CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id acadia15_185
id acadia15_185
authors Mogas-Soldevila, Laia; Duro-Royo, Jorge; Oxman, Neri
year 2015
title Form Follows Flow: A Material-Driven Computational Workflow for Digital Fabrication of Large-Scale Hierarchically Structured Objects
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 185-193
doi https://doi.org/10.52842/conf.acadia.2015.185
summary In the natural world, biological matter is structured through growth and adaptation, resulting in hierarchically structured forms with tunable material computation. Conventional digital design tools and processes, by contrast, prioritize shape over matter, lacking integration between modeling, analysis, and fabrication. We present a novel computational environment and workflow for the design and additive manufacturing of large-scale hierarchically structured objects. The system, composed by custom multi-barrel deposition attached to robotic positioning, integrates material properties, fabrication constraints and environmental forces to design and construct full-scale architectural components. Such components are physically form-found by digitally extruding natural polymers with functionally graded mechanical and optical properties informed by desired functionality and executed through flow-based fabrication. In this approach, properties such as viscosity, velocity, and pressure embed information in two-dimensional printing patterns and induce three-dimensional shape formation of the fabricated part. As a result, the workflow associates physical material and fabrication constraints to virtual design tools for modeling and analysis, challenging traditional design workflows and prioritizing flow over form.
keywords Material-driven Design, Additive Manufacturing, Integrated Design Workflows, Digital Fabrication, Digital Design Process, Material Ecology
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2015_122
id ecaade2015_122
authors Agirbas, Asli
year 2015
title The Use of Digital Fabrication as a Sketching Tool in the Architectural Design Process - A Case Study
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 319-324
doi https://doi.org/10.52842/conf.ecaade.2015.2.319
wos WOS:000372316000037
summary Computer-aided manufacturing (CAM) technologies including computer numerically controlled (CNC) milling, laser cutting and 3D printing are becoming cheaper and globally more accessible. Accordingly, many design professionals, academics and students have been able to experience the benefits and challenges of using digital fabrication in their designs. The use of digital fabrication in the education of architecture students has become normal in many schools of architecture, and there is a growing demand for computer-aided manufacturing (CAM) logic and fabrication knowledge in student learning. Clearly, architecture students are acquiring material base-thinking, time management, production methods and various software skills through this digital fabrication. However, it appears to be the case that architecture students use digital fabrication mainly in the final stage of their design or in their finishing work. In this study, computer-aided manufacturing (CAM) technologies have been used as a sketch tool rather than simply for fabricating a final product in the architectural design process and the advantages of this educational practice are demonstrated.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=79005d78-6fe6-11e5-b555-13a7f78815dc
last changed 2022/06/07 07:54

_id ecaade2015_87
id ecaade2015_87
authors Angelova, Desislava; Dierichs, Karola and Menges, Achim
year 2015
title Graded Light in Aggregate Structures - Modulating the daylight in designed granular systems using online controlled robotic processes
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 399-406
doi https://doi.org/10.52842/conf.ecaade.2015.2.399
wos WOS:000372316000046
summary The research project proposes an online-controlled robotic process that allows for grading light in aggregate structures using photometric analysis. It investigates the potential of designing specific daylight qualities through the behaviour-based robotic fabrication of the aggregate system. Two key methods are developed: the digital fabrication of the structure and a photometric analysis technique which is used as a sensor input for the robotic sensory interface. In its first part, the paper presents a series of photometric experiments on aggregate wall- and dome-structures. In its second part, the focus is laid on robotic manufacturing of these aggregate structures and the interactive fabrication of specific light conditions. To conclude further areas of research into emergent design processes with aggregates are outlined.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4161e07e-6fe8-11e5-baaf-1fc96b3e1b94
last changed 2022/06/07 07:54

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
doi https://doi.org/10.52842/conf.acadia.2015.357
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2015_7.146
id sigradi2015_7.146
authors Cargill, Cristián Canto; Pinto, Eduardo Hamuy
year 2015
title EMOVERE Creative Project: Digital Synesthetic Organism
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 276-282.
summary EMOVERE, interdisciplinary project that aims at creating innovative interactive performance, brings together dance, sound and image. Bio-data related to emotions, heart and respiratory rate, are mediated by dancers and gives them control over music and video- mapping on stage. A creative process occurs through successive approaches, where technical possibilities are systematically explored until controlled, then body expression is lead by Alba Emoting, building an artistic discourse. Video-mapping is used for lighting purposes, creating a visual atmosphere for dancers. Fusion of media on stage creates synesthetic scenery where physical and digital aspects combine and interact in a codependent relationship.
keywords Performance Interactiva, Escenografía, Danza, Video Mapping, Bio-Dat
series SIGRADI
email
last changed 2016/03/10 09:48

_id ecaade2015_247
id ecaade2015_247
authors Garcia, Manuel Jimenez and Retsin, Gilles
year 2015
title Design Methods for Large Scale Printing
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 331-339
doi https://doi.org/10.52842/conf.ecaade.2015.2.331
wos WOS:000372316000039
summary With an exponential increase in the possibilities of computation and computer-controlled fabrication, high density information is becoming a reality in digital design and architecture. However, construction methods and industrial fabrication processes have not yet been reshaped to accommodate the recent changes in those disciplines. Although it is possible to build up complex simulations with millions of particles, the simulation is often disconnected from the actual fabrication process. Our research proposes a bridge between both stages, where one drives the other, producing a smooth transition from design to production. A particle in the digital domain becomes a drop of material in the construction method.The architect's medium of expression has become much more than a representational tool in the last century, and more recently it has evolved even beyond a series of rules to drive from design to production. The design system is the instruction itself; embedding structure, material and tectonics and gets delivered to the very end of the construction chain, where it gets materialised. The research showcased in this paper investigates tectonic systems associated with large scale 3D printing and additive manufacturing methods, inheriting both material properties and fabrication constraints at all stages from design to production. Computational models and custom design software packages are designed and developed as strategies to organise material in space in response to specific structural and logistical input.Although the research has developed a wide spectrum of 3D printing methods, this paper focuses only on two of the most recent projects, where different material and computational logics were investigated. The first, titled Filamentrics, intends to develop free-form space frames, overcoming their homogeneity by introducing robotic plastic extrusion. Through the use of custom made extruders a vast range of high resolution prototypes were developed, evolving the design process towards the fabrication of precise structures that can be materialised using additive manufacturing but without the use of a layered 3D printing method. Instead, material limitations were studied and embedded in custom algorithms that allow depositing material in the air for internal connectivity. The final result is a 3x2x2.5m structure that demonstrates the viability of this construction method for being implemented in more industrial scenarios.While Filamentrics is reshaping the way we could design and build light weight structures, the second project Microstrata aims to establish new construction methods for compression based materials. A layering 3D printing method combines both the deposition of the binder and the distribution of an interconnected network of capillaries. These capillaries are organised following structural principles, configuring a series of channels which are left empty within the mass. In a second stage aluminium is cast in this hollow space to build a continuous tension reinforcement.
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=07a6d8e0-6fe7-11e5-9994-cb14cd908012
last changed 2022/06/07 07:51

_id caadria2015_218
id caadria2015_218
authors Ku, Kihong and Daniel Chung
year 2015
title Digital Fabrication Methods of Composite Architectural Panels for Complex Shaped Buildings
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 703-712
doi https://doi.org/10.52842/conf.caadria.2015.703
summary Composite materials have been explored in architecture for their high performance characteristics that allow customization of functional properties of lightness, strength, stiffness and fracture toughness. Particularly, engineering advancements and better understanding of fiber composites have resulted in growing applications for architectural structures and envelopes. As most developments started outside the realm of architecture such as automobile and aeronautical industries, there is need to advance knowledge in architectural design to take advantage of this new technology. In this paper, the authors introduce preliminary results of new digitally driven fabrication methods for fiber-reinforced composite sandwich panels for complex shaped buildings. This research examined the material properties, manufacturing methods and fabrication techniques needed to develop a proof of concept system using off-the-shelf production technology that ultimately can be packaged into a containerized facility for on-site panel production. Experiments focused on developing a digitally controlled deformable mold to create composite relief structures for highly customized geometrical façade components. Research findings of production materials, methods, assembly techniques, are discussed to offer insights into novel opportunities for architectural composite panel fabrication and commercialization.
keywords Fiber reinforced polymer; fiber composites; adjustable mold; architectural panel; complex shape.
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2015_185
id ecaade2015_185
authors Vamvakidis, Simos
year 2015
title Gradient Transparency: Marine Animals As a Source of Inspiration. - Exploring Material Bio-Mimicry through the Latest 3D Printing Technology in Architectural surfaces
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 325-330
doi https://doi.org/10.52842/conf.ecaade.2015.2.325
wos WOS:000372316000038
summary Digital fabrication technologies are changing rapidly the way we design, as any other tool would affect the way we produce space. Multi layered 3D printing is already allowing architects, designers and engineers to experiment with new design processes and new ways of production. At the same time, little research has being done in the way gradient transparency (through multiple layered surfaces) can affect the design process through computation; a field that deserves further investigation. The focus of this paper is to explore bio-inspired material finding design processes while combining biology, architecture and material science. We explore performance driven design possibilities through a study of marine animals -and specifically cephalopods- where opacity between skin layers is controlled through color pigments - while black pigments are called melanophores - which is often used as a type of camouflage. We propose a computation model that follows the logic of gradient transparency through pigments to fit complex “host surfaces”. We define a “host” surface as a basic geometry on which the pigments are computed. This study provides the methodology for the design of biomimetic surfaces with gradient transparency, using controlled and computated sub geometries analogous to the melanophores pigments. We finally propose Pigment Skin, a computational design model as an example to materialize this study.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c9365fd6-6fe6-11e5-9146-eff39522c429
last changed 2022/06/07 07:57

_id cf2015_243
id cf2015_243
authors Velasco, Rodrigo; Brakke, Aaron Paul and Chavarro, Diego
year 2015
title Dynamic façades and computation: Towards an inclusive categorization of high performance kinetic façade systems
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 243.
summary This chapter provides a panorama of the current state of computationally controlled dynamic facades through a literature review and a survey of contemporary projects. This was completed with an underlying interest in understanding how innovative design solutions with the capacity to ‘react to’ and/or ‘interact with’ the varying states of climatic conditions have been developed. An analysis of these projects was conducted, and led to the identification of tendencies, which were subsequently synthesized and articulated. While most classifications are limited to describing the movement or structure needed to achieve morphological transformation, an important recommendation is to also consider control as a determining factor. For this reason, the culmination of the investigation presented here is a proposal for a classification structure of dynamic facades, developed according to the functional modus operandi of each structure in terms of movement and control.
keywords Dynamic Facades, Kinetic Architecture, Computational Control, High Performance Building Envelopes
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_411
id cf2015_411
authors Wang, Shih-Yuan; Sheng, Yu-Ting, Barchiesi, Alex and Huang, Jeffrey
year 2015
title Transient Materialization: Ephemeral, Material-Oriented Digital Fabrication
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 411-420.
summary This paper introduces the notion of transient materialization through an exploration of the relationship between digital and material-based digital fabrication. The research was inspired by direct observations of nature’s beauty in the form of thin films. The building block of the experiment is an n-hedron structure composed mainly of soap foam, which is blown into a foam structure. The paper questions this structure’s materiality, examines its physical performance and ephemeral characteristics, and expands on its meaning through an experiment in digital fabrication. Specifically, this experiment demonstrates various configurations of dynamic and programmable foam structures on a large scale of fabrication. The fabrication interacts with the algorithm, which involves a mixture of air and helium (controlled by pneumatic valves), as well as additive chemical substances and thickening agents, all of which exist in a certain space and time.
keywords digital fabrication; Ephemeral; foam structure; dynamic and transformable; algorithm; chemical substances
series CAAD Futures
email
last changed 2015/06/29 07:55

_id acadia15_431
id acadia15_431
authors Winn; Kelly
year 2015
title Transient Thermal Exchange and Developmental Form for Tactile Surfaces
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 431-441
doi https://doi.org/10.52842/conf.acadia.2015.431
summary The idea of an emergent or generative form based on repeating rules of development borrowed from the field of developmental biology has provided fertile ground for inspiration for architectural theory and computational design. With simple constraints developed iteratively, complex geometry and form generation can be distilled down to a list of developmental rules or functions in order to deterministically generate form. The ideas and illustrations of naturalists on organic form and developmental biology leading back to the turn of the 20th c., such as the work of D'arcy Wentworth Thompson and Ernst Haeckel, have inspired architects from Louis Sullivan all the way to contemporary generative design. This study revisits this design tradition of biomimetic geometries based on deterministic rules for the iterative development of forms based on biological analogs and models for growth. A series of semi-regular compound patterns were developed using parametric modeling and iterative rules. These geometries were then applied to surface topologies as a decorative tactile embellishment resulting in complex thermodynamic conditions. A series of physical prototypes where then developed with different high-relief patterns and pattern densities. Positive prototype geometries were then produced using stereolithography for casting plaster molds for the production molding of finished ceramic pieces for thermal analysis using digital thermography. By studying the performance of these complex geometries as physical prototypes under controlled experimentation, high-relief surfaces and the resulting thermodynamic conditions can be understood not just qualitative experience, but also quantitatively through measured performance metrics and innovative tools for analytical analysis.
keywords Tactile surfaces, developmental biology, biomimicry, l-systems, ceramic materials, heat transfer, thermography, ergonomics
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id ijac201513101
id ijac201513101
authors Krietemeyer, Bess; Brandon Andow, Anna Dyson
year 2015
title A Computational Design Framework Supporting Human Interaction with Environmentally-Responsive Building Envelopes
source International Journal of Architectural Computing vol. 13 - no. 1, 1–24
summary Emerging materials present opportunities to fundamentally shift current expectations of dynamic building envelope functionality towards systems that can respond to occupant needs while meeting the energy demands of buildings. In order to assess the environmental, social, and architectural opportunities that are increasing with responsive building envelopes, new tools are needed to simulate their multi-performance capabilities. This paper describes a computational design framework to support human interaction with environmentally-responsive electroactive dynamic daylighting systems. The objective is to develop algorithms for variable solar control and visible transmittance that simultaneously address occupant preferences for visual effects and interaction. Results demonstrate that energy performance and user satisfaction are not mutually exclusive and can be co-optimized. The effectiveness and limitations of the computational framework in assessing strategies to balance environmental performance and human interaction are discussed. Conclusions present areas of ongoing work that integrate multi-user interactions and immersive visualization techniques with multiscalar energy modeling tools.
series journal
last changed 2019/05/24 09:55

_id acadia15_243
id acadia15_243
authors McKay, Mike
year 2015
title Relative Positioning
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 243-250
doi https://doi.org/10.52842/conf.acadia.2015.243
summary How we understand the world is directly affected by our position in it. Constellations are simply the result of cognitive alignments related to our location in the universe, the horizon simply based on proximity and time. Relative Positioning explores the power of position in architecture: specifically, how Anamorphic projection and perspectival techniques can generate space and challenge our understanding of its form. Architectural illusion and perspectival deceptions have been investigated since antiquity in order to alter the perception of a given space, primarily used in an illusionary or optical manner. However, Anamorphic projection offers the potential to create dynamic spatial experiences that go well beyond simple projections or images/shapes simply painted onto a surface. Within Relative Positioning, architectural form exists in 3-dimensions (real, physical) but is perceived via procession and emergent perceptions based on choreographed alignments and foci—making it possible for a duality of visual perception to occur. Much like the diagonal movement through Villa Savoye or the space created by Matta-Clark’s cut, views and alignments add value, create perceptual shifts. One no longer views the architectural form as a whole, but as a collection of cinematic moments, fragments, serial form: a tension of object-qualities that elicits spatial ambiguity that puts pressure on the ‘real’ and opens up a world of wonder and excitement. This is a new form of collage.
keywords Anamorphosis, perspective, perception
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaade2015_319
id ecaade2015_319
authors Teng, Teng and Johnson, Brian R.
year 2015
title Transformable Physical Design Media
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 45-54
doi https://doi.org/10.52842/conf.ecaade.2015.1.045
wos WOS:000372317300005
summary Computer-aided design tools have become an integral part of much architectural design practice, to the point where design is heavily dependent on the assistance of these tools. But current computer-aided design tools are fundamentally limited by the WIMP (windows, icons, menus, and pointer) interface, reliant on 2d input and output. Design of buildings and other 3D objects via 2D workflow is slowed by the conversions that designers must make. In this paper, we explore the potential of transformable physical design media through two design tool prototypes: Integrated spatial gesture-based direct 3D modeling and display system (InSpire), and tangible objects based massing study tool kits (CuBe). Both of these design tool prototypes allow designers to develop their design within a fully 3d environment with optical and haptic references, so that the interaction between designer and design object become much more intuitive and direct.We conclude by discussing some related subjects in the domain of HCI and argue that transformable physical design media represent a desirable solution for enhancing design experience. Architects and designers could benefit from the usage of transformable physical design media, especially during the early phases of architectural design by allowing designers to efficiently alter the topology properties.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c66d211e-702b-11e5-b61e-53010ec74bd1
last changed 2022/06/07 07:58

_id ecaade2015_324
id ecaade2015_324
authors Abdelmohsen, Sherif and Massoud, Passaint
year 2015
title Integrating Responsive and Kinetic Systems in the Design Studio: A Pedagogical Framework
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 71-80
doi https://doi.org/10.52842/conf.ecaade.2015.2.071
wos WOS:000372316000010
summary Responsive architecture is one of the growing areas of computational design that is not getting adequate attention in CAAD curricula. A pedagogical approach to designing responsive systems requires more than the typical knowledge, tools or skill sets in architectural design studios. This paper presents a framework for integrating responsive and kinetic systems in the architectural design studio. The framework builds on findings of two design studios conducted at The American University in Cairo, Egypt. In both studios, students were asked to design elements of responsive architecture that work towards the development of their projects. The paper demonstrates the process and outcomes of both studios. It then demonstrates how concepts of integrated project delivery are incorporated to propose a framework that engages students in designing, fabricating and operating responsive systems in different phases of the design process. A discussion follows regarding dynamics of design studio in light of the proposed framework.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7e59e026-6e8f-11e5-9e59-876225eebea0
last changed 2022/06/07 07:54

_id cf2015_279
id cf2015_279
authors Abdelmohsen, Sherif M. and Massoud, Passaint M.
year 2015
title Making Sense of those Batteries and Wires: Parametric Design between Emergence and Autonomy
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 279-296.
summary This paper reports on the process and outcomes of a digital design studio that integrates parametric design and generative systems in architectural and urban design projects. It explores the interrelationship between the emergence of innovative formal representations using parametric design systems on the one hand, and design autonomy; more specifically the conscious process of generating and developing an architectural concept, on the other. Groups of undergraduate students working on an architectural project are asked to identify a specific conceptual parti that addresses an aspect of architectural quality, define strategies that satisfy those aspects, and computational methodologies to implement those strategies, such as rule-based systems, self-organization systems, and genetic algorithms. The paper describes the educational approach and studio outcomes, discusses implications for CAAD education and curricula, and addresses issues to be considered for parametric and generative software development.
keywords Parametric modeling, generative design, emergence, autonomy, design exploration, CAAD curriculum.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id eaea2015_t3_paper02
id eaea2015_t3_paper02
authors Acacia, Simonetta; Casanova, Marta
year 2015
title Recording and Publishing to Ensure Informed Choices for Future Generations
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.290-298
summary The paper presents the practical example of an information system applied to the built heritage, in particular to the Albergo dei Poveri, a monumental complex in the city of Genoa. A huge number of data and information have been organized in one database, in order to provide a synthesis of the building, acquainted with its complexity, and at the same time allow an in-depth knowledge; the graphical visualization by means of GIS eases to query the database. The final purpose of this work is to publish the project as a web-GIS that will allow all the interested parts to easily access and consult the wide knowledge and use it to make well-informed decisions about the conservation of built heritage.
keywords GIS; knowledge; historical building
series EAEA
email
last changed 2016/04/22 11:52

_id ecaade2015_138
id ecaade2015_138
authors Achten, Henri
year 2015
title Closing the Loop for Interactive Architecture - Internet of Things, Cloud Computing, and Wearables
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 623-632
doi https://doi.org/10.52842/conf.ecaade.2015.2.623
wos WOS:000372316000069
summary Interactive architecture occurs in buildings when part of the building engages in exchange of information with the user, in such a way that the interactive system adjusts it's assumptions about the user's needs and desires. Acquiring the user's needs and desires is no trivial task. Currently there are no techniques that will reliably make such assertions. Building a system that unobtrusively monitors the inhabitant seems to be a tall order, and making the system ask the user all the time is very distracting for the user. An alternative option has become available however: personal wearables are increasingly monitoring the user. Therefore it suffices that the interactive system of the building gets in touch with those wearables, rather than duplicating the sensing function of the wearables. The enabling technology for wearables is Internet of Things, which connects physical objects (smart objects) on a virtual level, and Cloud Computing, which provides a scalable storage environment for wearables and smart objects. In this paper we outline the implications of the convergence of these three technologies in the light of interactive architecture.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=fdd9e706-6e8f-11e5-b1d4-00190f04dc4c
last changed 2022/06/07 07:54

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ecaade2015_280
id ecaade2015_280
authors Adilenidou, Yota
year 2015
title Error as Optimization - Using Cellular Automata Systems to Introduce Bias in Aggregation Models through Multigrids
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 601-610
doi https://doi.org/10.52842/conf.ecaade.2015.2.601
wos WOS:000372316000067
summary This paper is focusing on the idea of error as the origin of difference in form but also as the path and the necessity for optimization. It describes the use of Cellular Automata (CA) for a series of structural and formal elements, whose proliferation is guided through sets of differential grids (multigrids) and leads to the buildup of big span structures and edifices as, for example, a cathedral. Starting from the error as the main idea/tool for optimization, taxonomies of morphological errors occur and at a next step, they are informed with contextual elements to produce an architectural system. A toolbox is composed that can be implemented in different scales and environmental parameters, providing variation, optimization, complexity and detail density. Different sets of experiments were created starting from linear structural elements and continuing to space dividers and larger surface components.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=5cf73be0-6e8f-11e5-b7a4-1b188b87ef84
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_71359 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002