CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 589

_id acadia17_102
id acadia17_102
authors Aparicio, German
year 2017
title Data-Insight-Driven Project Delivery: Approach to Accelerated Project Delivery Using Data Analytics, Data Mining and Data Visualization
doi https://doi.org/10.52842/conf.acadia.2017.102
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 102-109
summary Today, 98% of megaprojects face cost overruns or delays. The average cost increase is 80% and the average slippage is 20 months behind schedule (McKinsey 2015). It is becoming increasingly challenging to efficiently support the scale, complexity and ambition of these projects. Simultaneously, project data is being captured at growing rates. We continue to capture more data on a project than ever before. Total data captured back in 2009 in the construction industry reached over 51 petabytes, or 51 million gigabytes (Mckinsey 2016). It is becoming increasingly necessary to develop new ways to leverage our project data to better manage the complexity on our projects and allow the many stakeholders to make better more informed decisions. This paper focuses on utilizing advances in data mining, data analytics and data visualization as means to extract project information from massive datasets in a timely fashion to assist in making key informed decisions for project delivery. As part of this paper, we present an innovative new use of these technologies as applied to a large-scale infrastructural megaproject, to deliver a set of over 4,000 construction documents in a six-month period that has the potential to dramatically transform our industry and the way we deliver projects in the future. This paper describes a framework used to measure production performance as part of any project’s set of project controls for accelerated project delivery.
keywords design methods; information processing; data mining; big data; data visualization
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2015_53
id ecaade2015_53
authors Duro-Royo, Jorge; Mogas-Soldevila, Laia and Oxman, Neri
year 2015
title Physical Feedback Workflows in Fabrication Information Modeling (FIM) - Analysis and Discussion of Exemplar Cases across Media, Disciplines and Scales
doi https://doi.org/10.52842/conf.ecaade.2015.2.299
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 299-307
wos WOS:000372316000035
summary Novel digital fabrication platforms enable the design and construction of materially sophisticated structures with high spatial resolution in manufacturing. However, virtual-to-physical workflows and their associated software environments are yet to incorporate such capabilities. Our research sets the stage for seamless physical feedback workflows across media, disciplines and scales. We have coined the term Fabrication Information Modeling (FIM) to describe this approach. As preliminary methods we have developed four computational strategies for the design and digital construction of custom systems. These methods are presented in the context of specific design challenges and include a biologically driven fiber construction algorithm; an anatomically driven shell-to-wearable translation protocol; an environmentally-driven swarm printing system; and a manufacturing-driven hierarchical fabrication platform. We discuss and analyze these four challenges in terms of their capabilities to integrate design across media, disciplines and scales through concepts such as multi-dimensionality, media-informed computation and trans-disciplinary data.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e41927e2-6fe7-11e5-a181-5b730dc456c4
last changed 2022/06/07 07:55

_id acadia15_343
id acadia15_343
authors Roudavski, Stanislav
year 2015
title Sketching with Robots
doi https://doi.org/10.52842/conf.acadia.2015.343
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 343-355
summary Today, human activities constitute the primary environmental impact on the planet. In this context, commitments to sustainability, or minimization of damage, prove insufficient. To develop regenerative, futuring capabilities, architectural design needs to extend beyond the form and function of things and engage with the management of complex systems. Such systems involve multiple types of dynamic phenomena – biotic and abiotic, technical and cultural – and can be understood as living. Engagement with such living systems implies manipulation of pervasive and unceasing change, irrespective of whether it is accepted by design stakeholders or actively managed towards homeostatic or homeorhetic conditions. On one hand, such manipulation of continuity requires holistic and persistent design involvements that are beyond natural capabilities of human designers. On the other hand, practical, political or creative implications of reliance on automated systems capable of tackling such tasks is as yet underexplored. In response to this challenge, this paper considers an experimental approach that utilised methods of critical making and speculative designing to explore potentials of autonomous architecture. This approach combined 1) knowledge of animal architecture that served as a lens for rethinking human construction and as a source of alternative design approaches; 2) practices of creative computing that supported speculative applications of data-driven and performance-oriented design; and 3) techniques of robotics and mechatronics that produced working prototypes of autonomous devices that served as props for critical thinking about alternative futures.
keywords Intelligent robots, animal architecture, synthetic ecology
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2024_35
id ecaade2024_35
authors Agkathidis, Asterios; Song, Yang; Symeonidou, Ioanna
year 2024
title AI-Assisted Design: Utilising artificial intelligence as a generative form-finding tool in architectural design studio teaching
doi https://doi.org/10.52842/conf.ecaade.2024.2.619
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 619–628
summary Artificial Intelligence (AI) tools are currently making a dynamic appearance in the architectural realm. Social media are being bombarded by word-to-image/image-to-image generated illustrations of fictive buildings generated by tools such as ‘Midjourney’, ‘DALL-E’, ‘Stable Diffusion’ and others. Architects appear to be fascinated by the rapidly generated and inspiring ‘designs’ while others criticise them as superficial and formalistic. In continuation to previous research on Generative Design, (Agkathidis, 2015), this paper aims to investigate whether there is an appropriate way to integrate these new technologies as a generative tool in the educational architectural design process. To answer this question, we developed a design workflow consisting of four phases and tested it for two semesters in an architectural design studio in parallel to other studio units using conventional design methods but working on the same site. The studio outputs were evaluated by guest critics, moderators and external examiners. Furthermore, the design framework was evaluated by the students through an anonymous survey. Our findings highlight the advantages and challenges of the utilisation of AI image synthesis tools in the educational design process of an architectural design approach.
keywords AI, GAI, Generative Design, Design Education
series eCAADe
email
last changed 2024/11/17 22:05

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
doi https://doi.org/10.52842/conf.acadia.2015.357
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2015_317
id ecaade2015_317
authors Cavieres, Andres and Gentry, Russell
year 2015
title Masonry Regions: A New Approach for the Representation of Masonry Walls in BIM Applications
doi https://doi.org/10.52842/conf.ecaade.2015.1.585
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 585-595
wos WOS:000372317300063
summary The article describes the theoretical approach for the development of computational representations of masonry walls based on the concept of regions. A masonry region is intended to support the description of various levels of detail pertaining to a masonry wall assembly, capturing the evolution and complexity of design information from early conceptual stages down to construction and operation. Since different wall types are characterized by a different set of domain-specific requirements, a special emphasis is put on a flexible strategy for classification of different types of view-dependent masonry regions. This classification will provide the foundation upon which masonry specific parametric modeling and rule-checking applications can be elaborated in the future. It will also provide the basis for the definition of model views necessary for particular data queries and exchanges between design stakeholders. The article introduces the concept of regions, and discusses its implications and future steps.
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2015_067
id caadria2015_067
authors Choi, Jungsik; Minchan Kim and Inhan Kim
year 2015
title A Methodology of Mapping Interface for Energy Performance Assessment Based on Open BIM
doi https://doi.org/10.52842/conf.caadria.2015.417
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 417-426
summary Early design phase energy modelling is used to provide the design team with feedback about the impact of various building configurations. For better energy-conscious and sustainable building design and operation, the construction of BIM data interoperability for energy performance assessment in the early design phase is important. The purpose of this study is to suggest a development of BIM data interoperability for energy performance assessment based on BIM. To archive this, the authors have investigated advantages of BIM-based energy performance assessment through comparison with traditional energy performance assessment; and suggest requirements for development of Open BIM environment such as BIM data creation and BIM data application. In addition, the authors also suggested on BIM data interoperability system and developed mapping interface.
keywords Building Information Modelling (BIM); Energy Performance Assessment (EPA); Data Interoperability; Energy Property; Industry Foundation Classes (IFC).
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2015_185
id caadria2015_185
authors De Oliveira, Maria João and Vasco Moreira Rato
year 2015
title From Morphogenetic Data to Performative Behaviour
doi https://doi.org/10.52842/conf.caadria.2015.765
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 765-774
summary This paper presents part of CORK’EWS, a research work developed within the framework of the Digital Architecture Advanced Program 2012/13 at ISCTE-IUL. The main goal of this investigation was to develop a parametric, customizable and adaptive wall system designed for environmental performance. Moreover, the system is based on standard industrial products: expanded cork blocks produced by Amorim Insulation industries. CAD/CAM resources were the essential tools of the research process, where fundamental and practical knowledge is integrated to understand the microstructure morphological properties of the raw material – cork – and its derivate – natural expanded cork. These properties were upscale and adapted to create a wall with an optimized solar control environmental performance. The result is a digitally fabricated prototype of a new customizable industrial product, adaptable to specific environmental conditions and installation setups being therefore easily commercialized. From microstructural morphology to macroscale construction, the research explores new application possibilities through morphogenesis and opens new possible markets for these customizable products.
keywords Morphogenesis; performance; shading systems; cork.
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2015_033
id caadria2015_033
authors Hadilou, Arman
year 2015
title Phototropism of Tensile Façade System through Material Agency
doi https://doi.org/10.52842/conf.caadria.2015.127
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 127-136
summary This paper researches material agencies, mechanical systems and façade designs that are able to respond to environmental changes through local interactions, inspired by biological systems. These are based on a model of distributed intelligence founded on plants and animal collectives, from which intelligent behavior emerges through simple local associations. Biological collective systems integrate material form and responsiveness and have the potential to inform new architectural and engineering strategies. The design approach of this research is based on a data-driven methodology spanning from design inception to simulation and physical modeling. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. The driving concepts are three types of evolutionary adaptation: flexibility, acclimation, and learning. The proposed façade system is a responsive textile shading structure which uses integrated actuators that moderate their local environments through simple interactions with their immediate neighbors. Computational techniques coupled to material logics create an integral design framework leading to heterogeneous environmental and structural conditions, producing local responses to environmental stimuli and ultimately effective performance of the whole system.
keywords Responsive facade; phototropism; material intelligence.
series CAADRIA
email
last changed 2022/06/07 07:49

_id cf2015_347
id cf2015_347
authors Krakhofer, Stefan
year 2015
title Closing the Loop: From Analysis to Transformation within BIM
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 347-357.
summary The shift from traditional CAD to BIM has created a significant potential to embed optimization processes in many stages of the design. The presented research is situated in the early design stage of inception and concept, focusing on analysis-driven-form-finding during the integrated design approach within a BIM environment. A custom analysis framework, has been developed and linked to a visual programming environment that allows the exchange of data with the parametric components of a BIM environment. The developed workflow and sequential split of functionalities enables a shared design environment for multiple experts and the design-team. The environment is intended to close the loop from analysis to parametric modeling in order to generate and evaluate building designs against performance criteria, with the aim to expedite the design decision process. The prototype has been presented to participants of the Deep-Space Cluster at SmartGeometry 2014.
keywords Algorithmic Design, Parametric Design, Parametric Analysis, Building Information Modeling, Design Automation.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_194
id caadria2015_194
authors Lu, Chi-Ming; Jia-Yih Chen, Cheng-An Pan and Taysheng Jeng
year 2015
title A BIM Tool for Carbon Footprint Assessment of Building Design
doi https://doi.org/10.52842/conf.caadria.2015.447
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 447-456
summary The objective of this research is to develop a tool for assessing carbon footprints of a building in the design process using BIM technology. Life cycle assessment and carbon footprint assessment are the two basic criteria in evaluating the emission reduction of CO2e.International assessment standards have been established for mass-produced merchandise and organizational operations. However, the existing standards cannot directly disclose the hotspots of carbon footprints in the building life cycle. An assessment method concerning local climate, living culture, ecology and local construction style is required for building design. This research work presents a framework by which a BIM-enabled data visualization tool is developed to support the carbon disclosure in the building design process.
keywords Carbon Footprint Assessment; BIM; BCF.
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id acadia15_110
id acadia15_110
authors Marcu, Mara; Tang, Ming
year 2015
title Data Mapping and Ornament in Digital Craft
doi https://doi.org/10.52842/conf.acadia.2015.110
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 110-120
summary With an ever-increasing index of digital artifacts, we have begun to exhaust variation as an adaptive technique. The problem with incremental modulation (here understood as sequential and slowly progressing change of a set of parameters within a field condition) is that in essence it leads to morphologically equivalent and, hence, repetitive patterns of habitation. While the role of variation proved key in pushing forward an essential body of research testing and optimizing principles of mass customization, its residual effects become critically disconcerting. This paper presents an investigation of tectonic mutations for the generation of form, seen through data simulation experiments and machining artifacts. Through several projects we investigate the effects of ornament created as a result of the new relationship between generative modeling, simulation, and fabrication in the digital age. Subject to (de)generative mutation techniques, ornament can be under-stood as a result of overlaid data, whether the data is performance related or not, in both massing and surface conditions. This new working methodology will mitigate between the incertitude regarding time, history and memory, and by reinventing their relation it will reassess ornament’s agency within the digital culture. Design methods are extended by exploring, collecting, analyzing, and representing data through various materialization processes. Design is therefore reconsidered as being injected with the concepts of data driven design and dependent on the inter-play between performance and aesthetics. In this way, we consider the footprint - or the subsequent impact - of the human onto the nonhuman using artificial intelligence as a medium. These intentionally or accidentally engraved layers of information begin to describe potential trajectories of novel survival modes in the Anthropocene.
keywords Data mapping, ornament, generative modeling, simulation, CNC fabrication, degenerative mutation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaade2015_225
id ecaade2015_225
authors Orfanos, Yannis; Papadopoulos, Dimitrios and Zwerlein, Cory
year 2015
title An Integrated Performance Analysis Platform for Sustainable Architecture and Urban Infrastructure Systems
doi https://doi.org/10.52842/conf.ecaade.2015.1.315
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 315-324
wos WOS:000372317300034
summary This applied research brings together the performance analysis of a building's micro-scale and urban-infrastructure's macro-scale. A New York City lot, is serving as the background of experimentation with parametric design, performance simulation, data analysis and visualization. The paper describes the process of integrating design intentions, location parameters, climate data, material properties, and space quality and sustainability metrics into one platform. Although in-depth domain knowledge is irreplaceable, the paper argues that the exploration into contemporary, easily accessible and algorithmic simulation software, provides a unique educational opportunity for architects and students to integrate performance driven design in their every-day practice, and become aware of the consequences of their design on urban infrastructure systems. This allows them to reduce the time frame between design iterations and performance evaluation for the benefit of better informed decisions.
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=91bbabd6-702e-11e5-a0f9-b7d7d9e4ecfd
last changed 2022/06/07 08:00

_id ecaade2015_256
id ecaade2015_256
authors Sachs, Hans
year 2015
title Design=Production - Material and Process Driven Design and Production
doi https://doi.org/10.52842/conf.ecaade.2015.2.269
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 269-276
wos WOS:000372316000032
summary With the comprehensive integration of software-based tools in actual processes of design development and fabrication, the boundaries between design and production become increasingly blurred. The methodology of the process of creation changes: the design development phase reaches up to the last produced model in a product series, in the same time the serial production cycle already starts with the first prototype.The aim of this research project is to explore and show the re-strengthening link between form, function, material and fabrication particularly driven by raising prominence of digital tools for design and production. Hereby the focus is on two points: the implementation of user data/input in the light of 'Open Innovation' as driver of form and function on one hand and the crafing inspired aproach of a comprehensive integration of material properties, behaviour tradional techniques of processing into the the design process.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=417116d4-6fe3-11e5-a9c3-f324760e4be6
last changed 2022/06/07 07:56

_id ecaade2015_261
id ecaade2015_261
authors Sharif, Shani and Gentry, Russell
year 2015
title BIM for Masonry: Development of BIM Plugins for the Masonry Unit Database
doi https://doi.org/10.52842/conf.ecaade.2015.1.567
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 567-576
wos WOS:000372317300061
summary Masonry Unit Database (MUD) is an integral part of Building Information Modeling for Masonry (BIM-M) initiative. MUD provides a data structure framework for storing the required data for digital representation of masonry units. Specific information about masonry units such as price, geometry and physical properties is needed throughout the lifecycle of a building project, including the design, construction, maintenance, and demolition stages. The development of MUD contributes to enhancement of masonry BIM tools for practitioners to incorporate up-to-date masonry product information into their projects. There are five main stages in the development of MUD: development of process map of masonry building project lifecycle, data requirement identification, physical design of database, design of data import structures, and finally design of data export structures. This paper focuses on the development of the SQL based MUD, and a Revit-Dynamo data export plugin for this database. The developed plugin is especially beneficial as it provides a tool for fast and accurate generation of the parametric and data enhanced masonry units as Revit families on the fly from the stored dimensions and attributes in the database. The generated masonry units with this method would be embedded in masonry wall systems in BIM building project.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=13b44e20-7022-11e5-ab9c-00190f04dc4c
last changed 2022/06/07 07:56

_id cf2015_358
id cf2015_358
authors Tonn, Christian and Bringmann, Oliver
year 2015
title Point Clouds to BIM: Methods for Building Parts Fitting in Laser Scan Data
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 358-369.
summary New construction within existing buildings requires documentation of the existing buildings, in a form that one is familiar with from new construction or architectural design. Laser scanning is a powerful tool to survey the built reality. It provides a replica of the existing building in the form of a point cloud. The difficulty is to analyse the resulting amounts of data that has been generated and being able to interpret it as a Building Information Model (BIM). This article proposes a new generic approach for pattern recognition of architectural objects. The procedure is introduced through the use of two examples - polygon fitting, which is important for the generation of new building element classes and wall detection. The second part describes how individual components can be automatically connected to consistent networks. BIM systems walls should be aligned, within predefined limits of accuracy, either perpendicular to or in line with each other.
keywords point cloud, BIM, pattern recognition, components, wall alignment.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_318
id ecaade2015_318
authors Wortmann, Thomas and Tuncer, Bige
year 2015
title Performative Design and Fabrication of a Parametric Wall Screen for Tropical Climates - A Modular Approach
doi https://doi.org/10.52842/conf.ecaade.2015.2.521
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 521-530
wos WOS:000372316000059
summary We have developed a modular approach to the parametric design of a patterned façade for tropical climates, using a “lighter” data set and model that integrates a number of performance considerations. This modular approach separates the façade's design into form, façade pattern, façade density requirements, and façade components, and reintegrates these aspects via a triangular mesh, represented as a fast and convenient data structure based on half-edges. Through this separation, the design team can simultaneously work on the architectural appearance of the design, its performance, and its fabrication, while retaining holistic control through the constant reintegration of design changes via the half-edge data structure. In this way, we retain the advantages of a parametrically driven design process, such as automatic design generation and the integration of performance aspects, while permitting more flexible and non-sequential design explorations by different members of the design team.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=8d6a4092-6e8f-11e5-9937-97af6c862566
last changed 2022/06/07 07:57

_id ecaade2016_164
id ecaade2016_164
authors Dobiesz, Sebastian and Grajper, Anna
year 2016
title Animating the Static. Case Study of The Project "Urbanimals" - Enhancing play in the cities through an augmented and interactive environment
doi https://doi.org/10.52842/conf.ecaade.2016.1.691
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 691-700
wos WOS:000402063700074
summary This article delineates the process of developing the project "Urbanimals" - an interactive installation designed and realised in Bristol, UK, in 2015. As the case study research, it draws attention to the difficulties in designing interactive structures in urban spaces - from an architects' idea to a construction stage. There are four areas that are being investigated: (1) Modelling interactions, (2) Negotiating locations and logistics, (3) Developing hardware and (4) Performing the on-site observations. The project draws from the idea of Smart City (SC) as the concept of the urban environment with a certain level of responsiveness through implementing a technology-driven matter that expands city offer perceivable, but gentle and not hindering way. It highlights the possible applications of projection technology and the utilisation of the 3D modelling software which provides complex tools for creating animations, movements and interactions with future users. The article gives clues how to design more engaging interactions and how to deal with implementing them in public realm.
keywords Smart Cities; Interactive Architecture; public realm; art installations
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2015_6.151
id sigradi2015_6.151
authors Sens, André Luiz; Souza, Felipe Machado de; Meürer, Mary Vonni; Fialho, Francisco
year 2015
title Contributions of archetypes for building design projects transmedia
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 207-213.
summary The mass presence of devices and interactive and collaborative environments, driven by advances in information and communication technology, intensified experiences ever more sophisticated consumption. In this context it arises transmidiaç?o, which deals with the construction of an articulated narrative universe across multiple media platforms for experiential deepening the viewer. Seeking a methodological tool that can assist in the development of transmedia design projects this paper investigates, through exploratory research and case study, the possible contributions of archetypes to create design more efficient and immersive.
keywords Design, Transmedia, Archetypes
series SIGRADI
email
last changed 2016/03/10 10:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_233218 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002