CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id acadia20_668
id acadia20_668
authors Pasquero, Claudia; Poletto, Marco
year 2020
title Deep Green
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 668-677.
doi https://doi.org/10.52842/conf.acadia.2020.1.668
summary Ubiquitous computing enables us to decipher the biosphere’s anthropogenic dimension, what we call the Urbansphere (Pasquero and Poletto 2020). This machinic perspective unveils a new postanthropocentric reality, where the impact of artificial systems on the natural biosphere is indeed global, but their agency is no longer entirely human. This paper explores a protocol to design the Urbansphere, or what we may call the urbanization of the nonhuman, titled DeepGreen. With the development of DeepGreen, we are testing the potential to bring the interdependence of digital and biological intelligence to the core of architectural and urban design research. This is achieved by developing a new biocomputational design workflow that enables the pairing of what is algorithmically drawn with what is biologically grown (Pasquero and Poletto 2016). In other words, and more in detail, the paper will illustrate how generative adversarial network (GAN) algorithms (Radford, Metz, and Soumith 2015) can be trained to “behave” like a Physarum polycephalum, a unicellular organism endowed with surprising computational abilities and self-organizing behaviors that have made it popular among scientist and engineers alike (Adamatzky 2010) (Fig. 1). The trained GAN_Physarum is deployed as an urban design technique to test the potential of polycephalum intelligence in solving problems of urban remetabolization and in computing scenarios of urban morphogenesis within a nonhuman conceptual framework.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia15_497
id acadia15_497
authors Sandoval Olascoaga, Carlos; Victor-Faichney, John
year 2015
title Flows, Bits, Relationships: Construction of Deep Spatial Understanding
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 497-512
doi https://doi.org/10.52842/conf.acadia.2015.497
summary The number of variables acting upon urban landscapes is numerous and interconnected, closely resembling complex systems in constant dynamic transformation. Current analytical methods and descriptions of the city are domain specific, limited in scope, and discretize the city into quantifiable individual representations, resulting in an equally limited urban policy and design. If we are to produce urban systems capable of contributing to the robustness and resiliency of cities, we ought to understand and represent the comprehensive network of actors that construct contemporary urban landscapes. On one hand, the natural sciences approach the analysis of complex systems by primarily focusing on the development of models capable of describing their stochastic formation, remaining agnostic to the contextual properties of their individual components and oftentimes discretizing the otherwise continuous relationships among parts. signers work in groups. They need to share information either synchronously or asynchronously as they work with parametric modeling software, as with all computer-aided design tools. Receiving information from collaborators while working may intrude on their work and thought processes. Little research exists on how the reception of design updates influences designers in their work. Nor do we know much about designer preferences for collaboration. In this paper, we examine how sharing and receiving design updates affects designers’ performances and preferences. We present a system prototype to share changes on demand or in continuous mode while performing design tasks. A pilot study measuring the preferences of nine pairs of designers for different combinations of control modes and design tasks shows statistically significant differences between the task types and control modes. The types of tasks affect the preferences of users to the types of control modes. In an apparent contradiction, user preference of control modes contradicts task performance time.
keywords Networks, graphs, web-mapping, GIS, urban mapping, spatial analysis, urban databases, visual representation, spatial cognition
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2024_35
id ecaade2024_35
authors Agkathidis, Asterios; Song, Yang; Symeonidou, Ioanna
year 2024
title AI-Assisted Design: Utilising artificial intelligence as a generative form-finding tool in architectural design studio teaching
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 619–628
doi https://doi.org/10.52842/conf.ecaade.2024.2.619
summary Artificial Intelligence (AI) tools are currently making a dynamic appearance in the architectural realm. Social media are being bombarded by word-to-image/image-to-image generated illustrations of fictive buildings generated by tools such as ‘Midjourney’, ‘DALL-E’, ‘Stable Diffusion’ and others. Architects appear to be fascinated by the rapidly generated and inspiring ‘designs’ while others criticise them as superficial and formalistic. In continuation to previous research on Generative Design, (Agkathidis, 2015), this paper aims to investigate whether there is an appropriate way to integrate these new technologies as a generative tool in the educational architectural design process. To answer this question, we developed a design workflow consisting of four phases and tested it for two semesters in an architectural design studio in parallel to other studio units using conventional design methods but working on the same site. The studio outputs were evaluated by guest critics, moderators and external examiners. Furthermore, the design framework was evaluated by the students through an anonymous survey. Our findings highlight the advantages and challenges of the utilisation of AI image synthesis tools in the educational design process of an architectural design approach.
keywords AI, GAI, Generative Design, Design Education
series eCAADe
email
last changed 2024/11/17 22:05

_id cf2015_485
id cf2015_485
authors Anaf, Márcia and Harris, Ana Lúcia Nogueira de Camargo
year 2015
title The geometry of Chuck Hoberman as the basis for the development of dynamic experimental structures
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 485.
summary The cognitive-theoretical foundation referring to teach drawing as a way of thinking, as well as the construction of the environment by means of drawing using transforming geometries and the formal and para-formal computational process, creating unusual geometries through generative design processes and methodologies, can be seen as some of the main possibilities in exploring dynamic experimental structures for an Adaptive Architecture. This article presents the development of a model for articulated facades, inspired by Hoberman´s Tessellates, and his Adaptive Building Initiative (ABI) project to develop facades models that respond in real time to environmental changes. In addition, we describe an experiment based on the retractable structures, inspired by Hoberman´s work and experimentations. Solutions for responsive facades can offer more flexible architectural solutions providing better use of natural light and contributing to saving energy. Using Rhinoceros and the Grasshopper for modeling and test the responsiveness, the parametric model was created to simulate geometric panels of hexagonal grids that would open and close in reaction to translational motion effects, regulating the amount of light that reaches the building.
keywords Parametric architecture, Hoberman´s Tessellates, Adaptive Building Initiative (ABI), Articulated Facades, Complex Geometries, Retractable structures, Retractable polyhedra.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_226
id caadria2015_226
authors Bidgoli, Ardavan and Daniel Cardoso-Llach
year 2015
title Towards A Motion Grammar for Robotic Stereotomy
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 723-732
doi https://doi.org/10.52842/conf.caadria.2015.723
summary This paper presents progress towards the definition of a motion grammar for robotic stereotomy. It describes a vocabulary of motions able to generate complex forms by cutting, slicing, and/or carving 3-D blocks of material using a robotic arm and a custom made cutting tool. While shape grammars usually deal with graphical descriptions of designs, a motion grammar seeks to address the 3-D harmonic movements of machine, tool, and material substrate choreographically, suggesting motion as a generative vehicle of exploration in both designing and making. Several models and prototypes are presented and discussed.
keywords Generative Fabrication; Robots in Architecture; Hot Wire cutting; Shape Grammars; Stereotomy; Computational Making.
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2015_306
id ecaade2015_306
authors Garcia, Danilo and Furtado, Neander
year 2015
title Cost Performance Based Design - Using Digital Technology for Cost Performance Simulation in the Conceptual Phase of Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 619-624
doi https://doi.org/10.52842/conf.ecaade.2015.1.619
wos WOS:000372317300067
summary This work studies the Performance-Based Design approach, focusing exclusively on cost performance, asking how to launch the architectural portion thinking of the cost of the building in a way that such performance can directly influence the project design and architectural form and how can shape, type and structure of the building influence the final cost of the work. For this, we chose to analyze the DProfiler software for the development of models in order to produce an architectural form that directly meets the performance cost requirements, following specified formal language, which aligns cost and project intention in the initial phase of the design. The research showed that the use of Macro BIM software platform is promising and that the generative design process can and should arise from an organization of the parts and not from predefining it as a whole, achieving an architectural project that is attainable and more sustainable.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=a976a8f0-7021-11e5-a08c-00190f04dc4c
last changed 2022/06/07 07:51

_id ecaade2015_297
id ecaade2015_297
authors Park, James and Economou, Athanassios
year 2015
title The Dirksen Variations - Towards a Generative Description of Mies's Courthouse Language
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 453-462
doi https://doi.org/10.52842/conf.ecaade.2015.1.453
wos WOS:000372317300049
summary A generative description of Mies van der Rohe's courthouse language is presented in the form of a shape grammar. The grounding of the work is based on a set of 135 sketches produced by the office of Mies during the design process of the Everett McKinley Dirksen United States Courthouse in Chicago, and documented in the Mies van der Rohe Archive at the Museum of Modern Art. The work here postulates a set of 39 unique courthouse designs all showcasing distinct variations of the courtroom type in the Miesian language and re-casts them in two-dimensional diagrams to make their differences and similarities transparent. A series of spatial relations between five types of spaces are extracted, including courtrooms, circulation networks, vertical cores, office spaces, and support spaces, and are deployed to specify the shape rules of the grammar. A set of conventions to specify how the two-dimensional diagrams represent three-dimensional models is briefly outlined to prepare the ground for the implementation of the grammar in a three-dimensional shape grammar interpreter.
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2015_205
id ecaade2015_205
authors Patt, Trevor
year 2015
title Generative Masterplanning Inspired by Cellular Automata with Context-specific Tessellation
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 461-466
doi https://doi.org/10.52842/conf.ecaade.2015.2.461
wos WOS:000372316000052
summary Cellular automata offer a compelling model for complex generative design. However, the abstraction of classical cellular automata models hinders their application in the design process, particularly at small scales where regular grid matrices do not provide an adequate approximation. This paper presents some tests in appling these generative properties to a real site using irrregular tesselation adapted to the terrain and an spreadsheet interface that translate design concerns into set of neighborhood and state behaviors with the goal of generating massing diagrams for an urban masterplan. The development of the model over time is also presented as a visual reference that aids in comparing different parameter sets and informing the design process.
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia15_431
id acadia15_431
authors Winn; Kelly
year 2015
title Transient Thermal Exchange and Developmental Form for Tactile Surfaces
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 431-441
doi https://doi.org/10.52842/conf.acadia.2015.431
summary The idea of an emergent or generative form based on repeating rules of development borrowed from the field of developmental biology has provided fertile ground for inspiration for architectural theory and computational design. With simple constraints developed iteratively, complex geometry and form generation can be distilled down to a list of developmental rules or functions in order to deterministically generate form. The ideas and illustrations of naturalists on organic form and developmental biology leading back to the turn of the 20th c., such as the work of D'arcy Wentworth Thompson and Ernst Haeckel, have inspired architects from Louis Sullivan all the way to contemporary generative design. This study revisits this design tradition of biomimetic geometries based on deterministic rules for the iterative development of forms based on biological analogs and models for growth. A series of semi-regular compound patterns were developed using parametric modeling and iterative rules. These geometries were then applied to surface topologies as a decorative tactile embellishment resulting in complex thermodynamic conditions. A series of physical prototypes where then developed with different high-relief patterns and pattern densities. Positive prototype geometries were then produced using stereolithography for casting plaster molds for the production molding of finished ceramic pieces for thermal analysis using digital thermography. By studying the performance of these complex geometries as physical prototypes under controlled experimentation, high-relief surfaces and the resulting thermodynamic conditions can be understood not just qualitative experience, but also quantitatively through measured performance metrics and innovative tools for analytical analysis.
keywords Tactile surfaces, developmental biology, biomimicry, l-systems, ceramic materials, heat transfer, thermography, ergonomics
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id acadia20_238
id acadia20_238
authors Zhang, Hang
year 2020
title Text-to-Form
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 238-247.
doi https://doi.org/10.52842/conf.acadia.2020.1.238
summary Traditionally, architects express their thoughts on the design of 3D architectural forms via perspective renderings and standardized 2D drawings. However, as architectural design is always multidimensional and intricate, it is difficult to make others understand the design intention, concrete form, and even spatial layout through simple language descriptions. Benefiting from the fast development of machine learning, especially natural language processing and convolutional neural networks, this paper proposes a Linguistics-based Architectural Form Generative Model (LAFGM) that could be trained to make 3D architectural form predictions based simply on language input. Several related works exist that focus on learning text-to-image generation, while others have taken a further step by generating simple shapes from the descriptions. However, the text parsing and output of these works still remain either at the 2D stage or confined to a single geometry. On the basis of these works, this paper used both Stanford Scene Graph Parser (Sebastian et al. 2015) and graph convolutional networks (Kipf and Welling 2016) to compile the analytic semantic structure for the input texts, then generated the 3D architectural form expressed by the language descriptions, which is also aided by several optimization algorithms. To a certain extent, the training results approached the 3D form intended in the textual description, not only indicating the tremendous potential of LAFGM from linguistic input to 3D architectural form, but also innovating design expression and communication regarding 3D spatial information.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2015_8.81
id sigradi2015_8.81
authors Alvarado, Rodrigo García; Lobos, Danny; Nope, Alberto; Tinapp, Frank
year 2015
title BIM + UAV Assessment of Roofs’ Solar Potential
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 336-340.
summary This paper describes a novel method for determining the capacity to generate solar energy integrated into the roofs of buildings by aerial survey using UAVs and BIM models for sizing the covering surfaces and integration of solar panels. Various digital procedures are enchained like planning of trajectories, image processing, geometric reconstitution, simulation of solar radiation and calculation of energy generation to promote on-site installation of clean energy sources in existing buildings, to ensure a more sustainable habitat.
keywords BIM, UAV, Solar Energy, Sustainable Building
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2020_395
id caadria2020_395
authors Loo, Stella Yi Ning, Jayashankar, Dhileep Kumar, Gupta, Sachin and Tracy, Kenneth
year 2020
title Hygro-Compliant: Responsive Architecture with Passively Actuated Compliant Mechanisms
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 223-232
doi https://doi.org/10.52842/conf.caadria.2020.1.223
summary Research investigating water-driven passive actuation demonstrates the potential to transform how buildings interact with their environment while avoiding the complications of conventionally powered actuation. Previous experiments evidence the possibilities of bi-layer materials (Reichert, Menges, and Correa 2015; Correa et al. 2015) and mechanical assemblies with discretely connected actuating members (Gupta et al. 2019). By leveraging changes in weather to power actuated building components these projects explore the use of smart biomaterials and responsive building systems. Though promising the implementation of these technologies requires deep engagement into material synthesis and fabrication. This paper presents the design and prototyping of a rain responsive façade system using chitosan hygroscopic films as actuators counterbalanced by programmed compliant mechanisms. Building on previous work into chitosan film assemblies this research focuses on the development of compliant mechanisms as a means of controlling movement without over-complicated rotating parts.
keywords Passive Actuation; Responsive Architecture; Bio-polymers; 4D Structures; Compliant Mechanism
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2015_279
id cf2015_279
authors Abdelmohsen, Sherif M. and Massoud, Passaint M.
year 2015
title Making Sense of those Batteries and Wires: Parametric Design between Emergence and Autonomy
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 279-296.
summary This paper reports on the process and outcomes of a digital design studio that integrates parametric design and generative systems in architectural and urban design projects. It explores the interrelationship between the emergence of innovative formal representations using parametric design systems on the one hand, and design autonomy; more specifically the conscious process of generating and developing an architectural concept, on the other. Groups of undergraduate students working on an architectural project are asked to identify a specific conceptual parti that addresses an aspect of architectural quality, define strategies that satisfy those aspects, and computational methodologies to implement those strategies, such as rule-based systems, self-organization systems, and genetic algorithms. The paper describes the educational approach and studio outcomes, discusses implications for CAAD education and curricula, and addresses issues to be considered for parametric and generative software development.
keywords Parametric modeling, generative design, emergence, autonomy, design exploration, CAAD curriculum.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
doi https://doi.org/10.52842/conf.acadia.2015.357
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2015_467
id cf2015_467
authors Benrós, Deborah; Eloy, Sara and Duarte, José Pinto
year 2015
title Re-inventing ceramic tiles: Using shape grammars as a generative method and the impact on design methodology
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 467.
summary The following paper describes the process and results achieved with the workshop entitled ‘Re-inventing Portuguese ceramic tiles’ reflecting on design methodology and design teaching. Workshop participants were invited to rethink ceramic tile patterns developing a different process which used shape grammars as a generative system. Each participant group developed a three stage task using shape grammars principles and methodology. The preliminary results the work developed are of particular relevance in shape grammar research: firstly shape grammar formulae does not constitute an intuitive process to most creative designers which are often trained to design singular solutions for a specific problem, secondly more than one operative shape grammar can be formulated to represent the same corpus of solutions and lastly the generative potential of grammars transcends the normal capacities of the original grammarist aiding in design exploration and enlarging the corpus of feasible solutions. This paper also reflects on the impact of shape grammars as a design methodology.
keywords Shape grammar, patterns, ceramic tiles, 2d, 3d
series CAAD Futures
email
last changed 2015/06/29 07:55

_id sigradi2015_11.166
id sigradi2015_11.166
authors Calixto, Victor; Celani, Gabriela
year 2015
title A literature review for space planning optimization using an evolutionary algorithm approach: 1992-2014
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 662-671.
summary Space planning in architecture is a field of research in which the process of arranging a set of space elements is the main concern. This paper presents a survey of 31 papers among applications and reviews of space planning method using evolutionary algorithms. The objective of this work was to organize, classify and discuss about twenty-two years of SP based on an evolutionary approach to orient future research in the field.
keywords Space Planning, Evolutionary algorithms, Generative System
series SIGRADI
email
last changed 2016/03/10 09:47

_id ijac201513206
id ijac201513206
authors Erhan, Halil; Ivy Y. Wang, and Naghmi Shireen
year 2015
title Harnessing Design Space: A Similarity-Based Exploration Method for Generative Design
source International Journal of Architectural Computing vol. 13 - no. 2, 217-236
summary Working with multiple alternatives is a central activity in design; therefore, we expect computational systems to support such work. There is a need to find out the tool features supporting this central activity so that we can build new systems. To explore such features, we propose a method that aims to enable interaction with a large number of design alternatives by similaritybased exploration. Using existing data analysis and visualization techniques adopting similarity-based search, we formalized the method and its elements by focusing on systematic filtering, clustering, and choosing alternatives. We present a scenario on developing conceptual designs for a residential apartment to illustrate how the method can be applied, as well as to reveal the limitation of current tools and the potential interactive clustering and filtering features for the new systems coupled with parametric design.
series journal
last changed 2019/05/24 09:55

_id caadria2015_233
id caadria2015_233
authors Fernando, Ruwan and Robin Drogemuller
year 2015
title Recapitulation in Generating Spatial Layouts
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 199-207
doi https://doi.org/10.52842/conf.caadria.2015.199
summary The noted 19th century biologist, Ernst Haeckel, put forward the idea that the growth (ontogenesis) of an organism recapitulated the history of its evolutionary development. While this idea is defunct within biology, the idea has been promoted in areas such as education (the idea of an education being the repetition of the civilizations before). In the research presented in this paper, recapitulation is used as a metaphor within computer-aided design as a way of grouping together different generations of spatial layouts. In most CAD programs, a spatial layout is represented as a series of objects (lines, or boundary representations) that stand in as walls. The relationships between spaces are not usually explicitly stated. A representation using Lindenmayer Systems (originally designed for the purpose of modelling plant morphology) is put forward as a way of representing the morphology of a spatial layout. The aim of this research is not just to describe an individual layout, but to find representations that link together lineages of development. This representation can be used in generative design as a way of creating more meaningful layouts which have particular characteristics. The use of genetic operators (mutation and crossover) is also considered, making this representation suitable for use with genetic algorithms.
keywords Generative Design, Lindenmayer Systems, Spatial Layouts
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2015_269
id ecaade2015_269
authors Gago, Ricardo and Romão, Luís
year 2015
title Geometric Identity of Living Structures Translated to an Architectural Design Process
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 591-600
doi https://doi.org/10.52842/conf.ecaade.2015.2.591
wos WOS:000372316000066
summary Biological life manifests in space through a large diversity of physical structures perfectly bind and identifiable in the environment. This reveals that all share a common generative design process which allows them the same physical identity in all the shapes that generates, The human ecological design process used in architecture is not able yet to reach this design identity neither the spontaneous integration associates to it. Why? Because the geometrical design process used in ecological architecture and living structures are not similar. Thus, this paper proposes, through the identification of some geometrical characteristics from the growth mechanism of living structures, a process of shape generation through shape grammar. With this generation process is possible to generate, only in geometrical terms, a large diversity of architectural models with a common identity, that reveals some geometrical characteristics of spatial integration that living structures share with the surround environment.
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2015_11.136
id sigradi2015_11.136
authors Gomes, Ana Catarina Costa; Paio, Alexandra
year 2015
title Generative Solutions: Adaptation and Flexibilization in Housing as a Qualified Social Response
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 642-648.
summary Housing for all is back on the international agenda. The economic crisis forces researchers and architects to rethink the concept of living and adopt more flexible housing design strategies as an alternative to typologies that impose rules of coexistence and do not reflect the social dynamics of a community. The introduction of rules-based housing design strategies allows the implementation of more dynamic processes. This ongoing research is a reflection on the potential of digital tools to develop spatial and formal parameters based on analysis of flexible housing models. This paper presents the initial phase of the research.
keywords Adaptive and Evolutionary Housing, Social Dynamics, Digital Tools
series SIGRADI
email
last changed 2016/03/10 09:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_462994 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002