ecaade2015_215
authors Balakrishnan, Bimal and Oprean, Danielle
year 2015
title Communication, Coordination and Collaboration: Media affordances and Team Performance in a Collaborative Design Environment
doi https://doi.org/10.52842/conf.ecaade.2015.2.225
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 225-232
summary Advances in digital media are encouraging designers to adopt digital tools during early stages of design ideation as well as to facilitate collaboration in design teams. Collaborative environments for design teams should take into consideration both the multimodal nature of design representation as well as the complexity of team cognition. Collaborative tools that take a “black-box” approach often limit affordances for design ideation and collaboration. We describe here a collaborative environment that we put together using a kit-of-parts approach and underlying theoretical considerations. We also describe systematic usability evaluation of the collaborative environment by constraining select media affordances and qualitatively examining the impact on a team's design process. Preliminary findings were used to improve the environment and lay the groundwork for developing tele-collaborative environments.
wos WOS:000372316000027
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=d219f772-6e90-11e5-b69a-00190f04dc4c
last changed 2022/06/07 07:54

_id ecaade2015_185
id ecaade2015_185
authors Vamvakidis, Simos
year 2015
title Gradient Transparency: Marine Animals As a Source of Inspiration. - Exploring Material Bio-Mimicry through the Latest 3D Printing Technology in Architectural surfaces
doi https://doi.org/10.52842/conf.ecaade.2015.2.325
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 325-330
summary Digital fabrication technologies are changing rapidly the way we design, as any other tool would affect the way we produce space. Multi layered 3D printing is already allowing architects, designers and engineers to experiment with new design processes and new ways of production. At the same time, little research has being done in the way gradient transparency (through multiple layered surfaces) can affect the design process through computation; a field that deserves further investigation. The focus of this paper is to explore bio-inspired material finding design processes while combining biology, architecture and material science. We explore performance driven design possibilities through a study of marine animals -and specifically cephalopods- where opacity between skin layers is controlled through color pigments - while black pigments are called melanophores - which is often used as a type of camouflage. We propose a computation model that follows the logic of gradient transparency through pigments to fit complex “host surfaces”. We define a “host” surface as a basic geometry on which the pigments are computed. This study provides the methodology for the design of biomimetic surfaces with gradient transparency, using controlled and computated sub geometries analogous to the melanophores pigments. We finally propose Pigment Skin, a computational design model as an example to materialize this study.
wos WOS:000372316000038
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c9365fd6-6fe6-11e5-9146-eff39522c429
last changed 2022/06/07 07:57

_id ecaade2015_251
id ecaade2015_251
authors Kulcke, Matthias and Lorenz, Wolfgang
year 2015
title Gradient-Analysis - Method and Software to Compare Different Degrees of Complexity in the Design of Architecture and Designobjects
doi https://doi.org/10.52842/conf.ecaade.2015.1.415
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 415-424
summary The aim of the research presented in this paper is to provide an additional method and tool for architects and designers as well as students and scholars to analyze the degree of complexity of a design. Fractal analysis (box counting) e.g. is one of these methods already used in architecture to measure the degree of complexity of an architectural design, for example of the elevation of a building. The method of semi-automated gradient-analysis described here focuses on the repetition of gradients and thus of proportion-repetition in a given design as one of several aspects of complexity reduction by redundancy.
wos WOS:000372317300045
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=f3391ddc-7022-11e5-88f8-0f5a9bc4d26e
last changed 2022/06/07 07:52

_id ecaade2015_243
id ecaade2015_243
authors Sanchez, Jose
year 2015
title Block'hood - Developing an Architectural Simulation Video Game
doi https://doi.org/10.52842/conf.ecaade.2015.1.089
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 89-97
summary This paper outlines the conception and goals of the video game Block'hood, an interactive real-time simulation that attempts to bridge the gap between the digital and the physical. The paper presents the analysis of contemporary sand-box games such as 'Minecraft', 'Simcity', 'Factorio' and 'Dwarf Fortress' to establish a design framework. By understanding the video game medium as a real-time distributed crowdsourced simulation, these games aim to provide a divergent set of strategies and goals mainly defined by the users themselves, and do not impose an overarching narrative or bias. They also allow data collected from the user's gameplay to speak for itself, allowing us to understand the ambitions and strategies behind a larger collective crowd.
wos WOS:000372317300010
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=8a8f3f68-70c8-11e5-9db5-cb25f7b43f69
last changed 2022/06/07 07:56

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
doi https://doi.org/10.52842/conf.acadia.2015.357
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2015_77
id ecaade2015_77
authors Bialkowski, Sebastian and Kepczynska-Walczak, Anetta
year 2015
title Engineering Tools Applied in Architecture - Challenges of Topology Optimization Implementation
doi https://doi.org/10.52842/conf.ecaade.2015.1.261
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 261-268
summary Computation, in the context of a digital designing process, is redefining architectural practice. Architects are developing new sets of tools which are dramatically changing the typical way of design procedure. The paper describes the research assumptions, problems and solutions proposition, aimed at creation of a real-time form finding tool for architects based on engineering methods. Through intersecting architectural form evaluation with engineering analysis and optimisation tools it is highly intended to offer the opportunity to variety of architects and designers to use the exceedingly complex and compound process for their design improvement. The form finding tool, to be effective and reliable, has to provide immediate feedback to a designer. This requirement enforces a software developer to use more sophisticated solutions. The paper focuses on possibilities of already known engineering procedures acceleration such as Finite Element Method or Topology Optimization for effective implementation in architectural design process.
wos WOS:000372317300028
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=1337360e-702e-11e5-90b6-cbdace47c7fb
last changed 2022/06/07 07:52

_id ecaade2015_100
id ecaade2015_100
authors Braumann, Johannes and Brell-Cokcan, Sigrid
year 2015
title Adaptive Robot Control - New Parametric Workflows Directly from Design to KUKA Robots
doi https://doi.org/10.52842/conf.ecaade.2015.2.243
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 243-250
summary In the past years the creative industry has made great advancements in the area of robotics. Accessible robot simulation and control environments based on visual programming systems such as Grasshopper and Dynamo now allow even novice users to quickly and intuitively explore the potential of robotic fabrication, while expert users can use their programming knowledge to create complex, parametric robotic programs. The great advantage of using visual programming for robot control lies in the quick iterations that allow the user to change both geometry and toolpaths as well as machinic parameters and then simulate the results within a single environment. However, at the end of such an iterative optimization process the data is condensed into a robot control data file, which is then copied over to the robot and thus loses its parametric relationship with the code that generated it. In this research we present a newly developed system that allows a dynamic link between the robot and the controlling PC for parametrically adjusting robotic toolpaths and collecting feedback data from the robot itself - enabling entirely new approaches towards robotic fabrication by even more closely linking design and fabrication.
wos WOS:000372316000029
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=9d9da7bc-70ef-11e5-b2fd-efbb508168fd
last changed 2022/06/07 07:54

_id caadria2017_155
id caadria2017_155
authors Cichocka, Judyta Maria, Browne, Will Neil and Rodriguez, Edgar
year 2017
title Optimization in the Architectural Practice - An International Survey
doi https://doi.org/10.52842/conf.caadria.2017.387
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 387-396
summary For several years great effort has been devoted to the study of Architectural Design Optimization (ADO). However, although in the recent years ADO has attracted much attention from academia, optimization methods and tools have had a limited influence on the architectural profession. The aim of the study is to reveal users' expectations from the optimization tools and define limitations preventing wide-spread adaptation of the optimization solvers in the architectural practice. The paper presents the results of the survey "Optimization in the architectural practice" conducted between December 2015 and February 2016 on 165 architectural trainees and practising architects from 34 countries. The results show that there is a need for an interactive multi-objective optimization tool, as 78% respondents declared that a multi-objective optimization is more necessary in their practice than a single objective one and 91% of them acknowledged the need for choice of promising solutions during optimization process. Finally, it has been found that daylight, structure and geometry are three top factors which architects are interested in optimizing.
keywords Architectural Design Optimization; Optimizaiton Techniques; Generic Solvers; Multi-criteria Decision Making
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2015_105
id caadria2015_105
authors Hosny, A.; N. Jacobson and Z. Seibold
year 2015
title Voxel Beam
doi https://doi.org/10.52842/conf.caadria.2015.755
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 755-764
summary Voxelbeam explores precedents in the optimization of architectural structures, namely the Sydney Opera house Arup beam. The authors research three areas crucial to conceiving an innovative contemporary reinterpretation of the beam: A shift in structural analysis techniques from analytical to numerical models such as topology optimization, the fundamental differences between digital and analog representations of structural forces, and the translation of structural analysis data into methods for digital fabrication. The research aims to re-contextualize the structural beam within contemporary digital platforms, explores the architectural implications of topology optimization, and proposes two fabrication strategies based on the analysis results – including automated off-site pre-casting and multi-material 3d printing.
keywords Digital Fabrication, Topology Optimization, Multi-material 3D Printing, Emergent Structural Design, Arup Beam.
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2015_211
id cf2015_211
authors Hu, Yongheng
year 2015
title The Computation Turn in Structural Performance Based Architecture Design
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 211-225.
summary It is necessary for an architect to engage closely with structural design, to interpret their design idea thoroughly, and it requires carefully collaboration between architect and engineer. The structural performance based design is not only to obey structure principle but to explore different possibilities of engineer and architectural innovation. Architects could apply this method in the earlier stage of design, and it could provide the efficient solution for structure, create a new spatial experience and further improve the construction quality in the later phase of development. In comparison to structural performance-based design in history, the computational technology has made it possible for architects to implement further the structural knowledge in more dynamic and sophisticated environment. This paper will discuss the history development and current transformation of this method. Three research project will explain the current experimental design process and back the idea of this method.
keywords Performance Based Architecture design, Computational Design, Structural Optimization
series CAAD Futures
type normal paper
email
last changed 2015/07/28 20:41

_id sigradi2015_8.328
id sigradi2015_8.328
authors Mueller, Volker
year 2015
title Learning about Parametric Model Behavior through Multi-Objective Optimization
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 405-413.
summary This paper reports about a design process as a case study illustrating different levels of learning that seem required for successful computational design. The learning process occurred during a two-day workshop about parametric design with integrated analysis and multi-objective optimization. First, the design team needs to understand the behavior of the model in order to validate that the model behaves in a way that actually conforms with the project goals; second, the design team needs to learn about potential trade- offs between different project goals, and thus understand the decisions that need to be made, or the additional problems that need to be solved in order to arrive at a better design solution.
keywords Simulation and Modeling, Generative Systems, Parametric Design Multi-objective Optimization, Computational Design Learning
series SIGRADI
email
last changed 2016/03/10 09:55

_id caadria2015_099
id caadria2015_099
authors Park, Daekwon; Juhun Lee and Alejandra Romo
year 2015
title Poisson's Ratio Material Distributions
doi https://doi.org/10.52842/conf.caadria.2015.735
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 735-744
summary The Poisson’s ratio of materials describes the ratio of the transverse to axial strain. While most materials exhibit non-negative Poisson ratio, here we focus on the topological properties of negative ratio materials also known as auxetic constructs. Digital modelling and physical fabrication are employed to generate and test experimental auxetic configurations. The first set of studies employ 2D space-filling tessellations integrating both negative and positive Poisson ratio cells. The tessellations are designed through binary state transitions and gradual morphing transitions. A second set of studies explores the topological optimization of a single negative Poisson cell configuration following the logic that a cell constitutes the building block of auxetic materials. The third set of studies focuses on the translation of heterogeneous Poisson ratio 2D tessellations into 3D constructs. Here, two methods of fabrication are explored: lamination method and cellular grading. The precision of the cellular grading method renders it particularly suitable for multi-material 3D printing fabrication which is theoretically studied and proposed. Space-filling heterogeneous tessellation studies are applied to architectural and product design proposals. These proposals exhibit properties that could serve to design and develop further research on real-world applications.
keywords Optimization; cellular structure; negative Poisson’s ratio; auxetic material; material distribution.
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2015_268
id ecaade2015_268
authors Pasternak, Agata and Kwiecinski, Krystian
year 2015
title High-rise Building Optimization - A Design Studio Curriculum
doi https://doi.org/10.52842/conf.ecaade.2015.1.305
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 305-314
summary The paper presents an educational method used in teaching design of high-rise buildings in the city center. The author outlines the processes developed by students, the tools they used and the final results of design studio project and the supporting seminar, focused on exploring information processes in design. For the purpose of the design studio the students developed their own generative strategies that allowed incorporating optimization procedures into the design process. Within the framework of the seminar classes students developed individual optimization tools with the use of genetic algorithms in order to explore the search space and select the best possible architectural solutions for the specified criteria. The students used the above-mentioned tools mostly during the building's form-finding design stage or attempted to optimize just the building structure.
wos WOS:000372317300033
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=79cd6f3c-702e-11e5-b2b4-9f809b2513cf
last changed 2022/06/07 07:59

_id acadia15_095
id acadia15_095
authors Tam, Kam-Ming Mark; Mueller, Caitlin T.
year 2015
title Stress Line Generation for Structurally Performative Architectural Design
doi https://doi.org/10.52842/conf.acadia.2015.095
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 95-109
summary Principal stress lines, which are pairs of orthogonal curves that indicate trajectories of internal forces and therefore idealized paths of material continuity, naturally encode the optimal topology for any structure for a given set of boundary conditions. Although stress line analysis has the potential to offer a direct, and geometrically-provocative approach to optimization that can synthesize both design and structural objectives, its application in design has generally been limited due to the lack of standardization and parameterization of the process for generating and interpreting stress lines. Addressing these barriers that limit the application of the stress line methods, this paper proposes a new implementation framework that will enable designers to take advantage of stress line analysis to inform conceptual structural design. Central to the premise of the research proposal is a new conception of structurally-inspired design exploration that does not impose a singular solution, but instead allows for the exploration of a diverse high-performance design space in order to balance the combination of structural and architectural design objectives.
keywords Topological Optimization, Structural Optimization, Conceptual Structural Design, Principal Stress Lines, Principal Stress Directions, Optimal Structures, Interdisciplinary Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id sigradi2015_8.41
id sigradi2015_8.41
authors Valencia, Lorena Troncoso; Alvarado, Rodrigo García; Bernal, Alberto Nope; Arellano, Ricardo
year 2015
title Solar attic by parametric optimization and digital fabrication for NZE dwellings
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 317-321.
summary In order to support the usual enlargement of houses in developing countries and proper integration of renewable sources, this paper exposes a parametric design of attic with insulated timber boards and integrated solar panels. The proposal is based on urban map of solar potential available on-line (www.msc.ubiobio.cl), that for single houses suggest a solar attic customized to each dwelling shape and orientation, with industrialized timber construction elements. The calculation of optimal volume by house is developed with a multi-objective genetic algorithm (NSGA-II) and dynamic simulation, which provides different buildings alternatives with digital manufacturing.
keywords Solar Energy, Timber Building, Housing, Genetic Algorithm, Building Integrated Solar Energy
series SIGRADI
email
last changed 2016/03/10 10:02

_id acadia20_238
id acadia20_238
authors Zhang, Hang
year 2020
title Text-to-Form
doi https://doi.org/10.52842/conf.acadia.2020.1.238
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 238-247.
summary Traditionally, architects express their thoughts on the design of 3D architectural forms via perspective renderings and standardized 2D drawings. However, as architectural design is always multidimensional and intricate, it is difficult to make others understand the design intention, concrete form, and even spatial layout through simple language descriptions. Benefiting from the fast development of machine learning, especially natural language processing and convolutional neural networks, this paper proposes a Linguistics-based Architectural Form Generative Model (LAFGM) that could be trained to make 3D architectural form predictions based simply on language input. Several related works exist that focus on learning text-to-image generation, while others have taken a further step by generating simple shapes from the descriptions. However, the text parsing and output of these works still remain either at the 2D stage or confined to a single geometry. On the basis of these works, this paper used both Stanford Scene Graph Parser (Sebastian et al. 2015) and graph convolutional networks (Kipf and Welling 2016) to compile the analytic semantic structure for the input texts, then generated the 3D architectural form expressed by the language descriptions, which is also aided by several optimization algorithms. To a certain extent, the training results approached the 3D form intended in the textual description, not only indicating the tremendous potential of LAFGM from linguistic input to 3D architectural form, but also innovating design expression and communication regarding 3D spatial information.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_280575 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002