CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 554

_id ecaade2015_247
id ecaade2015_247
authors Garcia, Manuel Jimenez and Retsin, Gilles
year 2015
title Design Methods for Large Scale Printing
doi https://doi.org/10.52842/conf.ecaade.2015.2.331
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 331-339
wos WOS:000372316000039
summary With an exponential increase in the possibilities of computation and computer-controlled fabrication, high density information is becoming a reality in digital design and architecture. However, construction methods and industrial fabrication processes have not yet been reshaped to accommodate the recent changes in those disciplines. Although it is possible to build up complex simulations with millions of particles, the simulation is often disconnected from the actual fabrication process. Our research proposes a bridge between both stages, where one drives the other, producing a smooth transition from design to production. A particle in the digital domain becomes a drop of material in the construction method.The architect's medium of expression has become much more than a representational tool in the last century, and more recently it has evolved even beyond a series of rules to drive from design to production. The design system is the instruction itself; embedding structure, material and tectonics and gets delivered to the very end of the construction chain, where it gets materialised. The research showcased in this paper investigates tectonic systems associated with large scale 3D printing and additive manufacturing methods, inheriting both material properties and fabrication constraints at all stages from design to production. Computational models and custom design software packages are designed and developed as strategies to organise material in space in response to specific structural and logistical input.Although the research has developed a wide spectrum of 3D printing methods, this paper focuses only on two of the most recent projects, where different material and computational logics were investigated. The first, titled Filamentrics, intends to develop free-form space frames, overcoming their homogeneity by introducing robotic plastic extrusion. Through the use of custom made extruders a vast range of high resolution prototypes were developed, evolving the design process towards the fabrication of precise structures that can be materialised using additive manufacturing but without the use of a layered 3D printing method. Instead, material limitations were studied and embedded in custom algorithms that allow depositing material in the air for internal connectivity. The final result is a 3x2x2.5m structure that demonstrates the viability of this construction method for being implemented in more industrial scenarios.While Filamentrics is reshaping the way we could design and build light weight structures, the second project Microstrata aims to establish new construction methods for compression based materials. A layering 3D printing method combines both the deposition of the binder and the distribution of an interconnected network of capillaries. These capillaries are organised following structural principles, configuring a series of channels which are left empty within the mass. In a second stage aluminium is cast in this hollow space to build a continuous tension reinforcement.
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=07a6d8e0-6fe7-11e5-9994-cb14cd908012
last changed 2022/06/07 07:51

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
doi https://doi.org/10.52842/conf.acadia.2019.168
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia17_102
id acadia17_102
authors Aparicio, German
year 2017
title Data-Insight-Driven Project Delivery: Approach to Accelerated Project Delivery Using Data Analytics, Data Mining and Data Visualization
doi https://doi.org/10.52842/conf.acadia.2017.102
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 102-109
summary Today, 98% of megaprojects face cost overruns or delays. The average cost increase is 80% and the average slippage is 20 months behind schedule (McKinsey 2015). It is becoming increasingly challenging to efficiently support the scale, complexity and ambition of these projects. Simultaneously, project data is being captured at growing rates. We continue to capture more data on a project than ever before. Total data captured back in 2009 in the construction industry reached over 51 petabytes, or 51 million gigabytes (Mckinsey 2016). It is becoming increasingly necessary to develop new ways to leverage our project data to better manage the complexity on our projects and allow the many stakeholders to make better more informed decisions. This paper focuses on utilizing advances in data mining, data analytics and data visualization as means to extract project information from massive datasets in a timely fashion to assist in making key informed decisions for project delivery. As part of this paper, we present an innovative new use of these technologies as applied to a large-scale infrastructural megaproject, to deliver a set of over 4,000 construction documents in a six-month period that has the potential to dramatically transform our industry and the way we deliver projects in the future. This paper describes a framework used to measure production performance as part of any project’s set of project controls for accelerated project delivery.
keywords design methods; information processing; data mining; big data; data visualization
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2018_243
id ecaade2018_243
authors Gardner, Nicole
year 2018
title Architecture-Human-Machine (re)configurations - Examining computational design in practice
doi https://doi.org/10.52842/conf.ecaade.2018.2.139
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 139-148
summary This paper outlines a research project that explores the participation in, and perception of, advanced technologies in architectural professional practice through a sociotechnical lens and presents empirical research findings from an online survey distributed to employees in five large-scale architectural practices in Sydney, Australia. This argues that while the computational design paradigm might be well accepted, understood, and documented in academic research contexts, the extent and ways that computational design thinking and methods are put-into-practice has to date been less explored. In engineering and construction, technology adoption studies since the mid 1990s have measured information technology (IT) use (Howard et al. 1998; Samuelson and Björk 2013). In architecture, research has also focused on quantifying IT use (Cichocka 2017), as well as the examination of specific practices such as building information modelling (BIM) (Cardoso Llach 2017; Herr and Fischer 2017; Son et al. 2015). With the notable exceptions of Daniel Cardoso Llach (2015; 2017) and Yanni Loukissas (2012), few scholars have explored advanced technologies in architectural practice from a sociotechnical perspective. This paper argues that a sociotechnical lens can net valuable insights into advanced technology engagement to inform pedagogical approaches in architectural education as well as strategies for continuing professional development.
keywords Computational design; Sociotechnical system; Technology adoption
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2015_221
id ecaade2015_221
authors Junk, Stefan and Matt, Rebecca
year 2015
title Workshop Digital Manufacturing - A New and Practical Approach to Combine CAAD and Digital Manufacturing in Architectural Design Education
doi https://doi.org/10.52842/conf.ecaade.2015.2.103
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 103-110
wos WOS:000372316000013
summary The opportunities for the use of Digital Manufacturing in the field of architecture have increased tremendously over the past years. Today, already a large variety of methods and processes are used for the production of architectural models or even prototypes and design models. By now, this new technology has also become firmly established in the education of students. In this context, especially the theoretical basics of digital manufacturing, that is to say the integration of CAAD with the manufacturing process, and the special characteristics of the additive manufacturing, i.e. assembly in layers, are taught. As a demonstration of the practical application of the new technology of 3D printing, this paper will focus on the Workshop Digital Manufacturing. Due to the new approach of this workshop, which relies on the assembly of a 3D printer from an assembly kit, the students gain profound insights into the technology and functionality of 3D printers. In a next step, the students realize various models with the 3D-printer and in doing so develop design guidelines for additive manufacturing autonomously.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=52a83db6-6fe7-11e5-992c-a7fd95009077
last changed 2022/06/07 07:52

_id acadia15_185
id acadia15_185
authors Mogas-Soldevila, Laia; Duro-Royo, Jorge; Oxman, Neri
year 2015
title Form Follows Flow: A Material-Driven Computational Workflow for Digital Fabrication of Large-Scale Hierarchically Structured Objects
doi https://doi.org/10.52842/conf.acadia.2015.185
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 185-193
summary In the natural world, biological matter is structured through growth and adaptation, resulting in hierarchically structured forms with tunable material computation. Conventional digital design tools and processes, by contrast, prioritize shape over matter, lacking integration between modeling, analysis, and fabrication. We present a novel computational environment and workflow for the design and additive manufacturing of large-scale hierarchically structured objects. The system, composed by custom multi-barrel deposition attached to robotic positioning, integrates material properties, fabrication constraints and environmental forces to design and construct full-scale architectural components. Such components are physically form-found by digitally extruding natural polymers with functionally graded mechanical and optical properties informed by desired functionality and executed through flow-based fabrication. In this approach, properties such as viscosity, velocity, and pressure embed information in two-dimensional printing patterns and induce three-dimensional shape formation of the fabricated part. As a result, the workflow associates physical material and fabrication constraints to virtual design tools for modeling and analysis, challenging traditional design workflows and prioritizing flow over form.
keywords Material-driven Design, Additive Manufacturing, Integrated Design Workflows, Digital Fabrication, Digital Design Process, Material Ecology
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2015_122
id ecaade2015_122
authors Agirbas, Asli
year 2015
title The Use of Digital Fabrication as a Sketching Tool in the Architectural Design Process - A Case Study
doi https://doi.org/10.52842/conf.ecaade.2015.2.319
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 319-324
wos WOS:000372316000037
summary Computer-aided manufacturing (CAM) technologies including computer numerically controlled (CNC) milling, laser cutting and 3D printing are becoming cheaper and globally more accessible. Accordingly, many design professionals, academics and students have been able to experience the benefits and challenges of using digital fabrication in their designs. The use of digital fabrication in the education of architecture students has become normal in many schools of architecture, and there is a growing demand for computer-aided manufacturing (CAM) logic and fabrication knowledge in student learning. Clearly, architecture students are acquiring material base-thinking, time management, production methods and various software skills through this digital fabrication. However, it appears to be the case that architecture students use digital fabrication mainly in the final stage of their design or in their finishing work. In this study, computer-aided manufacturing (CAM) technologies have been used as a sketch tool rather than simply for fabricating a final product in the architectural design process and the advantages of this educational practice are demonstrated.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=79005d78-6fe6-11e5-b555-13a7f78815dc
last changed 2022/06/07 07:54

_id sigradi2015_sp_3.85
id sigradi2015_sp_3.85
authors Balzani, Renan do Nascimento; Silva, Neander Furtado
year 2015
title The Problem of self-censorship in architectural students and the low cost tree-dimensional printers
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 767-770.
summary Self-censorship can be observed in architectural students. Due to drawing and development methods of design representation, some students do not create the design they dream about. Believing that you do not have the ability or the technique to represent the ideas on paper or using physical models can cause the self-censorship in the students. The production of physical models is very important for the design thinking and for architectural student’s experience. The tree-dimensional printers can help as a tool to print complex volumetric models or detailed models allowing students to create freely.
keywords Rapid Prototyping, 3D Printing, Design Theory, Architecture, Self-censorship
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_279
id ecaade2015_279
authors Baquero, Pablo, Giannopoulou, Effimia and Cavazos, Jaime
year 2015
title Strategies for Metallic Vault Structures - Aluminium Composite Panels Used as Structural Elements
doi https://doi.org/10.52842/conf.ecaade.2015.2.169
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 169-176
wos WOS:000372316000021
summary This article explains parametric, fabrication and teaching strategies used during a workshop for constructing a full scale, self supporting, vault metal structure realized with parametric manufacturing methods. The key aim is to construct a small size, easy assembled and transportable pavilion, while focusing on new design and construction methods of a façade system in which the structure, joint and skin will integrate functions in a unifying structural system. For the investigation, we explore materials commonly used in façade industry, such as aluminum profiles and aluminium composite panels (ACP).
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_415
id caadria2016_415
authors Crolla, Kristof and Adam Fingrut
year 2016
title Protocol of Error: The design and construction of a bending-active gridshell from natural bamboo
doi https://doi.org/10.52842/conf.caadria.2016.415
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 415-424
summary This paper advocates alternative methods to overcome the impossibility of realising ‘perfect’ digital designs. It discusses Hong Kong’s 2015 ‘ZCB Bamboo Pavilion’ as a methodological case study for the design and construction of architecture from unprocessed natu- ral bamboo. The paper critically evaluates protocols set up to deal with errors resulting from precise digital design systems merging with inconsistent natural resources and onsite craftsmanship. The paper starts with the geometric and tectonic description of the project, illus- trating a complex and restrictive construction context. Bamboo’s unique growth pattern, structural build-up and suitability as a bending- active material are discussed and Cantonese bamboo scaffolding craftsmanship is addressed as a starting point for the project. The pa- per covers protocols, construction drawings and assembly methods developed to allow for the incorporation and of large building toler- ances and dimensional variation of bamboo. The final as-built 3d scanned structure is compared with the original digital model. The pa- per concludes by discussing the necessity of computational architec- tural design to proactively operate within a field of real-world inde- terminacy, to focus on the development of protocols that deal with imperfections, and to redirect design from the virtual world towards the latent opportunities of the physical.
keywords Bamboo; bending-active gridshells; physics simulation; form-finding; indeterminacy
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2017_031
id caadria2017_031
authors Crolla, Kristof, Williams, Nicholas, Muehlbauer, Manuel and Burry, Jane
year 2017
title SmartNodes Pavilion - Towards Custom-optimized Nodes Applications in Construction
doi https://doi.org/10.52842/conf.caadria.2017.467
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 467-476
summary Recent developments in Additive Manufacturing are creating possibilities to make not only rapid prototypes, but directly manufactured customised components. This paper investigates the potential for combining standard building materials with customised nodes that are individually optimised in response to local load conditions in non-standard, irregular, or doubly curved frame structures. This research iteration uses as a vehicle for investigation the SmartNodes Pavilion, a temporary structure with 3D printed nodes built for the 2015 Bi-City Biennale of Urbanism/Architecture in Hong Kong. The pavilion is the most recent staged output of the SmartNodes Project. It builds on the findings in earlier iterations by introducing topologically constrained node forms that marry the principals of the evolved optimised node shape with topological constraints imposed to meet the printing challenges. The 4m high canopy scale prototype structure in this early design research iteration represents the node forms using plastic Fused Deposition Modelling (FDM).
keywords Digital Fabrication; Additive Manufacturing; File to Factory; Design Optimisation; 3D printing for construction
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_53
id ecaade2015_53
authors Duro-Royo, Jorge; Mogas-Soldevila, Laia and Oxman, Neri
year 2015
title Physical Feedback Workflows in Fabrication Information Modeling (FIM) - Analysis and Discussion of Exemplar Cases across Media, Disciplines and Scales
doi https://doi.org/10.52842/conf.ecaade.2015.2.299
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 299-307
wos WOS:000372316000035
summary Novel digital fabrication platforms enable the design and construction of materially sophisticated structures with high spatial resolution in manufacturing. However, virtual-to-physical workflows and their associated software environments are yet to incorporate such capabilities. Our research sets the stage for seamless physical feedback workflows across media, disciplines and scales. We have coined the term Fabrication Information Modeling (FIM) to describe this approach. As preliminary methods we have developed four computational strategies for the design and digital construction of custom systems. These methods are presented in the context of specific design challenges and include a biologically driven fiber construction algorithm; an anatomically driven shell-to-wearable translation protocol; an environmentally-driven swarm printing system; and a manufacturing-driven hierarchical fabrication platform. We discuss and analyze these four challenges in terms of their capabilities to integrate design across media, disciplines and scales through concepts such as multi-dimensionality, media-informed computation and trans-disciplinary data.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e41927e2-6fe7-11e5-a181-5b730dc456c4
last changed 2022/06/07 07:55

_id caadria2015_010
id caadria2015_010
authors Gámez, Oscar; Jean-Claude Bignon and Gilles Duchanois
year 2015
title Assisted Construction of Non-Standard Wooden Walls and Envelope Structures by Parametric Modeling
doi https://doi.org/10.52842/conf.caadria.2015.653
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 653-662
summary The non-standard approach, widely discussed in the past years as Architecture progressively uses alternative design methods different from the Euclidean paradigm, has allowed architects to transform the way architecture is conceived and materialized. Such evolution uses computer-aided design along with automation in production to originate the environment for the aided architectural conception field in which we present a method, in its early development stage, intended to create non-standard walls and envelopes based on cellular patterns using wood as base material. We present the results obtained from modeling and building two full-scale prototypes of non-standard wooden walls.
keywords Non-standard walls; parametric modeling; CNC fabrication; cellular structures; wood construction.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2015_35
id ecaade2015_35
authors Hanzl, Malgorzata
year 2015
title Methods for Geometrical Examination of Physical Settings - In the Quest for a Modus Operandi in Culture Specific Urban Design
doi https://doi.org/10.52842/conf.ecaade.2015.1.361
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 361-368
wos WOS:000372317300039
summary The current paper develops and extends the methodology of the geometrical description of urban outdoor places, formerly defined as the index keys method. The previously defined features of street and square profiles and skylines, i.e.: central angle, regularity and corrugation, are further completed with variations which develop into a clear, mathematical explanation of the basic notions defining genius loci, including the scale and atmosphere of a place. Altogether, the geometrical analysis defined here stems from the descriptions of urban settings with regard to culture related issues. It also reveals some of the morphological processes in the transformation of urban settings which took place in the discussed locations. The algorithmic method, namely the use of Grasshopper scripting, has been applied for the automation of the process. The preliminary results of analyses are presented as well as further research pathways.
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=b1d2c184-7029-11e5-8095-a3d56b92ec9c
last changed 2022/06/07 07:49

_id caadria2015_105
id caadria2015_105
authors Hosny, A.; N. Jacobson and Z. Seibold
year 2015
title Voxel Beam
doi https://doi.org/10.52842/conf.caadria.2015.755
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 755-764
summary Voxelbeam explores precedents in the optimization of architectural structures, namely the Sydney Opera house Arup beam. The authors research three areas crucial to conceiving an innovative contemporary reinterpretation of the beam: A shift in structural analysis techniques from analytical to numerical models such as topology optimization, the fundamental differences between digital and analog representations of structural forces, and the translation of structural analysis data into methods for digital fabrication. The research aims to re-contextualize the structural beam within contemporary digital platforms, explores the architectural implications of topology optimization, and proposes two fabrication strategies based on the analysis results – including automated off-site pre-casting and multi-material 3d printing.
keywords Digital Fabrication, Topology Optimization, Multi-material 3D Printing, Emergent Structural Design, Arup Beam.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2015_273
id ecaade2015_273
authors Hunter, Jessica; Cheng, Alexandra, Tannert, Thomas, Neumann, Oliver and Meyboom, AnnaLisa
year 2015
title Extending the Perception of Wood - Research in Large Scale Surface Structures in Wood
doi https://doi.org/10.52842/conf.ecaade.2015.2.427
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 427-437
wos WOS:000372316000049
summary Architects have a renewed interest in surface structures and the renewable resource of wood, along with advanced digital design, analysis and machining techniques, offers a way of manifesting these forms. Wood is easily machined and has bending properties that lead to the ability to form curves. This paper looks at the properties of wood, informing design through its material characteristics. The research presented here contributes to this discourse through the development of large scale timber shell structures. We propose hyper efficient structures made out of laminated wood products to provide a new solution to long span construction while satisfying the demand for agency in form generation.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7609b276-70d7-11e5-a36d-a71a6f180fc2
last changed 2022/06/07 07:50

_id ecaade2015_307
id ecaade2015_307
authors Kallegias, Alexandros and Erdine, Elif
year 2015
title Design by Nature: Concrete Infiltrations
doi https://doi.org/10.52842/conf.ecaade.2015.2.513
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 513-520
wos WOS:000372316000058
summary The paper aims to address methods of realizing computationally generated self-organizing systems on a one-to-one scale with the employment of a singular material system. The case study described in this paper is the outcome of an investigation which has explored earth scaffolding, fabric form-work, and concrete materiality during an international three-week architecture workshop. Real-time generative form-finding methods based on branching and bundling systems in nature have been developed and simulated in an open-source programming environment. The outcome of the simulation stage has been analyzed structurally via Finite Element Analysis (FEA), results of which have served as inputs for the fine-tuning of the simulation. Final three-dimensional geometry has been fabricated by employing fabric, essentially forming the fabric form-work. Fabric form-work is then laid on top of the earth scaffolding, followed by the process of concrete casting. From a pedagogical point of view, the research focuses on the integration of digital design techniques between various design/architecture/analysis platforms combined with basic and advanced techniques of construction within a limited time frame.abstract here by clicking this paragraph.
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2015_179
id caadria2015_179
authors Kim, Eonyong; Jongtaek Yun and Sanghyun Cho
year 2015
title Integrated Space and Asset Management System for Large Scale Airport
doi https://doi.org/10.52842/conf.caadria.2015.807
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 807-816
summary Large-scale airports such as Incheon International Airport have large-scale terminals, annex buildings, and numerous open spaces. An integrated space management system is required to manage these buildings and spaces efficiently. Thus, Incheon International Airport Corporation developed a 3D computer-aided design (CAD)-based integrated space management system. The major system development goal was to provide intuitive 3D-based visual information, thereby realizing an integrated space and asset management system that does not require expert knowledge of any specific field, such as architecture. This paper discusses the construction of the system and the problems that had to be resolved to achieve this goal.
keywords Space and asset management, airport, 3D CAD, BIM
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2015_129
id ecaade2015_129
authors Mostafavi, Sina; Bier, Henriette, Bodea, Serban and Anton, AnaMaria
year 2015
title Informed Design to Robotic Production Systems - Developing Robotic 3D Printing System for Informed Material Deposition
doi https://doi.org/10.52842/conf.ecaade.2015.2.287
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 287-296
wos WOS:000372316000034
summary This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out resulting in the production of a one-to-one scale prototype. In this context, design materiality has been approached from both digital and physical perspectives. At digital materiality level, a customized computational design framework is implemented for form finding of compression only structures combined with a material distribution optimization method. Moreover, the chained connection between parametric design model and robotic production setup has led to a systematic study of certain aspects of physicality that cannot be fully simulated in the digital medium, which then establish a feedback loop for underrating material behaviors and properties. As a result, the D2RP system proposes an alternative method of robotic material deposition to create an informed material architecture.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=9b8d34a6-6fe6-11e5-be92-57ca3f902ce9
last changed 2022/06/07 07:58

_id caadria2015_109
id caadria2015_109
authors Moya, Rafael
year 2015
title Empirical Evaluation of Three Wind Analysis Tools for Concept Design of an Urban Wind Shelter
doi https://doi.org/10.52842/conf.caadria.2015.313
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 313-322
summary The aim of this investigation was to evaluate the performance of three wind analysis programs used in the early design stage (EDS) of a passive windbreak shelter concept for an urban context. This study compared the different workflows of these programs and the respective visualized results, identifying the differences and limitations of these tools, for design exploration. The programs tested were Autodesk Vasari, ODS-Studio, and ANSYS CFX. The results of this investigation indicate that basic computational fluid dynamics (CFD) programs such as Vasari was found to be more suitable for the observation of large-scale wind phenomena through the whole area of the shelter. Moreover, intermediate CFD tools (functions, usability) such as ODS-Studio can be used more efficiently in detailed visualization of wind interacting with design features. Finally, a more sophisticated CFD program like ANSYS CFX can be incorporated in the early design stage workflow for final verification of results.
keywords CFD; visualisation; wind; pedestrian comfort.
series CAADRIA
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_479006 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002