CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id ecaade2015_77
id ecaade2015_77
authors Bialkowski, Sebastian and Kepczynska-Walczak, Anetta
year 2015
title Engineering Tools Applied in Architecture - Challenges of Topology Optimization Implementation
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 261-268
doi https://doi.org/10.52842/conf.ecaade.2015.1.261
wos WOS:000372317300028
summary Computation, in the context of a digital designing process, is redefining architectural practice. Architects are developing new sets of tools which are dramatically changing the typical way of design procedure. The paper describes the research assumptions, problems and solutions proposition, aimed at creation of a real-time form finding tool for architects based on engineering methods. Through intersecting architectural form evaluation with engineering analysis and optimisation tools it is highly intended to offer the opportunity to variety of architects and designers to use the exceedingly complex and compound process for their design improvement. The form finding tool, to be effective and reliable, has to provide immediate feedback to a designer. This requirement enforces a software developer to use more sophisticated solutions. The paper focuses on possibilities of already known engineering procedures acceleration such as Finite Element Method or Topology Optimization for effective implementation in architectural design process.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=1337360e-702e-11e5-90b6-cbdace47c7fb
last changed 2022/06/07 07:52

_id ecaade2015_130
id ecaade2015_130
authors Asl, Mohammad Rahmani; Stoupine, Alexander, Zarrinmehr, Saied and Yan, Wei
year 2015
title Optimo: A BIM-based Multi-Objective Optimization Tool Utilizing Visual Programming for High Performance Building Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 673-682
doi https://doi.org/10.52842/conf.ecaade.2015.1.673
wos WOS:000372317300073
summary Within the architecture, engineering, and construction (AEC) industry, the application of multidisciplinary optimization methods has been shown to reach significant improvements in building performance compared to conventional design methods. As a result, the use of multidisciplinary optimization in the process of design is growing and becoming a common method that provides desired performance feedback for decision making. However, there is a lack of BIM-based multidisciplinary optimization tools that use the rich information stored in Building Information Models (BIM) to help designers explore design alternatives across multiple competing design criteria. In this paper we introduce Optimo, an open-source visual programming-based Multi-Objective Optimization (MOO) tool, which is developed to parametrically interact with Autodesk Revit for BIM-based optimization. The paper details the development process of Optimo and also provides the initial validation of its results using optimization test functions. Finally, strengths, limitations, current adoption by academia and industry, and future improvements of Optimo for building performance optimization are discussed.
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
doi https://doi.org/10.52842/conf.acadia.2015.357
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2015_190
id cf2015_190
authors Datta, Sambit
year 2015
title Accuracy and Ambiguity: Geometric reconstruction of a seventh century stone temple in Hanchey, Cambodia
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 190-202.
summary Modeling the fragmented and heavily eroded remains of early temple architecture poses several challenges in accurate reconstruction of shape and form from digitally acquired datasets. This paper describes a collection of stepwise ad-hoc modeling methods that can re-assemble ambiguous and fragmentary evidence to provide a robust and empirical platform for the reconstruction of ruined temples. The paper presents the results of the method and the degree of accuracy and ambiguity in the acquisition, processing and reconstruction phases. A key aspect of the method is the maintenance of multiple “ground truths” from plural sources of partial evidence. Key findings of the paper demonstrate early results from the manipulation of geometric modeling primitives based on point collections, an advance in extending the classical tools of architectural analysis and comparison. The problem of accuracy and ambiguity in these methods and their algorithmic implementation is the subject of further investigation.
keywords Digital data acquisition, flexible modeling, heritage reconstruction and visualization
series CAAD Futures
email
last changed 2015/06/29 07:55

_id sigradi2015_3.65
id sigradi2015_3.65
authors Gámez, Oscar; Meyer, Julien; Claude-Bignon, Jean; Duchanois, Gilles
year 2015
title Interaction of analogic and digital workflows for architectural design and production
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 77-85.
summary Architectural conception often faces challenges regarding the way a design becomes real. Today’s digital tools make possible to conceive and produce more defying architectural objects, which needs special abilities in the field of modeling and programming applied to design. The work presented in this writing, shows how actual digital methods of conception and production are underpinned on traditional procedures of conception and construction as it looks back on the way traditional techniques come to help the digital approach, when the latter is not achieved the way and by the means it is intended to.
keywords Digital Conception, Robotic Fabrication, Non-standard Architecture, Wood Construction
series SIGRADI
email
last changed 2016/03/10 09:53

_id caadria2015_139
id caadria2015_139
authors Herr, Christiane M. and Ryan C. Ford
year 2015
title Adapting Cellular Automata as Architectural Design Tools
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 169-178
doi https://doi.org/10.52842/conf.caadria.2015.169
summary In this paper we examine the adaptations cellular automata (CA) are typically subjected to when they are applied to architectural designing. We argue that, despite a number of earlier studies that portrayed CA as generic generative design tools, the transition from generic CA to specific design tools is not yet well understood. To describe this transition, we first examine this aspect in a number of previous studies relating CA to architectural design. In a following detailed analysis of an applied design case study, we trace similarities between findings made in the literature review to findings made in the case study and extend them with additional observations. We conclude with a summary of challenges and opportunities met by architectural designers employing and developing CA for design purposes.
keywords Cellular automata; generative design; design research; design tools.
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2015_078
id caadria2015_078
authors Yanagawa, Kane
year 2015
title Confluence of Parametric Design and Digital Fabrication Restructuring Manufacturing Industries
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 13-22
doi https://doi.org/10.52842/conf.caadria.2015.013
summary The positive consumer reception of 3D printed products suggests that the coupling of digital fabrication technology and parametric design methodologies presents opportunities and challenges to traditional modes of industrial manufacturing. This paper outlines the manner in which parametrically defined constraints of components within design hysteresis can be implemented to maintain conformation to real world constraints. The study challenged ten architectural designers to develop parametric definitions using conventional CAD software and visual programming languages to describe the geometric logic of a simple pendant lamp while permitting some consumer defined shape parameters. The assessment of submitted design descriptions suggests that defining such a system parametrically for manufacturing requires the development of an approach that is capable of not only intelligently managing interdisciplinary dependencies but also evaluating performance factors within implicit design space. During the next phase of this research, focus will be on the application of the proposed constrained design hysteresis methodology in collaboration with a major manufacturing industry partner to further develop and explore its potential in real world implementation. If proven effective, it can be expected that adoption of the combination of parametric design tools and digital fabrication among major manufacturing industries will be pervasive in the coming years.
keywords Parametric design; digital fabrication; collaborative design; mass-customization; constrained design hysteresis
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2015_043
id caadria2015_043
authors Zboinska, Malgorzata A.
year 2015
title Enriching Creativity in Digital Architectural Design
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 819-828
doi https://doi.org/10.52842/conf.caadria.2015.819
summary Although conceptual design is one of the most important stages of creation, impacting the quality and cost of the final product, current research indicates that designers still lack adequate tools supporting early-stage design. This research challenges that notion, by proposing a hybrid digital design platform for conceptual architectural design. The platform contains four miscellaneous techniques: animation, free-form modelling, associative parametric modelling and per-formance-driven modelling. In a digital design experiment we demon-strate that the collective application of these techniques to early-stage design explorations intensifies the architect’s visual and cognitive rea-soning processes, and hence supports the emergence of promising de-sign artefacts which bear the traces of all the techniques applied in the course of their conception. Additionally, the study also points at some other promising virtues of the hybrid toolset, including: provision of diversified form-finding opportunities on various levels of design ab-straction; the potential to direct designers onto unplanned creation paths; the ability to increase the versatility and functionality of the solutions; and the capacity to sustain design activities of various character, ranging from highly intuitive ones to very rational ones.
keywords Conceptual design methods and tools; free-form modelling; animation; associative parametric modelling; performance-driven design.
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia15_095
id acadia15_095
authors Tam, Kam-Ming Mark; Mueller, Caitlin T.
year 2015
title Stress Line Generation for Structurally Performative Architectural Design
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 95-109
doi https://doi.org/10.52842/conf.acadia.2015.095
summary Principal stress lines, which are pairs of orthogonal curves that indicate trajectories of internal forces and therefore idealized paths of material continuity, naturally encode the optimal topology for any structure for a given set of boundary conditions. Although stress line analysis has the potential to offer a direct, and geometrically-provocative approach to optimization that can synthesize both design and structural objectives, its application in design has generally been limited due to the lack of standardization and parameterization of the process for generating and interpreting stress lines. Addressing these barriers that limit the application of the stress line methods, this paper proposes a new implementation framework that will enable designers to take advantage of stress line analysis to inform conceptual structural design. Central to the premise of the research proposal is a new conception of structurally-inspired design exploration that does not impose a singular solution, but instead allows for the exploration of a diverse high-performance design space in order to balance the combination of structural and architectural design objectives.
keywords Topological Optimization, Structural Optimization, Conceptual Structural Design, Principal Stress Lines, Principal Stress Directions, Optimal Structures, Interdisciplinary Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia15_263
id acadia15_263
authors Ahlquist, Sean
year 2015
title Social Sensory Architectures: Articulating Textile Hybrid Structures for Multi-Sensory Responsiveness and Collaborative Play
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 263-273
doi https://doi.org/10.52842/conf.acadia.2015.263
summary This paper describes the development of the StretchPLAY prototype as a part of the Social Sensory Surfaces research project, focusing on the design of tactile and responsive environments for children with Autism Spectrum Disorder (ASD). The project is directed specifically at issues with sensory processing, the inability of the nervous system to filter sensory input in order to indicate an appropriate response. This can be referred to as a “traffic jam” of sensory data where the intensity of such unfiltered information leads to an over-intensified sensory experience, and ultimately a dis-regulated state. To create a sensory regulating environments, a tactile structure is developed integrating physical, visual and auditory feedback. The structure is defined as a textile hybrid system integrating a seamless knitted textile to form a continuous topologically complex surface. Advancements in the fabrication of the boundary structure, of glass-fiber reinforced rods, enable the form to be more robustly structured than previous examples of textile hybrid or tent-like structures. The tensioned textile is activated as a tangible interface where sensing of touch and pressure on the surface triggers ranges of visual and auditory response. A specific child, a five-year old girl with ASD, is studied in order to tailor the technologies as a response to her sensory challenges. This project is a collaboration with students, researchers and faculty in the fields of architecture, computer science, information (human-computer interaction), music and civil engineering, along with practitioners in the field of ASD-based therapies.
keywords Textile Hybrid, Knitting, Sensory Environment, Tangible Interface, Responsive systems and environments
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2015_303
id ecaade2015_303
authors Coroado, Luís; Pedro, Tiago, D'Alpuim, Jorge, Eloy, Sara and Dias, MiguelSales
year 2015
title VIARMODES: Visualization and Interaction in Immersive Virtual Reality for Architectural Design Process
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 125-134
doi https://doi.org/10.52842/conf.ecaade.2015.1.125
wos WOS:000372317300014
summary The complexity of today´s architecture solutions brings the need to integrate, in the design process, digital tools for creation, visualization, representation and evaluation of design solutions. This paper proposes the adoption of a new Virtual Reality (VR) tool, referred to as VIARmodes, to support the architectural design process with an improved communication across different specialities, towards the facilitation of the project decision process. This tool allows a complete visualization of the design, specifically useful during the detailed design phase, including the architecture design and of other engineering specialities, progressively and interactively adapting the project visualization to the information needed for each discipline. With a set of 3 different visualization modes simulated in real scale within a Virtual Environment (VE), and adopting natural human-computer interaction by using speech, the system allows a team of architect and engineers, to visualize and interact with the proposed design during a collaborative design brief. We carried a usability evaluation study with 12 architects. The study showed that the tool was perceived to be effective and its use efficient during the design process, especially during the detailed design phase.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4129cbae-70c8-11e5-be63-27454208986c
last changed 2022/06/07 07:56

_id ecaade2015_120
id ecaade2015_120
authors Daoud, Bassam and Voordouw, Johan
year 2015
title Making Machines that Make Buildings - Constructing a Mobile 3D Printer for Concrete Elements
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 355-359
doi https://doi.org/10.52842/conf.ecaade.2015.2.355
wos WOS:000372316000041
summary This paper is both a fundamental and applied study of the multi-faceted design and fabrication issues related to the construction of a mobile 3D printer. The paper signifies the halfway point in a project initiated at the Azrieli School of Architecture and Urbanism at Carleton University starting in 2013. The printer, entitled 3DB, intends to print concrete elements for the Architecture, Engineering and Construction industry. The printer frame was designed to fit within the bed of a typical half-ton pick up truck or contract trailer. The paper describes the design, simulation and construction of the steel frame, gantry and extruder and makes speculation on future research including improved design of the extruder and nozzle mechanism.
series eCAADe
email
last changed 2022/06/07 07:55

_id eaea2015_t3_paper12
id eaea2015_t3_paper12
authors LoBuglio, David; Derycke, Denis
year 2015
title Reduce to Understand: A Challenge for Analysis and Three-dimensional Documentation of Architecture
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.388-397
summary For nearly thirty years, the digital phenomenon has integrated many disciplines. Those involved in image processing and analysis took advantage of this major technological breakthrough to revisit the tools and methods of their discipline. In this context, the architectural field, and more specifically the one of heritage analysis and documentation, have greatly benefited from the development of acquisition and visualization techniques. Today, it is no longer unusual to document a building with millions of three-dimensional spatial coordinates. Nevertheless, until the last century, documentation by drawing corresponded to a work of reverse engineering in which it belonged to the architect to understand the object and to represent its key feature. Today, 3D data acquisition technology promotes an increasingly “figurative” representation of architecture. In this paper, we consider some epistemological avenues for the integration of those new approaches to the requirements of architectural representation.
keywords computer graphics; architectural representation; architectural education; architectural survey
series EAEA
email
last changed 2016/04/22 11:52

_id acadia15_211
id acadia15_211
authors Melsom, James; Girot, Christophe; Hurkxkens, Ilmar
year 2015
title Directed Deposition: Exploring the Roles of Simulation and Design in Erosion and Landslide Processes
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 211-221
doi https://doi.org/10.52842/conf.acadia.2015.211
summary Working with and against environmental processes, such as the movement of water, earth, and rock, and terrain, has been a perpetual challenge since the dawn of civilisation. While it has been possible to gradually tame many landscapes to perform in a predictable manner, there are many circumstances where we are forced to live with and around such processes in everyday life. This research is primarily interested in the potential of design to interact with such processes. Specifically, we are interested in the designed redirection of erosion and landslide processes already observable in nature, taking the urbanised hillsides of the Alps as test case scenario. The research specialisation continues a research and design focus specialised on processes material deposition of river and flood systems, further down the water catchment chain (REF: ANON 2012). This specific alpine research is compelling in the context of Anthropocene processes, we are specifically focussed in the appraisal, harnessing and redirection of existing environmental phenomena, given what can be understood as our inevitable interaction with these processes (Sijmons 2015). Within this broader research, which has ecological, cultural, and formal potential, this paper shall explore the practical aspects of connecting design, and the designer, with the potential for understanding and designing these evolving mountain landscapes. There is a long history behind the development of landscape elements which control avalanches, mud, rock, and landslides. The cultural, functional and aesthetic role of such elements in the landscape is relatively undiscussed, epitomising an approach that is primarily pragmatic in both engineering and expense. It is perhaps no surprise that these elements have a dominant physical and visual presence in the contemporary landscape. Through the investigation of synergies with other systems, interests, and design potential for such landscape elements, it is proposed that new potential can be found in their implementation. This research proposes that the intuitive linking of common design software to direct landslide simulation, design of and cultural use can interact with these natural processes. This paper shall demonstrate methods to within which design can enter the process of landscape management, linking the modelling processes of the landscape designer with the simulation capabilities of the specialised engineer.
keywords Landscape Design Workflows, Landscape Simulation, Terrain Displacement, Material Flow, Erosion Processes, Interdisciplinary Workflows
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia23_v3_71
id acadia23_v3_71
authors Vassigh, Shahin; Bogosian, Biayna
year 2023
title Envisioning an Open Knowledge Network (OKN) for AEC Roboticists
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The construction industry faces numerous challenges related to productivity, sustainability, and meeting global demands (Hatoum and Nassereddine 2020; Carra et al. 2018; Barbosa, Woetzel, and Mischke 2017; Bock 2015; Linner 2013). In response, the automation of design and construction has emerged as a promising solution. In the past three decades, researchers and innovators in the Architecture, Engineering, and Construction (AEC) fields have made significant strides in automating various aspects of building construction, utilizing computational design and robotic fabrication processes (Dubor et al. 2019). However, synthesizing innovation in automation encounters several obstacles. First, there is a lack of an established venue for information sharing, making it difficult to build upon the knowledge of peers. First, the absence of a well-established platform for information sharing hinders the ability to effectively capitalize on the knowledge of peers. Consequently, much of the research remains isolated, impeding the rapid dissemination of knowledge within the field (Mahbub 2015). Second, the absence of a standardized and unified process for automating design and construction leads to the individual development of standards, workflows, and terminologies. This lack of standardization presents a significant obstacle to research and learning within the field. Lastly, insufficient training materials hinder the acquisition of skills necessary to effectively utilize automation. Traditional in-person robotics training is resource-intensive, expensive, and designed for specific platforms (Peterson et al. 2021; Thomas 2013).
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id sigradi2015_3.300
id sigradi2015_3.300
authors Batistello, Paula; Balzan, Katiane Laura; Piaia, Luana Peroza; Miotto, Juliano
year 2015
title Rapid prototyping and digital fabrication in vertical atelier: from process to materialization
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 137-142.
summary The evolution of techniques and digital tools has aided and complemented actions in the design process, generating alternatives and reducing costs in short times. This paper reports experience that integrated the rapid prototyping in vertical atelier, in one of Pronto 3D network institution member. The results shows that use of rapid prototyping technology contributes to design improvement process applied to teaching of architecture and urbanism, mainly in relation of identification in failures and conflicts of proposals, which eventually pass unnoticed by students in different phases of the course.
keywords Rapid Prototyping, Architectural Design Process, Vertical Atelier
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_48
id ecaade2015_48
authors Edemskaya, Elizaveta and Agkathidis, Asterios
year 2015
title Vladimir Shukhov - A Critical Review on Digital Architecture
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 395-402
doi https://doi.org/10.52842/conf.ecaade.2015.1.395
wos WOS:000372317300043
summary This paper is a critical review on advantages and disadvantages of contemporary digital architecture, in retrospect to Vladimir Shukhov's design techniques, applied in the early 20th century. After investigating Shukhov's structural systems, this paper explores the relationship between performance and form, questioning the necessity of high-complexity structures. It will present unpublished archive material of his early work and stimulate a valuable discussion by comparing it with contemporary projects designed by renowned architects. The study on Shukhov focuses on his tessellation method of double-curved surfaces using simple standardized elements. The study of present digital approaches revolves around leading architects using computational tools (e.g. Foster and Partners, Buro Happold and Arup), who have materialized high complexity structures composed by irregular units. Our findings highlight advantages and disadvantages of contemporary computational approaches.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=bbc13038-7022-11e5-936a-d7a776e5d67a
last changed 2022/06/07 07:55

_id ecaade2015_ws-robowood
id ecaade2015_ws-robowood
authors Hornung, Philipp; Johannes Braumann, Reinhold Krobath, Sigrid Brell-Cokcan and Georg Glaeser
year 2015
title Robotic Woodcraft: Creating Tools for Digital Design and Fabrication
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 33-36
doi https://doi.org/10.52842/conf.ecaade.2015.2.033
wos WOS:000372316000004
summary Robotic Woodcraft is a transdisciplinary, arts-based investigation into robotic arms at the University for Applied Arts Vienna. Bringing together the craftsmen of the Department for Wood Technology, the geometers of the Department for Arts and Technology, the young industrial design office Lucy.D and the roboticists of the Association for Robots in Architecture, the research project explores new approaches on how to couple high-tech robotic arms with high-end wood fabrication. In the eCAADe workshop, participants are introduced to KUKA|prc (parametric robot control, Braumann and Brell-Cokcan, 2011) and shown approaches on how to create their own digital fabrication tools for customized fabrication processes involving wood.
keywords Robotic woodcraft; Arts-based research; Robotic fabrication; Visual programming; Parametric robot control
series eCAADe
last changed 2022/06/07 07:50

_id caadria2015_102
id caadria2015_102
authors Loh, Paul
year 2015
title Articulated Timber Ground, Making Pavilion as Pedagogy
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 23-32
doi https://doi.org/10.52842/conf.caadria.2015.023
summary Designing and making a pavilion within a studio setting has been undertaken by various educators and researchers as a valuable pedagogy in the past 10 years. It aims to construct a collaborative environment that allows students to develop an integrated approach to learning; through association, teamwork and creative collaboration. Usually the tacit knowledge applied and acquired through making, and the knowledge of design strategy and analysis are separated in the way they are taught; it is often difficult to integrate these within the same coursework which often leads to students using digital software and fabrication tools as problem solving devices. This paper looks at an integrated approach to learning computational design and digital fabrication through the making of a pavilion by a Master level design studio. The paper discusses the pedagogy of making through creative collaboration and integrated workflow. It focuses on the use of digital and physical prototypes as devices to stimulate an oscillating dialogue between problem solving and puzzle making; a counterpoint for students to develop and search for new knowledge in order to create personalised learning experience. The paper concludes with an examination on the limits of digital prototype when interfaced with physical environment.
keywords Digital Fabrication; Collaborative Design; Design Workflow; Pedagogy, File to Production
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_227404 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002