CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id cf2015_460
id cf2015_460
authors Sperling, David M.; Herrera, Pablo C. and Scheeren, Rodrigo
year 2015
title Migratory movements of Homo Faber Mapping Fab Labs in Latin America
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 460.
summary The present paper is a mapping study of digital fabrication laboratories in Latin America. It presents and discusses results from a survey with 31 universities’ fab labs, studios and independent initiatives in Latin America. The objective of this study is fourfold: firstly, to draw the cultural, social and economic context of implementation of digital fabrication laboratories in the region; secondly, to synthesize relevant data from correlations between organizational structures, facilities and technologies, activities, types of prototypes, uses and areas of application; thirdly, to draw a network of people and institutions, recovering connections and the genealogy of these fab labs; and fourthly, to present some fab labs that are intertwined with local questions. The results obtained indicate a complex “homo faber” network of initiatives that embraces academic investigations, architectural developments, industry applications, artistic propositions and actions in social processes.
keywords digital fabrication, fab labs, Latin America, mapping.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id sigradi2015_3.212
id sigradi2015_3.212
authors Sperling, David M.; Herrera, Pablo C.; Celani, Gabriela; Scheeren, Rodrigo
year 2015
title Digital Fabrication in South America: mapping lines of action from architecture and urbanism
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 119-125.
summary The article presents a mapping of digital fabrication laboratories in South America from the architecture and urbanism field. First, it draws a brief context of implementation of facilities and growing of expertise highlighting economic, academic and cultural aspects. Second, it presents some data mapped from 31 laboratories of the region, as infrastructure, and correlations between uses and applications. Third, it organizes the mapped laboratories in two significant approaches for the region’s context: works focused on technological development and actions directed to the social and environmental development. Fourth, it infers some possible steps of the field in the region in the near future.
keywords Digital Fabrication, Laboratories, South America, Technological Development, Social and Environmental Development
series SIGRADI
email
last changed 2016/03/10 10:01

_id sigradi2015_10.177
id sigradi2015_10.177
authors Angelo, Alex Garcia Smith; Manna, Ilaria La; Hernandez, Oscar; Valdiviezo, Marlon; Lastras, Alejandra Díaz de León; Salazar, Oscar Ivan Campo; Montezuma, Vanessa; Zubieta, Marco
year 2015
title Fab Lab and Multiculturalism in Latin America: The Fab Lat Kids case and the project “Emosilla”
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 551-557.
summary This paper expresses a lecture of the experience of an investigation carried by a group of Latin American Fab Labs dedicated to the promotion of the use of modeling, digital fabrication, and network communication as tools of educational and social development of children in latin culture. This study is based on online workshop typologies with a methodological perspective that included local technological adaptations, data gathering, and exchange of knowledge on the fab lab network.
keywords Design, Digital Manufacturing, Society, Technology Learning, Collaborative Network
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2015_005
id cf2015_005
authors Celani, Gabriela; Sperling, David M. and Franco, Juarez M. S. (eds.)
year 2015
title Preface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 5-13.
summary Since 1985 the Computer-Aided Architectural Design Futures Foundation has fostered high level discussions about the search for excellence in the built environment through the use of new technologies with an exploratory and critical perspective. In 2015, the 16th CAAD Futures Conference was held, for the first time, in South America, in the lively megalopolis of Sao Paulo, Brazil. In order to establish a connection to local issues, the theme of the conference was "The next city". The city of Sao Paulo was torn down and almost completely rebuilt twice, from the mid 1800s to the mid 1900s, evolving from a city built in rammed-earth to a city built in bricks and then from a city built in bricks to a city built in concrete. In the 21st century, with the widespread use of digital technologies both in the design and production of buildings, cities are changing even faster, in terms of layout, materials, shapes, textures, production methods and, above all, in terms of the information that is now embedded in built systems.Among the 200 abstracts received in the first phase, 64 were selected for presentation in the conference and publication in the Electronic Proceedings, either as long or short papers, after 3 tough evaluation stages. Each paper was reviewed by at least three different experts from an international committee of more than 80 highly experienced researchers. The authors come from 23 different countries. Among all papers, 10 come from Latin-American institutions, which have been usually under-represented in CAAD Futures. The 33 highest rated long papers are also being published in a printed book by Springer. For this reason, only their abstracts were included in this Electronic Proceedings, at the end of each chapter.The papers in this book have been organized under the following topics: (1) modeling, analyzing and simulating the city, (2) sustainability and performance of the built environment, (3) automated and parametric design, (4) building information modeling (BIM), (5) fabrication and materiality, and (6) shape studies. The first topic includes papers describing different uses of computation applied to the study of the urban environment. The second one represents one of the most important current issues in the study and design of the built environment. The third topic, automated and parametric design, is an established field of research that is finally becoming more available to practitioners. Fabrication has been a hot topic in CAAD conferences, and is becoming ever more popular. This new way of making design and buildings will soon start affecting the way cities look like. Finally, shape studies are an established and respected field in design computing that is traditionally discussed in CAAD conferences.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id sigradi2016_621
id sigradi2016_621
authors Gomes, Maria Cecília Rocha Couto; Santos, Ana Paula Baltazar dos; Arruda, Guilherme Ferreira de; Cabral Filho , José dos Santos; Silva, Luís Henrique Marques de Oliveira; Diniz, Luiza Encarnaç?o; Lima, Mariana Julia Souza Barbosa; Stralen, Mateus de Sousa van
year 2016
title Parametrizaç?o para além do processo de projeto: experimentando aberturas para interaç?o [Parametrization beyond the design process: trying out openness for interaction]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.790-794
summary This paper discusses the use of parametrization and digital fabrication in architecture proposing a shift from increasing the architect’s control over the final product (determinist paradigm), towards increasing users' interaction. It presents the design process of an experimental interactive object intended to meet the former discussion and test the limits and difficulties that might arise during the process. Such an object was developed by Lagear (UFMG), as a response to the exhibition Homo Faber: Digital Fabrication in Latin America, CAAD FUTURES 2015.
keywords Interactive object; Parametrization; Digital Fabrication; Representation; Interaction
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2015_10.262
id sigradi2015_10.262
authors Ivanovic, Ingrid Calvo; Soto, Bruno Perelli
year 2015
title Exploration of materials and techniques for digital fabrication and rapid prototyping for the design and development of didactic resources to support the teaching of color in school environments
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 569-575.
summary This project arises from the need to produce didactic resources to support the teaching of color in the Chilean school environment. It starts from a critical screening at the Visual Arts curriculum proposed by the Ministry of Education. The way to address this lack of resources was through exploration techniques of digital fabrication and rapid prototyping, in order to generate updated and low cost learning objects. This could provide didactic materials to a wider amount of teachers and learning environments. The prototypes created will be implemented in the Centro de Arte y Tecnología, of the Fundación Mustakis, a pioneering space for independent learning and exploration around chromatic topics.
series SIGRADI
email
last changed 2016/03/10 09:53

_id ijac201715302
id ijac201715302
authors Borges de Vasconselo, Tássias and David Sperling
year 2017
title From representational to parametric and algorithmic interactions: A panorama of Digital Architectural Design teaching in Latin America
source International Journal of Architectural Computing vol. 15 - no. 3, 215-229
summary This study focuses on the context of graphic representation technologies and digital design on Architectural teaching in Latin America. From categories proposed by Oxman and Kotnik and through a mapping study framed by a systematic review in CumInCAD database, it is presented a panorama of the state-of-art of the digital design on Architectural teaching in the region, between 2006 and 2015. The results suggest a context of coexistence of representational interaction and parametric interaction, as well as a transition from one to another and the emergence of the first experiments in algorithmic interaction. As this mapping shows an ongoing movement toward Digital Architectural Design in Latin America in the last decade, and points out its dynamics in space in time, it could contribute to strengthen a crowdthinking network on this issue in the region and with other continents.
keywords Computer-aided architectural design, Digital Architectural Design teaching, interaction with digital media, levels of design computability, Latin America, mapping study
series journal
email
last changed 2019/08/07 14:03

_id sigradi2015_10.307
id sigradi2015_10.307
authors Herrera, Pablo C.
year 2015
title Mathematics and computation: Using visual programming to develop didactic materials in a learning environment
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 581-588.
summary We analyse the problem of creating didactic material for teaching and evaluating mathematics in the first year of a School of Architecture. By using visual programming, science professor used codes (formulae) to represent in a software their proposals, instead of drawing them themselves. Through this experience we create a database of codes with computational solutions that allows faculty to modify, reuse, visualise and print in the same platform that she students will use while developing their designs. In this way we aim to maximise the link between mathematics and design as fundamental base for the control of complex shapes.
keywords Visual Programming, Mathematics Education, Architectural Education, Latin America, 3D Printing
series SIGRADI
email
last changed 2016/03/10 09:53

_id acadia15_203
id acadia15_203
authors Ross, Elissa; Hambleton, Daniel
year 2015
title Exact Face-Offsetting for Polygonal Meshes
doi https://doi.org/10.52842/conf.acadia.2015.203
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 203-210
summary Planar-faced mesh surfaces such as triangular meshes are frequently used in an architectural setting. Face-offsetting operations generate a new mesh whose face planes are parallel and at a fixed distance from the face planes of the original surface. Face-offsetting is desirable to give thickness or layers to architectural elements. Yet, this operation does not generically preserve the combinatorial structure of the offset mesh. Current approaches to this problem are to restrict the geometry of the original mesh to ensure that the combinatorial structure of the underlying mesh is preserved. We present a general algorithm for face-offsetting polygonal meshes that places no restriction on the original geometry. The algorithm uses graph duality to describe the range of possible combinatorial outcomes at each vertex of the mesh. This approach allows the designer to specify independent offset distances for each face plane. The algorithm also produces a "perpendicular" structure joining the original mesh with the offset mesh, that consists of only planar elements (i.e. beams).
keywords Mesh offsetting, face-offsetting, architecture, dual graph, polygonal mesh, triangular mesh
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id sigradi2015_12.259
id sigradi2015_12.259
authors Silva, Diego Fagundes da; Mattos, Erica Azevedo da Costa e; Kós, José Ripper
year 2015
title In Between-Labs Interface: A Dialogical Experience between Media and Technology Experimental Laboratories
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 719-723.
summary This paper explores the debate on experimental laboratories related to media and technology as promoters of collaborative, open and transdisciplinary research practices. Thus, discussing different arrangements of this specific lab concept, the paper presents an ongoing experience about an interface between a hackerspace and an educational laboratory within the Department of Architecture and Urbanism at the Federal University of Santa Catarina.
keywords Experimental Laboratories, Media Labs, LackerSpaces, Transdisciplinarity, Collaborative Spaces
series SIGRADI
email
last changed 2016/03/10 10:00

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
doi https://doi.org/10.52842/conf.acadia.2019.168
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2015_122
id ecaade2015_122
authors Agirbas, Asli
year 2015
title The Use of Digital Fabrication as a Sketching Tool in the Architectural Design Process - A Case Study
doi https://doi.org/10.52842/conf.ecaade.2015.2.319
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 319-324
summary Computer-aided manufacturing (CAM) technologies including computer numerically controlled (CNC) milling, laser cutting and 3D printing are becoming cheaper and globally more accessible. Accordingly, many design professionals, academics and students have been able to experience the benefits and challenges of using digital fabrication in their designs. The use of digital fabrication in the education of architecture students has become normal in many schools of architecture, and there is a growing demand for computer-aided manufacturing (CAM) logic and fabrication knowledge in student learning. Clearly, architecture students are acquiring material base-thinking, time management, production methods and various software skills through this digital fabrication. However, it appears to be the case that architecture students use digital fabrication mainly in the final stage of their design or in their finishing work. In this study, computer-aided manufacturing (CAM) technologies have been used as a sketch tool rather than simply for fabricating a final product in the architectural design process and the advantages of this educational practice are demonstrated.
wos WOS:000372316000037
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=79005d78-6fe6-11e5-b555-13a7f78815dc
last changed 2022/06/07 07:54

_id acadia15_263
id acadia15_263
authors Ahlquist, Sean
year 2015
title Social Sensory Architectures: Articulating Textile Hybrid Structures for Multi-Sensory Responsiveness and Collaborative Play
doi https://doi.org/10.52842/conf.acadia.2015.263
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 263-273
summary This paper describes the development of the StretchPLAY prototype as a part of the Social Sensory Surfaces research project, focusing on the design of tactile and responsive environments for children with Autism Spectrum Disorder (ASD). The project is directed specifically at issues with sensory processing, the inability of the nervous system to filter sensory input in order to indicate an appropriate response. This can be referred to as a “traffic jam” of sensory data where the intensity of such unfiltered information leads to an over-intensified sensory experience, and ultimately a dis-regulated state. To create a sensory regulating environments, a tactile structure is developed integrating physical, visual and auditory feedback. The structure is defined as a textile hybrid system integrating a seamless knitted textile to form a continuous topologically complex surface. Advancements in the fabrication of the boundary structure, of glass-fiber reinforced rods, enable the form to be more robustly structured than previous examples of textile hybrid or tent-like structures. The tensioned textile is activated as a tangible interface where sensing of touch and pressure on the surface triggers ranges of visual and auditory response. A specific child, a five-year old girl with ASD, is studied in order to tailor the technologies as a response to her sensory challenges. This project is a collaboration with students, researchers and faculty in the fields of architecture, computer science, information (human-computer interaction), music and civil engineering, along with practitioners in the field of ASD-based therapies.
keywords Textile Hybrid, Knitting, Sensory Environment, Tangible Interface, Responsive systems and environments
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia15_311
id acadia15_311
authors Ahrens, Chandler
year 2015
title Klimasymmetry, Locating Thermal Tactility
doi https://doi.org/10.52842/conf.acadia.2015.311
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 311-322
summary The Klimasymmetry research project is part of ongoing investigations that ask how the design of a surface emanating radiant heating and cooling can influence the non-visual spatial boundaries created by asymmetrical thermal conditions. This research investigates the nature of the surface as an initiator of a thermal environment in an attempt to locate thermal tactility and the spatial perception according to radiant heat transfer. Surface qualities such as the quantity of area and thermal capacity of the material affects the ability of the panel to emit or absorb electromagnetic radiation, informing the geometry, topography, and location of each panel relative to the human body.
keywords Thermal behavior, Radiant panel system, Material computation, Digital Fabrication, Fabric forming, Glass Fiber Reinforced Gypsum
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_202
id caadria2015_202
authors Amtsberg, Felix; Felix Raspall and Andreas Trummer
year 2015
title Digital-Material Feedback in Architectural Design
doi https://doi.org/10.52842/conf.caadria.2015.631
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 631-640
summary This paper studies the architectural potential of the implementation of material feedback using computer vision before and during an automated fabrication process. The combination of an industrial robot and a 3D camera is used expand the typical one-way design and fabrication process (from a digital design to a physical output), to a feedback loop, where specific material information becomes the main trigger of design decisions and fabrication processes. Several projects developed by the authors and tested during a robotic workshop aim to unveil different aspects of material feedback in architectural design, opening a discussion for the benefit and challenges of this new approach to design and fabrication.
keywords Material feedback; robotic fabrication; computer vision; digital workflow; robotic workshop;
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2015_87
id ecaade2015_87
authors Angelova, Desislava; Dierichs, Karola and Menges, Achim
year 2015
title Graded Light in Aggregate Structures - Modulating the daylight in designed granular systems using online controlled robotic processes
doi https://doi.org/10.52842/conf.ecaade.2015.2.399
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 399-406
summary The research project proposes an online-controlled robotic process that allows for grading light in aggregate structures using photometric analysis. It investigates the potential of designing specific daylight qualities through the behaviour-based robotic fabrication of the aggregate system. Two key methods are developed: the digital fabrication of the structure and a photometric analysis technique which is used as a sensor input for the robotic sensory interface. In its first part, the paper presents a series of photometric experiments on aggregate wall- and dome-structures. In its second part, the focus is laid on robotic manufacturing of these aggregate structures and the interactive fabrication of specific light conditions. To conclude further areas of research into emergent design processes with aggregates are outlined.
wos WOS:000372316000046
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4161e07e-6fe8-11e5-baaf-1fc96b3e1b94
last changed 2022/06/07 07:54

_id acadia15_123
id acadia15_123
authors Askarinejad, Ali; Chaaraoui, Rizkallah
year 2015
title Spatial Nets: the Computational and Material Study of Reticular Geometries
doi https://doi.org/10.52842/conf.acadia.2015.123
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 123-135
summary Reticular systems are in many aspects a distinct taxonomy of volumetric geometries. In comparison with the conventional embodiment of a ‘volume’ that encapsulates a certain quantity of space with a shell reticular geometries emerge from the accumulation of micro elements to define a gradient of space. Observed in biological systems, such structures result from their material properties and formation processes as well as often ‘simple’ axioms that produce complex results. In micro or macro levels, from forest tree canopies to plant cell walls these porous volumes are not shaped to have a singular ‘solution’ for a purpose; they provide the fundamental geometric characteristics of a ‘line cloud’ that is simultaneously flexible in response to its environment, porous to other systems (light, air, liquids) and less susceptible to critical damage. The porosity of such systems and their volumetric depth also result in kinetic spatial qualities in a 4D architectural space. Built upon a ‘weaving’ organization and the high performance material properties of carbon fiber composite, this research focuses on a formal grammar that initiates the complex system of a reticular volume. A finite ‘lexical’ axiom is consisted of the basic characters of H, M and L responding to the anchor points on the highest, medium and lower levels of the extruding loom. The genome thus produces a string of data that in the second phase of programming are assigned to 624 points on the loom. The code aims to distribute the nodes across the flat line cloud and organize the sequence for the purpose of overlapping the tensioned strings. The virtually infinite results are then assessed through an evolutionary solver for confining an array of favorable results that can be then selected from by the designer. This research focuses on an approximate control over the fundamental geometric characteristics of a reticular system such as node density and directionality. The proposal frames the favorable result of the weave to be three-dimensional and volumetric – avoiding distinctly linear or surface formations.
keywords Reticular Geometries, Weaving, Line Clouds, Three-dimensional Form-finding, Carbon fiber, Prepreg composite, Volumetric loom, Fiberous Materials, Weaving fabrication, Formal Language, Lexical design, Evolutionary solver
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2015_333
id ecaade2015_333
authors Baerlecken, Daniel and Gokmen, Sabri
year 2015
title Osteotectonics - Trabecular Bone Structures and Their Adaptation for Customized Structural Nodes Using Additive Manufacturing Techniques
doi https://doi.org/10.52842/conf.ecaade.2015.2.439
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 439-448
summary This paper discusses an approach to adapting trabecular bone structures for the design of complex architectural components exemplified through structural nodes. Based on the paradigm shift in additive fabrication, namely the ability to print structural metals, this paper identifies new methods for architectural and structural design that allow to create porous, intricate architectural components. Those components are designed in analogy to bone structures. The paper presents a metaball-based application, programmed in Processing, which allows creating n-legged nodes using parametric gradient maps. The approach aims at reduction of weight and waste, while exploring the novel aesthetic properties of such bio-constructed networks.
wos WOS:000372316000050
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=b1066644-70d7-11e5-b019-7f01fe8cb7bc
last changed 2022/06/07 07:54

_id ecaade2015_279
id ecaade2015_279
authors Baquero, Pablo, Giannopoulou, Effimia and Cavazos, Jaime
year 2015
title Strategies for Metallic Vault Structures - Aluminium Composite Panels Used as Structural Elements
doi https://doi.org/10.52842/conf.ecaade.2015.2.169
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 169-176
summary This article explains parametric, fabrication and teaching strategies used during a workshop for constructing a full scale, self supporting, vault metal structure realized with parametric manufacturing methods. The key aim is to construct a small size, easy assembled and transportable pavilion, while focusing on new design and construction methods of a façade system in which the structure, joint and skin will integrate functions in a unifying structural system. For the investigation, we explore materials commonly used in façade industry, such as aluminum profiles and aluminium composite panels (ACP).
wos WOS:000372316000021
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_293263 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002