CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 465

_id caadria2015_077
id caadria2015_077
authors Shiff, Galit; Yael Gilad and Amos Ophir
year 2015
title Adaptive Polymer Based BIPV Skin
doi https://doi.org/10.52842/conf.caadria.2015.345
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 345-354
summary This study focuses on developing three-dimensional solar panels, as an alternative to traditional flat Photovoltaic (PV) surfaces in Building Integrated Photovoltaic (BIPV). We propose to increase the energy efficiency of buildings by using the entire envelope for energy production as well as by increasing the efficiency of solar energy output in orientations which were traditionally considered as non-ideal. The panels are constructed from Polycarbonate with integrated flexible photovoltaic film, solar paint or dye. The methodology included digital algorithm-based tools for achieving optimized variable three-dimensional surfaces according to local orientation and location, computational climatic simulations and comparative field tests. In addition, the structural, mechanical and thermal properties of the integration between flexible PV sheets and hard plastic curved panels were studied. Interim results demonstrate a potential improvement of 50-80% in energy production per building unit resulting from geometric variations per-se. The dependence of energy production by surface geometry was revealed and an optimized method for solar material distribution on the surface was proposed. A parametric digital tool for automatic generation of optimized three-dimensional panels was developed together with a database and material models of the optimized panels system.
keywords Building Integrated Photovoltaics; digital algorithm; climatic simulations; building envelope
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia15_110
id acadia15_110
authors Marcu, Mara; Tang, Ming
year 2015
title Data Mapping and Ornament in Digital Craft
doi https://doi.org/10.52842/conf.acadia.2015.110
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 110-120
summary With an ever-increasing index of digital artifacts, we have begun to exhaust variation as an adaptive technique. The problem with incremental modulation (here understood as sequential and slowly progressing change of a set of parameters within a field condition) is that in essence it leads to morphologically equivalent and, hence, repetitive patterns of habitation. While the role of variation proved key in pushing forward an essential body of research testing and optimizing principles of mass customization, its residual effects become critically disconcerting. This paper presents an investigation of tectonic mutations for the generation of form, seen through data simulation experiments and machining artifacts. Through several projects we investigate the effects of ornament created as a result of the new relationship between generative modeling, simulation, and fabrication in the digital age. Subject to (de)generative mutation techniques, ornament can be under-stood as a result of overlaid data, whether the data is performance related or not, in both massing and surface conditions. This new working methodology will mitigate between the incertitude regarding time, history and memory, and by reinventing their relation it will reassess ornament’s agency within the digital culture. Design methods are extended by exploring, collecting, analyzing, and representing data through various materialization processes. Design is therefore reconsidered as being injected with the concepts of data driven design and dependent on the inter-play between performance and aesthetics. In this way, we consider the footprint - or the subsequent impact - of the human onto the nonhuman using artificial intelligence as a medium. These intentionally or accidentally engraved layers of information begin to describe potential trajectories of novel survival modes in the Anthropocene.
keywords Data mapping, ornament, generative modeling, simulation, CNC fabrication, degenerative mutation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id acadia15_161
id acadia15_161
authors Baharlou, Ehsan; Menges, Achim
year 2015
title Toward a Behavioral Design System: An Agent-Based Approach for Polygonal Surfaces Structures
doi https://doi.org/10.52842/conf.acadia.2015.161
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 161-172
summary The following research investigates the development of an agent-based design method as an integrative design tool for polygonal surface structures. The aim of this research is to develop a computational tool that self-organizes the emergence of polygonal surface structures from interaction between its constitutive lattices. This research focuses on the ethological level of morphogenesis that is relevant to the animal or insect societies, whereby agents mediate the material organizations with environmental aspects. Meanwhile, behavior-based approaches are investigated as a bottom-up system to develop a computational framework in which the lower-level features constantly interact. The lower-level features such as material properties (e.g., geometric descriptions) are abstracted into building blocks or agents to construct the agent’s morphology. The abstracted principles, which define the agent’s morphology, are aggregated into a generative tool to explore the emergent complexities. This exploration coupled with the generative constraint mechanisms steers the collective agents system toward the cloud of solutions; hence, the collective behaviors of agents constitute the polygonal surface structures. This polygonal system is a bottom up approach of developing the complex surface that emerges through topological and topographical interaction between cells and their surrounding environment. Subsequently, the integrative system is developed through agent-based parametric modelling, in which the knowledge-based system as a top-down approach is substituted with the agent system together with its morphological features and significant behaviors.
keywords Agent-Based System, Behavioral-Based System, Polygonal Surface Structures, Self-Organization and Emergence
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2015_124
id cf2015_124
authors de Souza, Douglas Lopes; Martinez, Andressa Carmo Pena and Santos, Denise de Mônaco
year 2015
title The Potential Use of Laser Scanner in Urban Contexts
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 124-134.
summary 3D laser scanner is an instrument that employs LiDAR technology to map out objects in space by means of remote detection. In Architecture, digital mapping through 3D laser scanning mainly aims at creating digital surface models based on instant recordings of still objects, whereas lived spaces such as squares, streets, and urban surroundings presuppose the presence of people on the move. This paper presents some preliminary results of an investigation on the use of 3D laser scanning in urban contexts. It seeks to examine experimental data on moving people obtained in point clouds and discuss their operationalization possibilities and limitations. The main goal of this investigation is to assess the potential of this technology for use as a research tool and in city-scale design processes.
keywords 3D laser scanning technology, motion modeling, geometrical modeling, computational tools, urban survey.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_241
id cf2015_241
authors Popescu, Florin C.
year 2015
title Algorithmic design tool for integrating renewable energy infrastructures in buildings
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 241.
summary We present a tool which empowers 'green' design freedom for architects by presenting ever expanding choices in components and materials and automatizing their configuration and placement. Several time- and resource- consuming initial design iterations are eliminated by optimizing the energetic efficiency of the building in the original draft phase. The smart, efficient, energy producing building of the future can thereby offer increased cost and energy efficiency, security and comfort, without any compromise in style and form - on the contrary, the proposed tool stands to open up a novel palette of creative 'green' architectural design elements, which would effectively be co-designed by architects. The proposed algorithmic CAD design tool allows direct integration of renewable sources in the architectural design phase, taking into account local meteorological and solar radiation conditions. Furthermore locally optimized evolution and modification of renewable components integrated into the building's structure is possible, leveraging an increasingly wide range of possibilities in form, finish and renewable energy generation.
keywords Algorithmic and parametric design, data analytics, performance-based design, smart buildings and smarts cities.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_261
id ecaade2015_261
authors Sharif, Shani and Gentry, Russell
year 2015
title BIM for Masonry: Development of BIM Plugins for the Masonry Unit Database
doi https://doi.org/10.52842/conf.ecaade.2015.1.567
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 567-576
summary Masonry Unit Database (MUD) is an integral part of Building Information Modeling for Masonry (BIM-M) initiative. MUD provides a data structure framework for storing the required data for digital representation of masonry units. Specific information about masonry units such as price, geometry and physical properties is needed throughout the lifecycle of a building project, including the design, construction, maintenance, and demolition stages. The development of MUD contributes to enhancement of masonry BIM tools for practitioners to incorporate up-to-date masonry product information into their projects. There are five main stages in the development of MUD: development of process map of masonry building project lifecycle, data requirement identification, physical design of database, design of data import structures, and finally design of data export structures. This paper focuses on the development of the SQL based MUD, and a Revit-Dynamo data export plugin for this database. The developed plugin is especially beneficial as it provides a tool for fast and accurate generation of the parametric and data enhanced masonry units as Revit families on the fly from the stored dimensions and attributes in the database. The generated masonry units with this method would be embedded in masonry wall systems in BIM building project.
wos WOS:000372317300061
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=13b44e20-7022-11e5-ab9c-00190f04dc4c
last changed 2022/06/07 07:56

_id acadia15_431
id acadia15_431
authors Winn; Kelly
year 2015
title Transient Thermal Exchange and Developmental Form for Tactile Surfaces
doi https://doi.org/10.52842/conf.acadia.2015.431
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 431-441
summary The idea of an emergent or generative form based on repeating rules of development borrowed from the field of developmental biology has provided fertile ground for inspiration for architectural theory and computational design. With simple constraints developed iteratively, complex geometry and form generation can be distilled down to a list of developmental rules or functions in order to deterministically generate form. The ideas and illustrations of naturalists on organic form and developmental biology leading back to the turn of the 20th c., such as the work of D'arcy Wentworth Thompson and Ernst Haeckel, have inspired architects from Louis Sullivan all the way to contemporary generative design. This study revisits this design tradition of biomimetic geometries based on deterministic rules for the iterative development of forms based on biological analogs and models for growth. A series of semi-regular compound patterns were developed using parametric modeling and iterative rules. These geometries were then applied to surface topologies as a decorative tactile embellishment resulting in complex thermodynamic conditions. A series of physical prototypes where then developed with different high-relief patterns and pattern densities. Positive prototype geometries were then produced using stereolithography for casting plaster molds for the production molding of finished ceramic pieces for thermal analysis using digital thermography. By studying the performance of these complex geometries as physical prototypes under controlled experimentation, high-relief surfaces and the resulting thermodynamic conditions can be understood not just qualitative experience, but also quantitatively through measured performance metrics and innovative tools for analytical analysis.
keywords Tactile surfaces, developmental biology, biomimicry, l-systems, ceramic materials, heat transfer, thermography, ergonomics
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id caadria2015_010
id caadria2015_010
authors Gámez, Oscar; Jean-Claude Bignon and Gilles Duchanois
year 2015
title Assisted Construction of Non-Standard Wooden Walls and Envelope Structures by Parametric Modeling
doi https://doi.org/10.52842/conf.caadria.2015.653
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 653-662
summary The non-standard approach, widely discussed in the past years as Architecture progressively uses alternative design methods different from the Euclidean paradigm, has allowed architects to transform the way architecture is conceived and materialized. Such evolution uses computer-aided design along with automation in production to originate the environment for the aided architectural conception field in which we present a method, in its early development stage, intended to create non-standard walls and envelopes based on cellular patterns using wood as base material. We present the results obtained from modeling and building two full-scale prototypes of non-standard wooden walls.
keywords Non-standard walls; parametric modeling; CNC fabrication; cellular structures; wood construction.
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2015_061
id cf2015_061
authors van Stralen, Mateus de Sousa and Cezarino, Cristiano
year 2015
title Woka: Towards a dialogical design of future cities
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 61-76.
summary This paper presents an experiment on an open source construction system named Woka, which allows anyone to design and produce dwellings using standard CNC techniques. Woka was developed as a dialogical design process that empowers self-builders to act in a more autonomous way, expanding the traditional role of design practice and the way buildings are created. The advent and popularization of new design and fabrication processes have encouraged a flux of new theories and project strategies based on computing, each with its promise of changing the architectural practice. Some of these resulted in intellectually seductive; visually provocative and complex shaped architectures, generating a new formal repertoire, but doesn’t indicate a paradigm shift in the process of production of architectural space, still based on authorship. Woka challenges this traditional process proposing dialogue as a design approach, shifting the focus from the object to intersubjectivity, amplifying the potential for novelty to arise.
keywords Parametric design, digital fabrication, dialogical design, autonomous building
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_145
id caadria2015_145
authors Yuan, Philip F. and Hua Chai
year 2015
title Reverse Rafter
doi https://doi.org/10.52842/conf.caadria.2015.693
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 693-702
summary With the rapid development of the digital fabrication technology, structural performance based design shows broad application prospects. Based on the research project "Reverse rafter", this paper aims to explore the possibility of simulating and re-applying Chinese traditional wood tectonics with structure performance based computational technology. Taking "eaves rafter" as research prototype, this project employed topology optimization as research method and “Millipede” as analysis tool. Through the comparison between the analysis results of traditional structure calculation and topology optimization method, this project revealed the underlying structural principles of "eaves rafter", based on which a modern reciprocal structure installation was generated through digital design method. CNC cutting technology was employed to ensure the fabrication accuracy in digital fabrication processes.
keywords Structural Performance, Wood Tectonics, Simulation, Topology Optimization, Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2015_280
id ecaade2015_280
authors Adilenidou, Yota
year 2015
title Error as Optimization - Using Cellular Automata Systems to Introduce Bias in Aggregation Models through Multigrids
doi https://doi.org/10.52842/conf.ecaade.2015.2.601
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 601-610
summary This paper is focusing on the idea of error as the origin of difference in form but also as the path and the necessity for optimization. It describes the use of Cellular Automata (CA) for a series of structural and formal elements, whose proliferation is guided through sets of differential grids (multigrids) and leads to the buildup of big span structures and edifices as, for example, a cathedral. Starting from the error as the main idea/tool for optimization, taxonomies of morphological errors occur and at a next step, they are informed with contextual elements to produce an architectural system. A toolbox is composed that can be implemented in different scales and environmental parameters, providing variation, optimization, complexity and detail density. Different sets of experiments were created starting from linear structural elements and continuing to space dividers and larger surface components.
wos WOS:000372316000067
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=5cf73be0-6e8f-11e5-b7a4-1b188b87ef84
last changed 2022/06/07 07:54

_id sigradi2015_2.162
id sigradi2015_2.162
authors Almeida, Fernando; Andrade, Max
year 2015
title GIS as a catalyst tool for Smart Cities
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 46-50.
summary Every building has its individual and measurable role on resources consumption, waste generation and neighborhood impact within a city, and tracking this behavior is an essential task for establishing a sustainable path into a Smart City model. This paper preliminarily investigates how GIS can contribute in creating an integrated and dynamic system built to attend public utilities and urban management offices for parameters at various scales.
keywords GIS, Smart Cities, Urban Infrastructure, Public Services, Urban Management
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
doi https://doi.org/10.52842/conf.acadia.2015.357
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ijac201513206
id ijac201513206
authors Erhan, Halil; Ivy Y. Wang, and Naghmi Shireen
year 2015
title Harnessing Design Space: A Similarity-Based Exploration Method for Generative Design
source International Journal of Architectural Computing vol. 13 - no. 2, 217-236
summary Working with multiple alternatives is a central activity in design; therefore, we expect computational systems to support such work. There is a need to find out the tool features supporting this central activity so that we can build new systems. To explore such features, we propose a method that aims to enable interaction with a large number of design alternatives by similaritybased exploration. Using existing data analysis and visualization techniques adopting similarity-based search, we formalized the method and its elements by focusing on systematic filtering, clustering, and choosing alternatives. We present a scenario on developing conceptual designs for a residential apartment to illustrate how the method can be applied, as well as to reveal the limitation of current tools and the potential interactive clustering and filtering features for the new systems coupled with parametric design.
series journal
last changed 2019/05/24 09:55

_id ecaade2015_37
id ecaade2015_37
authors Forster, Julia; Fritz, Sara, Schleicher, Johannes and Rab, Nikolaus
year 2015
title Developer Tools for Smart Approaches to Responsible-Minded Planning Strategies
doi https://doi.org/10.52842/conf.ecaade.2015.1.545
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 545-551
summary The city of Vienna follows a long-term initiative to become a Smart City. Within 2050 it aims to reduce 80% of the CO2 emissions (in comparison to 1990) and looks forward to generate ways for a sustainable energy production. (Smart City Framework Strategy 2014) Reaching this targets requires a complex planning process which involves interdisciplinary stakeholders and decision makers. An interactive multi-dimensional environment, comprising spatial objects and data models, is a helpful tool during these planning processes. This paper proposes a suitable path for the development of a structural framework for such an environment. The benefits of such an environment are shown in detail, based on an application of the economic solar heat potential in Vienna.
wos WOS:000372317300059
series eCAADe
email
last changed 2022/06/07 07:51

_id cf2015_226
id cf2015_226
authors Gallas, Mohamed-Anis and Delfosse, Vincent
year 2015
title Sketch-based and parametric modeling: Association of two-externalization processes for early daylight optimization
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 226-238.
summary This paper focuses on sketch-based and parametric modeling as two externalization devices used in architectural design practice. The first part of this paper addresses features and ability of these externalization tools to support design activities during the early design steps. The second part proposes an association process of a sketch-based modeling tool (SketSha-Archi®) and a parametric modeling tool (Grasshopper®) to create an advanced process for daylight optimization. The process aimed to associate the hand-sketching freedom with the precise exploration functions of digital tools (parametric modeling and evaluation tools).
keywords Sketch-based modeling; parametric modeling; early design stages; daylight simulation; optimization process.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_202
id ecaade2015_202
authors Kim, Hyoungsub; Asl, Mohammad Rahmani and Yan, Wei
year 2015
title Parametric BIM-based Energy Simulation for Buildings with Complex Kinetic Façades
doi https://doi.org/10.52842/conf.ecaade.2015.1.657
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 657-664
summary This paper aims to investigate a new methodology for analysing energy performance of buildings with complex kinetic façades. In this research, the flexible movements of individual kinetic façades in a building is determined by the façades' opening ratios and the sun path. The platform development is conducted through a visual programing environment in BIM, and the process is presented with a case study. Finally, the building's energy performance is compared with a building having static façades using whole building energy analysis tool.
wos WOS:000372317300071
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=2e70ba2e-7021-11e5-9015-00190f04dc4c
last changed 2022/06/07 07:52

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id ecaade2015_201
id ecaade2015_201
authors Marin, Philippe; Blanchi, Yann and Janda, Marian
year 2015
title Cost Analysis and Data Based Design for Supporting Programmatic Phase
doi https://doi.org/10.52842/conf.ecaade.2015.1.613
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 613-618
summary Our paper presents research on the development of technologies and methodologies to support preliminary design phases through data based modelling. A digital parametric model informs costs evaluations and supports iterative and visual space exploration solutions. Thanks to associative modelling, the architectural conception is renewed and digital tools support design decision-making in a creative way. We propose to make project cost a design parameter through an interactive handling of a 3D geometric model that is relevant to strategic architectural intentions. In our experimentation, cost calculation spreadsheets are linked to a parametric models. An initial substructure of the building cost is defined based on the architectural concepts. The parametric tool directly informs the evaluation spreadsheet and a real time cost analysis is afforded to the designer. The tool supports the design process by displaying immediate feed back to the designer who can consider and control the financial implications of his hypothesis.
wos WOS:000372317300066
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2015_8.239
id sigradi2015_8.239
authors Nisenbaum, Marcio; Kós, José Ripper
year 2015
title The study of Urban Acoustics through Digital Processes: New approaches to developing a Methodology
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 378-383.
summary This paper aims to discuss different possibilities and methodologies within the field of urban acoustics and the use of digital tools. As an attempt to integrate quantitative methods, such as sound mapping and noise control, with qualitative approaches, such as the soundscape studies, new strategies based on performance oriented design will be addressed. The notion of sonic effect as an important tool for integrating different perspectives will hence be discussed as a possible instrument for structuring generative design experiments. A theoretical framework and a possible design workflow are further drawn to possibly articulate future studies.
keywords Soundscape, Noise Mapping, Sonic Effect, Acoustics, Computational Design
series SIGRADI
email
last changed 2016/03/10 09:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_279131 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002