CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id ecaade2015_269
id ecaade2015_269
authors Gago, Ricardo and Romão, Luís
year 2015
title Geometric Identity of Living Structures Translated to an Architectural Design Process
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 591-600
doi https://doi.org/10.52842/conf.ecaade.2015.2.591
wos WOS:000372316000066
summary Biological life manifests in space through a large diversity of physical structures perfectly bind and identifiable in the environment. This reveals that all share a common generative design process which allows them the same physical identity in all the shapes that generates, The human ecological design process used in architecture is not able yet to reach this design identity neither the spontaneous integration associates to it. Why? Because the geometrical design process used in ecological architecture and living structures are not similar. Thus, this paper proposes, through the identification of some geometrical characteristics from the growth mechanism of living structures, a process of shape generation through shape grammar. With this generation process is possible to generate, only in geometrical terms, a large diversity of architectural models with a common identity, that reveals some geometrical characteristics of spatial integration that living structures share with the surround environment.
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia15_137
id acadia15_137
authors Ireland, Tim
year 2015
title A Cell-Inspired Model of Configuration
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 137-148
doi https://doi.org/10.52842/conf.acadia.2015.137
summary This paper presents a bottom-up approach to organising architectural-space, which offers a fresh outlook on the automatic generation of architectural layouts. Artificial creatures, modelled on Eukaryotic cells, are used as components with which to generate configurations articulating patterns of habitation. These components represent discrete activities. Activity is perceived to be the basic building block of spatial configuration in architecture. Attributes, pertaining to input and outputs, establish activities as occurring in chains of action; affected by that which has preceded and affecting that which is to transpire. Being artificial creatures these activity-components have the capacity to interact with their environment and each other, and self-organise to form aggregations. The model demonstrates an ecological approach to designing in a manner that unites computational design with biological and semiotic theory. The theoretical basis of the model is first outlined, and then the computer model is presented and described.
keywords Agents, Artificial Life, Configuration, Spatial Organisation, Behaviour of Organisms, Activity Diagrams
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id acadia15_095
id acadia15_095
authors Tam, Kam-Ming Mark; Mueller, Caitlin T.
year 2015
title Stress Line Generation for Structurally Performative Architectural Design
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 95-109
doi https://doi.org/10.52842/conf.acadia.2015.095
summary Principal stress lines, which are pairs of orthogonal curves that indicate trajectories of internal forces and therefore idealized paths of material continuity, naturally encode the optimal topology for any structure for a given set of boundary conditions. Although stress line analysis has the potential to offer a direct, and geometrically-provocative approach to optimization that can synthesize both design and structural objectives, its application in design has generally been limited due to the lack of standardization and parameterization of the process for generating and interpreting stress lines. Addressing these barriers that limit the application of the stress line methods, this paper proposes a new implementation framework that will enable designers to take advantage of stress line analysis to inform conceptual structural design. Central to the premise of the research proposal is a new conception of structurally-inspired design exploration that does not impose a singular solution, but instead allows for the exploration of a diverse high-performance design space in order to balance the combination of structural and architectural design objectives.
keywords Topological Optimization, Structural Optimization, Conceptual Structural Design, Principal Stress Lines, Principal Stress Directions, Optimal Structures, Interdisciplinary Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2015_273
id ecaade2015_273
authors Hunter, Jessica; Cheng, Alexandra, Tannert, Thomas, Neumann, Oliver and Meyboom, AnnaLisa
year 2015
title Extending the Perception of Wood - Research in Large Scale Surface Structures in Wood
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 427-437
doi https://doi.org/10.52842/conf.ecaade.2015.2.427
wos WOS:000372316000049
summary Architects have a renewed interest in surface structures and the renewable resource of wood, along with advanced digital design, analysis and machining techniques, offers a way of manifesting these forms. Wood is easily machined and has bending properties that lead to the ability to form curves. This paper looks at the properties of wood, informing design through its material characteristics. The research presented here contributes to this discourse through the development of large scale timber shell structures. We propose hyper efficient structures made out of laminated wood products to provide a new solution to long span construction while satisfying the demand for agency in form generation.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7609b276-70d7-11e5-a36d-a71a6f180fc2
last changed 2022/06/07 07:50

_id cf2017_111
id cf2017_111
authors Kepczynska-Walczak, Anetta; Pietrzak, Anna
year 2017
title An Experimental Methodology for Urban Morphology Analysis
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 111.
summary The paper presents results of a research conducted in 2015 and 2016 at Lodz University of Technology. It proposes a purpose and context fit approach towards the automation of urban data generation based on GIS tools and New Urbanism typologies. First, background studies of methods applied in urban morphology analysis are revealed. Form-Based Code planning, and subsequently Transect-Based Code are taken into account. Then, selected examples from literature are described and discussed. Finally, the research study is presented and the outcomes compared with more traditional methodology.
keywords GIS, Urban morphology, Spatial analysis, Decision support systems, Urban design, Data analytics, Modelling and simulation
series CAAD Futures
email
last changed 2017/12/01 14:37

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id ecaade2015_136
id ecaade2015_136
authors Makki, Mohammed; Farzaneh, Ali and Navarro, Diego
year 2015
title The Evolutionary Adaptation of Urban Tissues through Computational Analysis
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 563-571
doi https://doi.org/10.52842/conf.ecaade.2015.2.563
wos WOS:000372316000063
summary The use of evolutionary solvers in design has introduced the potential of dealing with multiple conflicting objectives under a single design model. The experiments presented in this paper employ an evolutionary solver towards the generation of a 4x4 urban superblock in the city of Barcelona, one of the highest population density cities in Europe. The superblock is based on Cerda's iconic 8-sided block and takes three conflicting objectives into account, aiming not only to achieve a high density proposal but one that considers block relations, as well as green space throughout the city. The design is based on principles of evolutionary science, generating a population of solutions, whose individuals are ranked and selected based on a fitness criteria. Rather than aiming to reach a single 'optimal' solution, the model produces a population of solutions that are optimized in relation to the design environment.
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2015_175
id ecaade2015_175
authors Schaffranek, Richard and Harald, Trapp
year 2015
title Automated Generation of Heuristics for Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 483-492
doi https://doi.org/10.52842/conf.ecaade.2015.2.483
wos WOS:000372316000055
summary The crisis of architecture is a crisis of form, therefore new approaches and definitions are necessary. The children´s game of Hide-and-Seek seems extremely relevant to learn the complex interplay of social interaction and space. What if its hiding places were to be designed by an architect? Is there a method to relate the rules of the game to the number, design and layout of its obstacles in such a way as to create a successful game?A possibility to tackle this problem is the use of metaheuristic solvers. But even for the simple game of Hide-and-Seek, their use is confined to cases with a very limited set of obstacles and players, since the time needed to calculate the fitness function increases rapidly. To overcome this we suggest the use of statistical methods to develop a heuristic fitness function based on properties which can be directly computed from the values of the genotype. The resulting function makes is possible to solve the given problem using a metaheuristic solver not only for the simple cases with 3 or 4, but also for those with n obstacles.
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2015_25
id ecaade2015_25
authors Strobbe, Tiemen; De Meyer, Ronald and Van Campenhout, Jan
year 2015
title A Semi-Automatic Approach for the Definition of Shape Grammar Rules
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 437-443
doi https://doi.org/10.52842/conf.ecaade.2015.1.437
wos WOS:000372317300047
summary Shape grammars provide a concise and computable framework for design space exploration. An important aspect of design space exploration, especially in the case of grammar-based exploration of visual languages, is the ability to modify grammar rules in order to reach design solutions that are not in the scope of the initial grammar. In this paper, we describe and implement a semi-automatic approach for the 'on-the-fly' generation of new rules. In particular, new rules are added to a shape grammar by manually modifying the current shape in the derivation. This approach might enable a more agile exploration of the design space. Also, we demonstrate a proof-of-concept of the proposed approach based on an existing graph-theoretic framework for the computer implementation of shape grammars.
series eCAADe
email
last changed 2022/06/07 07:56

_id cf2015_242
id cf2015_242
authors Vanz, Elena and Karakiewicz, Justyna
year 2015
title Pedestrian as generator: Implementing a stand-alone piezo power generating device in the urban context
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 242.
summary During the past decade the implementation of energy harvesting sensor technology, at micro scale, has occurred due to the rapid growth of low-powered device usage, such as mobile phones, laptops, and the development of LED lights significantly increasing in efficiency. Studies have demonstrated that the ability of this technology to harvest energy from the human body, such as footfalls, can be used in the generation of electricity. Piezoelectric sensor technology has been investigated for this purpose, due to its significant advancement in the efficiency and its application in a variety of designs. This research investigates how pedestrians can become generators of their own service, through the use of piezoelectric sensor technology, in the form of safety lighting. Proposed urban design scenarios explore the opportunity implementing a piezo power-generating device along high traffic pedestrians pathways in the City of Melbourne (Australia), evaluating real time and storage options, considering harvesting the energy during the day and using it at night time when needed.
keywords Piezoelectric sensor technology, micro-scale distributed generation, public space.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id acadia20_238
id acadia20_238
authors Zhang, Hang
year 2020
title Text-to-Form
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 238-247.
doi https://doi.org/10.52842/conf.acadia.2020.1.238
summary Traditionally, architects express their thoughts on the design of 3D architectural forms via perspective renderings and standardized 2D drawings. However, as architectural design is always multidimensional and intricate, it is difficult to make others understand the design intention, concrete form, and even spatial layout through simple language descriptions. Benefiting from the fast development of machine learning, especially natural language processing and convolutional neural networks, this paper proposes a Linguistics-based Architectural Form Generative Model (LAFGM) that could be trained to make 3D architectural form predictions based simply on language input. Several related works exist that focus on learning text-to-image generation, while others have taken a further step by generating simple shapes from the descriptions. However, the text parsing and output of these works still remain either at the 2D stage or confined to a single geometry. On the basis of these works, this paper used both Stanford Scene Graph Parser (Sebastian et al. 2015) and graph convolutional networks (Kipf and Welling 2016) to compile the analytic semantic structure for the input texts, then generated the 3D architectural form expressed by the language descriptions, which is also aided by several optimization algorithms. To a certain extent, the training results approached the 3D form intended in the textual description, not only indicating the tremendous potential of LAFGM from linguistic input to 3D architectural form, but also innovating design expression and communication regarding 3D spatial information.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2015_9.347
id sigradi2015_9.347
authors Andrade, Eduardo; Orellana, Nicolas; Mesa, Javiera; Felmer, Patricio
year 2015
title Spatial Configuration and Sociaty. Comparison between the street market Tristan Matta and Tirso de Molina Market
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 481-485.
summary This research aims to clarify how certain visual and accessibility patterns, in buildings and urban environments, are related to social activities that take place in them. The study, based on the theory of space syntax (Hillier & Hanson 1984; Hillier, 1996), seeks to recognize patterns of behavior, both individual and aggregate. The case studies are Tirso de Molina Market and the free street market Tristan Matta, both in Santiago de Chile.
keywords pace Syntax, Visibilidad, Accesibilidad, Conectividad, Comportamiento
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia15_123
id acadia15_123
authors Askarinejad, Ali; Chaaraoui, Rizkallah
year 2015
title Spatial Nets: the Computational and Material Study of Reticular Geometries
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 123-135
doi https://doi.org/10.52842/conf.acadia.2015.123
summary Reticular systems are in many aspects a distinct taxonomy of volumetric geometries. In comparison with the conventional embodiment of a ‘volume’ that encapsulates a certain quantity of space with a shell reticular geometries emerge from the accumulation of micro elements to define a gradient of space. Observed in biological systems, such structures result from their material properties and formation processes as well as often ‘simple’ axioms that produce complex results. In micro or macro levels, from forest tree canopies to plant cell walls these porous volumes are not shaped to have a singular ‘solution’ for a purpose; they provide the fundamental geometric characteristics of a ‘line cloud’ that is simultaneously flexible in response to its environment, porous to other systems (light, air, liquids) and less susceptible to critical damage. The porosity of such systems and their volumetric depth also result in kinetic spatial qualities in a 4D architectural space. Built upon a ‘weaving’ organization and the high performance material properties of carbon fiber composite, this research focuses on a formal grammar that initiates the complex system of a reticular volume. A finite ‘lexical’ axiom is consisted of the basic characters of H, M and L responding to the anchor points on the highest, medium and lower levels of the extruding loom. The genome thus produces a string of data that in the second phase of programming are assigned to 624 points on the loom. The code aims to distribute the nodes across the flat line cloud and organize the sequence for the purpose of overlapping the tensioned strings. The virtually infinite results are then assessed through an evolutionary solver for confining an array of favorable results that can be then selected from by the designer. This research focuses on an approximate control over the fundamental geometric characteristics of a reticular system such as node density and directionality. The proposal frames the favorable result of the weave to be three-dimensional and volumetric – avoiding distinctly linear or surface formations.
keywords Reticular Geometries, Weaving, Line Clouds, Three-dimensional Form-finding, Carbon fiber, Prepreg composite, Volumetric loom, Fiberous Materials, Weaving fabrication, Formal Language, Lexical design, Evolutionary solver
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia17_202
id acadia17_202
authors Cupkova, Dana; Promoppatum, Patcharapit
year 2017
title Modulating Thermal Mass Behavior Through Surface Figuration
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 202-211
doi https://doi.org/10.52842/conf.acadia.2017.202
summary This research builds upon a previous body of work focused on the relationship between surface geometry and heat transfer coefficients in thermal mass passive systems. It argues for the design of passive systems with higher fidelity to multivariable space between performance and perception. Rooted in the combination of form and matter, the intention is to instrumentalize design principles for the choreography of thermal gradients between buildings and their environment from experiential, spatial and topological perspectives (Figure 1). Our work is built upon the premise that complex geometries can be used to improve both the aesthetic and thermodynamic performance of passive building systems (Cupkova and Azel 2015) by actuating thermal performance through geometric parameters primarily due to convection. Currently, the engineering-oriented approach to the design of thermal mass relies on averaged thermal calculations (Holman 2002), which do not adequately describe the nuanced differences that can be produced by complex three-dimensional geometries of passive thermal mass systems. Using a combination of computational fluid dynamic simulations with physically measured data, we investigate the relationship of heat transfer coefficients related to parameters of surface geometry. Our measured results suggest that we can deliberately and significantly delay heat absorption re-radiation purely by changing the geometric surface pattern over the same thermal mass. The goal of this work is to offer designers a more robust rule set for understanding approximate thermal lag behaviors of complex geometric systems, with a focus on the design of geometric properties rather than complex thermal calculations.
keywords design methods; information processing; physics; smart materials
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_124
id ecaadesigradi2019_124
authors Ham, Jeremy, Woessner, Uwe, Kieferle, Joachim and Harvey, Lawrence
year 2019
title Exploring the Affordances and Musico-Spatial Performance Opportunities of a Virtual Drumming Environment
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 441-448
doi https://doi.org/10.52842/conf.ecaade.2019.2.441
summary The intersection of music and architecture (spatial design) has remained a fascination for practitioners and researchers for many years. This paper reports on the development of a Virtual Drumming Environment (VDE) that provides a research and cross-domain performance environment for musico-spatial design research explorations.The VDE is explored as a means of revealing affordances related to the complexities of polyrhythmic drumming through cross-domain representation of MIDI data as polyrhythmic event-time-dynamics molecules (PM) within virtual space. Further to this, we explore the VDE as a cross-domain performance environment where new modes of musico-spatial improvisation are revealed that extend drumming's 'known worlds' (Bruford, 2015).
keywords Music and Architecture; Cross-Domain Representation; Virtual Reality; Musico-Spatial performance; Affordance
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ecaade2015_227
id ecaade2015_227
authors Ireland, Tim
year 2015
title An Artificial Life Approach to Configuring Architectural Space
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 581-590
doi https://doi.org/10.52842/conf.ecaade.2015.2.581
wos WOS:000372316000065
summary This paper presents a method of configuring architectural space that articulates the coupling of an organism with its environment; expressing the spatiality of unfolding engagement in the world. The premise is that space is a consequence of cohesion, effected through constraints and processes of enaction. An Artificial Life model is presented as an analogue of a bottom-up approach to architectural design that takes into account that we as organisms interact with our ever present changing environment and redefine our spatial domain depending on our sensory interaction with said environment.
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2015_164
id ecaade2015_164
authors Jang, Sun-Young and Sung-AhKim
year 2015
title SMART ALLEY: A Platform for Sharing Experience in a Community Space Augmented by Urban Media
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 529-538
doi https://doi.org/10.52842/conf.ecaade.2015.1.529
wos WOS:000372317300057
summary This research proposed an urban platform designed to facilitate the sharing of community experience in the spatial context of traditional 'alley'. 'Smart Alley' refers to a smart space in which various urban media, supported with IoT technologies, interplays so that the creation and consumption of media content leads to vivid social interactions in this specific urban space. The proposed urban platform is driven by the Content Management System (CMS). An urban ontology works as a logic model of the CMS. This paper focused on the conceptualization and design of both CMS and ontology modules within the smart alley framework. Outcomes from the 'Smart Alley Workshop' are presented, which was conducted to develop smart services to utilize the smart alley platform.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=46747512-70d9-11e5-8c55-3fd06eb60931
last changed 2022/06/07 07:52

_id ascaad2010_097
id ascaad2010_097
authors Kenzari, Bechir
year 2010
title Generative Design and the Reduction of Presence
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 97-106
summary Digital design/fabrication is slowly emancipating architectural design from its traditional static/representational role and endowing it instead with a new, generative function. In opposition to the classical isomorphism between drawings and buildings, wherein the second stand as translations of the first, the digital design/fabrication scenario does not strictly fall within a semiotic frame as much as within a quasi biological context, reminiscent of the Aristotelian notion of entelechy. For the digital data does not represent the building as much it actively works to become the building itself. Only upon sending a given file to a machine does the building begin to materialize as an empirical reality, And eventually a habitable space as we empirically know it. And until the digital data actualizes itself, the building qua building is no more than one single, potential possibility among many others. This new universe of digital design/fabrication does not only cause buildings to be produced as quick, precise, multiply-generated objects but also reduces their presence as original entities. Like cars and fashion items, built structures will soon be manufactured as routinely-consumed items that would look original only through the subtle mechanisms of flexibility: frequent alteration of prototype design (Style 2010, Style 2015..) and “perpetual profiling” (mine, yours, hers,..). The generic will necessarily take over the circumstantial. But this truth will be veiled since “customized prototypes” will be produced or altered to individual or personal specifications. This implies that certain “myths” have to be generated to speed up consumption, to stimulate excessive use and to lock people into a continuous system which can generate consumption through a vocabulary of interchangeable, layered and repeatable functions. Samples of “next season’s buildings” will be displayed and disseminated to enforce this strategy of stimulating and channeling desire. A degree of manipulation is involved, and the consumer is flattered into believing that his or her own free assessment of and choice between the options on offer will lead him or her to select the product the advertiser is seeking to sell. From the standpoint of the architect as a maker, the rising upsurge of digital design and fabrication could leave us mourning the loss of what has been a personal stomping ground, namely the intensity of the directly lived experiences of design and building. The direct, sensuous contact with drawings, models and materials is now being lost to a (digital) realm whose attributes refer to physical reality only remotely. Unlike (analogue) drawings and buildings, digital manipulations and prototypes do not exercise themselves in a real space, and are not subjected in the most rigorous way to spatial information. They denote in this sense a loss of immediacy and a withering of corporal thought. This flexible production of space and the consequent loss of immediate experience from the part of the designer will be analyzed within a theoretical framework underpinned mainly by the works of Walter Benjamin. Samples of digitally-produced objects will be used to illustrate this argument.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ijac201513103
id ijac201513103
authors Kobayashi, Yuki; Naoki Katoh, Tomohiro Okano, Atsushi Takizawa
year 2015
title An Inductive Construction of Rigid Panel-Hinge Graphs and Their Applications to Form Design
source International Journal of Architectural Computing vol. 13 - no. 1, 45–64
summary A panel-hinge framework is a structure composed of rigid panels connected by hinges. It was recently proved that at a generic position, the rigidity of panel-hinge frameworks can be predicted by examining a certain combinatorial property of the underlying graph. In this study, we apply such combinatorial characteristics to create design forms. When considering the application of design forms, we must also take into account non-generic cases. In this paper we develop two new approaches; the first one that the method inductively generates non-generic rigid panel-hinge frameworks consisting of orthogonal panels and the second one that inductively generates non-generic rigid panel-hinge frameworks based on fractal geometry coupled with space-filling convex polyhedron as a construction unit. We will give examples of forms created by the proposed method in order to demonstrate the applicability of the proposed methods to design forms.
series journal
last changed 2019/05/24 09:55

_id acadia15_149
id acadia15_149
authors Lagemann, Dennis
year 2015
title A Model to Space
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 149-159
doi https://doi.org/10.52842/conf.acadia.2015.149
summary Architects are used to work with models since the early beginnings of Renaissance. These models were made to conceive spatial objects before they become realized. Nowadays space seems to be outdated: There are information topologies, virtuality, and globalization. Our models are logistical rather than spatial and they become increasingly complicated. They put an emphasis on energy- or cost-efficiency rather than the vividness of a localized place. But as Architects we are supposed to be ‚masters of space’. And somehow it feels like we have lost our domain and degraded ourselves to attaching nice skins on increasingly optimized concrete- or steel-skeletons. In this sense it might be necessary to reconsider our mastership upon the articulation of space. One way to achieve this might be that computation could do more than just deliver increasingly intriguing geometries, instead it might offer us a look at the spaces conceivable but not yet imaginable: computed as information topologies and then rendered back into the geometrical framework of physical space. New media have entered our perception to a degree never imagined by future sciences of the past. So the question arises if space-time can still be considered as a single layer in actuality. As individualization takes command, being special becomes normality. In a quantized society, where many cultures coexist at the same places simultaneously, a new model to space must deal with the superposition of territories.
keywords Models, Computation, Digitization, Architectural History/Theory, Topology <=> Geometry, Active Space, Inversion, Interlaced Fields, Paradigm Shift
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_582287 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002