CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id cf2015_325
id cf2015_325
authors Lo, Tian Tian; Schnabel, Marc Aurel and Gao, Yan
year 2015
title ModRule: A user-centric mass housing design platform
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 325.
summary This paper presents a novel platform, ModRule, designed and developed to promote and facilitate collaboration between architects and future occupants during the design stage of mass housing buildings. Architects set the design-framework and parameters of the system, which allows the users to set their space requirements, budgets, etc., and define their desired way of living. The system utilizes gamification methodologies as a reference to promote incentives and user-friendliness for the layperson who has little or no architectural background. This enhanced integration of a both bottom-up approach (user-centric/player) with a top-down approach (architect-centric/game-maker) will greatly influence how architects design high rise living. By bridging the gap between the architect and the user, this development aims to instill a greater sense of belonging to people, as well as providing architects with a better understanding of how to give people more control over their living spaces. The paper also presents an evaluation of a design process that employed ModRule.
keywords Mass housing, collaborative design, participatory system.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_205
id cf2015_205
authors Oliveira, Eduardo; Kirley, Michael; Kvan, Tom; Karakiewicz, Justyna and Vaz, Carlos
year 2015
title Distributed and heterogeneous data analysis for smart urban planning
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 205.
summary Over the past decade, ‘smart’ cities have capitalized on new technologies and insights to transform their systems, operations and services. The rationale behind the use of these technologies is that an evidence-based, analytical approach to decision-making will lead to more robust and sustainable outcomes. However, harvesting high-quality data from the dense network of sensors embedded in the urban infrastructure, and combining this data with social network data, poses many challenges. In this paper, we investigate the use of an intelligent middleware – Device Nimbus – to support data capture and analysis techniques to inform urban planning and design. We report results from a ‘Living Campus’ experiment at the University of Melbourne, Australia focused on a public learning space case study. Local perspectives, collected via crowdsourcing, are combined with distributed and heterogeneous environmental sensor data. Our analysis shows that Device Nimbus’ data integration and intelligent modules provide high-quality support for decision-making and planning.
keywords smart city, smart campus, middleware, data fusion, urban design, urban planning.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2016_787
id caadria2016_787
authors Knapp, Chris; Jonathan Nelson, Andrew Kudless and Sascha Bohnenberger
year 2016
title Lightweight material prototypes using dense bundled systems to emulate an ambient environment
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 787-796
doi https://doi.org/10.52842/conf.caadria.2016.787
summary This paper describes and reflects upon a computational de- sign and digital fabrication research project that was developed and implemented over 2014-2015, with subsequent development continu- ing for applications at present. The aim of the research was to develop methods of modelling, analysis, and fabrication that facilitate integra- tive approaches to architectural design and construction. In this con- text, the development of material prototypes, digital simulations, and parametric frameworks were pursued in parallel in order to inform and reform successive iterations throughout the process, leading to a re- fined workflow for engineering, production, and speculation upon fu- ture directions of the work.
keywords Digital fabrication; biomimicry; ambient environments; grasshopper; computational design
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia15_343
id acadia15_343
authors Roudavski, Stanislav
year 2015
title Sketching with Robots
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 343-355
doi https://doi.org/10.52842/conf.acadia.2015.343
summary Today, human activities constitute the primary environmental impact on the planet. In this context, commitments to sustainability, or minimization of damage, prove insufficient. To develop regenerative, futuring capabilities, architectural design needs to extend beyond the form and function of things and engage with the management of complex systems. Such systems involve multiple types of dynamic phenomena – biotic and abiotic, technical and cultural – and can be understood as living. Engagement with such living systems implies manipulation of pervasive and unceasing change, irrespective of whether it is accepted by design stakeholders or actively managed towards homeostatic or homeorhetic conditions. On one hand, such manipulation of continuity requires holistic and persistent design involvements that are beyond natural capabilities of human designers. On the other hand, practical, political or creative implications of reliance on automated systems capable of tackling such tasks is as yet underexplored. In response to this challenge, this paper considers an experimental approach that utilised methods of critical making and speculative designing to explore potentials of autonomous architecture. This approach combined 1) knowledge of animal architecture that served as a lens for rethinking human construction and as a source of alternative design approaches; 2) practices of creative computing that supported speculative applications of data-driven and performance-oriented design; and 3) techniques of robotics and mechatronics that produced working prototypes of autonomous devices that served as props for critical thinking about alternative futures.
keywords Intelligent robots, animal architecture, synthetic ecology
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2024_35
id ecaade2024_35
authors Agkathidis, Asterios; Song, Yang; Symeonidou, Ioanna
year 2024
title AI-Assisted Design: Utilising artificial intelligence as a generative form-finding tool in architectural design studio teaching
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 619–628
doi https://doi.org/10.52842/conf.ecaade.2024.2.619
summary Artificial Intelligence (AI) tools are currently making a dynamic appearance in the architectural realm. Social media are being bombarded by word-to-image/image-to-image generated illustrations of fictive buildings generated by tools such as ‘Midjourney’, ‘DALL-E’, ‘Stable Diffusion’ and others. Architects appear to be fascinated by the rapidly generated and inspiring ‘designs’ while others criticise them as superficial and formalistic. In continuation to previous research on Generative Design, (Agkathidis, 2015), this paper aims to investigate whether there is an appropriate way to integrate these new technologies as a generative tool in the educational architectural design process. To answer this question, we developed a design workflow consisting of four phases and tested it for two semesters in an architectural design studio in parallel to other studio units using conventional design methods but working on the same site. The studio outputs were evaluated by guest critics, moderators and external examiners. Furthermore, the design framework was evaluated by the students through an anonymous survey. Our findings highlight the advantages and challenges of the utilisation of AI image synthesis tools in the educational design process of an architectural design approach.
keywords AI, GAI, Generative Design, Design Education
series eCAADe
email
last changed 2024/11/17 22:05

_id cf2015_328
id cf2015_328
authors Gamez, Oscar; Bignon, Jean-Claude and Duchanois, Gilles
year 2015
title Assisted construction of non-standard wooden walls and envelope structures by parametric modeling
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 328.
summary We introduce a parametric modeling method in the field of computer-aided architectural conception, which aims to produce non-standard wooden walls and envelopes with CNC machinery. This method explores the application of polygonal cellular structures (as patterns) on facade and envelope interventions for new and old projects. We innovate by bringing the 3D production environment complexity into the conception model to improve the production of manifold woodworking items by CNC (Computer Numerical Control) 3D fabrication. A recent experimentation, tests the entire workflow from parametric modeling to production of two full-scale prototypes. The results prove the range of inputs offered by the method to be functional, though it needs various improvements in order to optimize parametric modeling and digital fabrication procedures. Future research will focus on treating a wider range of joints via parametric modeling and deal with joint creation regardless wall deformation to expand the morphological approach of non-standard wooden walls design.
keywords Non-standard walls, Computer-aided architectural design, Wood construction, Parametric modeling, CNC fabrication, Mass customization.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_172
id ecaade2015_172
authors Mark, Earl and Zita Ultmann
year 2015
title Environmental Footprint Design Tool - Exchanging GIS and CAD Data in Real Time
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 217-223
doi https://doi.org/10.52842/conf.ecaade.2015.1.217
wos WOS:000372317300023
summary The pairing of CAD and GIS data creates an opportunity to connect an architectural design process more immediately with its environmental constraints. Yet the GIS data may be too overwhelmingly complex to be fully used in CAD without computer-assisted methods of highlighting relevant information. This paper reports on the implementation of an integrated environment for three-dimensional design geometrical modeling and obtaining environmental impact feedback. The project focused on enhancements to the data exchange and on the development of a related set of tools. While the technologies of CAD and GIS may rely on separate representational models,in combination they can provide a more complete view of the built and natural environment. The challenge in integration is that of bridging analytical methods and database formats used in the two technologies. Our approach is rooted in part in constraint based design methods well established in CAD (e.g., Sketchpad, Generative Components, CATIA). Within such CAD systems geometrical transformations may be intentionally constrained to help enforce some previously made design decisions. Although this current implementation modestly relates to geometrical constraints, the use of probabilistic risk values is more central to its methodology.
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia16_362
id acadia16_362
authors Beesley, Philip; Ilgun, Zeliha, Asya; Bouron, Giselle; Kadish, David; Prosser, Jordan; Gorbet, Rob; Kulic, Dana; Nicholas, Paul; Zwierzycki, Mateusz
year 2016
title Hybrid Sentient Canopy: An implementation and visualization of proprioreceptive curiosity-based machine learning
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 362-371
doi https://doi.org/10.52842/conf.acadia.2016.362
summary This paper describes the development of a sentient canopy that interacts with human visitors by using its own internal motivation. Modular curiosity-based machine learning behaviour is supported by a highly distributed system of microprocessor hardware integrated within interlinked cellular arrays of sound, light, kinetic actuators and proprioreceptive sensors in a resilient physical scaffolding system. The curiosity-based system involves exploration by employing an expert system composed of archives of information from preceding behaviours, calculating potential behaviours together with locations and applications, executing behaviour and comparing result to prediction. Prototype architectural structures entitled Sentient Canopy and Sentient Chamber developed during 2015 and 2016 were developed to support this interactive behaviour, integrating new communications protocols and firmware, and a hybrid proprioreceptive system that configured new electronics with sound, light, and motion sensing capable of internal machine sensing and externally- oriented sensing for human interaction. Proprioreception was implemented by producing custom electronics serving photoresistors, pitch-sensing microphones, and accelerometers for motion and position, coupled to sound, light and motion-based actuators and additional infrared sensors designed for sensing of human gestures. This configuration provided the machine system with the ability to calculate and detect real-time behaviour and to compare this to models of behaviour predicted within scripted routines. Testbeds located at the Living Architecture Systems Group/Philip Beesley Architect Inc. (LASG/PBAI, Waterloo/Toronto), Centre for Information Technology (CITA, Copenhagen) National Academy of Sciences (NAS) in Washington DC are illustrated.
keywords intedisciplinary/collaborative design, intelligent environments, artificial intelligence, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id caadria2016_415
id caadria2016_415
authors Crolla, Kristof and Adam Fingrut
year 2016
title Protocol of Error: The design and construction of a bending-active gridshell from natural bamboo
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 415-424
doi https://doi.org/10.52842/conf.caadria.2016.415
summary This paper advocates alternative methods to overcome the impossibility of realising ‘perfect’ digital designs. It discusses Hong Kong’s 2015 ‘ZCB Bamboo Pavilion’ as a methodological case study for the design and construction of architecture from unprocessed natu- ral bamboo. The paper critically evaluates protocols set up to deal with errors resulting from precise digital design systems merging with inconsistent natural resources and onsite craftsmanship. The paper starts with the geometric and tectonic description of the project, illus- trating a complex and restrictive construction context. Bamboo’s unique growth pattern, structural build-up and suitability as a bending- active material are discussed and Cantonese bamboo scaffolding craftsmanship is addressed as a starting point for the project. The pa- per covers protocols, construction drawings and assembly methods developed to allow for the incorporation and of large building toler- ances and dimensional variation of bamboo. The final as-built 3d scanned structure is compared with the original digital model. The pa- per concludes by discussing the necessity of computational architec- tural design to proactively operate within a field of real-world inde- terminacy, to focus on the development of protocols that deal with imperfections, and to redirect design from the virtual world towards the latent opportunities of the physical.
keywords Bamboo; bending-active gridshells; physics simulation; form-finding; indeterminacy
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2015_11.136
id sigradi2015_11.136
authors Gomes, Ana Catarina Costa; Paio, Alexandra
year 2015
title Generative Solutions: Adaptation and Flexibilization in Housing as a Qualified Social Response
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 642-648.
summary Housing for all is back on the international agenda. The economic crisis forces researchers and architects to rethink the concept of living and adopt more flexible housing design strategies as an alternative to typologies that impose rules of coexistence and do not reflect the social dynamics of a community. The introduction of rules-based housing design strategies allows the implementation of more dynamic processes. This ongoing research is a reflection on the potential of digital tools to develop spatial and formal parameters based on analysis of flexible housing models. This paper presents the initial phase of the research.
keywords Adaptive and Evolutionary Housing, Social Dynamics, Digital Tools
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia15_232
id acadia15_232
authors Kim, Simon; Yim, Mark; Alcedo, Kevin; Choi, Mike; Wang, Billy; Yang, Hyeji
year 2015
title Soft Robotics Applied to Architecture
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 232-242
doi https://doi.org/10.52842/conf.acadia.2015.232
summary This paper presents an application of a current research in soft robotics to architectural systems that present new modes of activation. The immediate architectural applications of soft actuated elements are to any surface – wall, ceiling, floor – as well as in the production of smaller autonomous living units. This augmentation of architecture that is not only actuated robotics but are also soft, add a layer of intelligence to earlier experiments in inflatable architecture. Using new polymer compounds cast with a series of internal chambers, different ranges of motion may be produced by the differential inflation of chambers with air. The resulting movement may be designed to produce a series of degrees of freedom, allowing the passage of human occupants, light, and views.
keywords Responsive Architecture, Soft Robotics, Interaction, Adaptive Materials
series ACADIA
type normal paper
email
last changed 2022/06/07 07:49

_id caadria2015_194
id caadria2015_194
authors Lu, Chi-Ming; Jia-Yih Chen, Cheng-An Pan and Taysheng Jeng
year 2015
title A BIM Tool for Carbon Footprint Assessment of Building Design
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 447-456
doi https://doi.org/10.52842/conf.caadria.2015.447
summary The objective of this research is to develop a tool for assessing carbon footprints of a building in the design process using BIM technology. Life cycle assessment and carbon footprint assessment are the two basic criteria in evaluating the emission reduction of CO2e.International assessment standards have been established for mass-produced merchandise and organizational operations. However, the existing standards cannot directly disclose the hotspots of carbon footprints in the building life cycle. An assessment method concerning local climate, living culture, ecology and local construction style is required for building design. This research work presents a framework by which a BIM-enabled data visualization tool is developed to support the carbon disclosure in the building design process.
keywords Carbon Footprint Assessment; BIM; BCF.
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2016_809
id caadria2016_809
authors Nakapan, Walaiporn
year 2016
title Using the SAMR Model to transform mobile learning in a History of Art and Architecture Classroom
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 809-818
doi https://doi.org/10.52842/conf.caadria.2016.809
summary This paper presents the progress of a pilot classroom, which uses mobile devices to enhance instructor-student classroom interac- tions and students’ learning of the History of Art and Architecture. The main objective of this research was to find a way of improving classroom activities, for the coming year, by making the best possible use of technology to enable students to learn more successfully and improve their understanding of the lesson content. In this paper, class- room activities during 2014 and 2015 are analysed using the SAMR Model coupled with Bloom’s revised taxonomy and the EdTech Quin- tet Model. In addition, a plan for the redesign and improvement of ac- tivities in 2016 is proposed, the effectiveness of the SAMR model at improving in class activities is discussed and a perspective on how to develop the classroom using the “SAMR ladder” is included. The re- sults show that in 2015, 25% of the students in the class achieved an A grade, and less than 5% were graded F compared to 26% in 2012.
keywords Design education; mobile-based learning; History of Art and Architecture; SAMR model
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2015_10.144
id sigradi2015_10.144
authors Tramontano, Marcelo
year 2015
title When research and teaching connect: Parametric design, digital fabrication and architectural design
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 544-550.
summary This article focuses on three aspects of the use of parametric computer programs in architectural design teaching: 1. the design of buildings with complex geometries; 2. the continuous production of physical models as an indissociable part of the design process; 3. the formulation of exercises seeking to explore the potential of programs and the ways of designing and building they imply. It relies on the didactic experience of a mandatory course of Architectural Design at the Institute of Architecture and Urbanism of the University of Sao Paulo, Brazil, in connection with the studies and experiments on parametric design and digital fabrication of Nomads.usp, the Center for Interactive Living Studies.
keywords Parametric Design, Digital Fabrication, Architectural Design, Architectural Design Teaching, Physical Models
series SIGRADI
email
last changed 2016/03/10 10:01

_id sigradi2015_10.309
id sigradi2015_10.309
authors Vaz, Carlos Eduardo Verzola; Karakiewicz, Justyna Anna; Kvan, Thomas
year 2015
title Learning in the living campus - remotely sensing activities correlated to learning in outdoor spaces
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 589-595.
summary This paper presents preliminary results of a research that seeks to develop an algorithmic model to represent how campus users interact with one another, as well with the surrounding environment, in order to comprehend the dynamics of activities that can be correlated to learning in open spaces and thus develop design guidance for such spaces. The hypothesis is that learning activities in outdoor spaces is also responsible to contribute to the life of the academic purpose of the campus, and that this can then inform design decisions for such spaces to better support outdoor informal learning. During the research, video recording and interviews were used to collect data and identify patterns of behavior in three research sites in the University of Melbourne.
keywords Open Spaces, Learning, Remote Sensing, Computer Vision
series SIGRADI
email
last changed 2016/03/10 10:02

_id cf2015_279
id cf2015_279
authors Abdelmohsen, Sherif M. and Massoud, Passaint M.
year 2015
title Making Sense of those Batteries and Wires: Parametric Design between Emergence and Autonomy
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 279-296.
summary This paper reports on the process and outcomes of a digital design studio that integrates parametric design and generative systems in architectural and urban design projects. It explores the interrelationship between the emergence of innovative formal representations using parametric design systems on the one hand, and design autonomy; more specifically the conscious process of generating and developing an architectural concept, on the other. Groups of undergraduate students working on an architectural project are asked to identify a specific conceptual parti that addresses an aspect of architectural quality, define strategies that satisfy those aspects, and computational methodologies to implement those strategies, such as rule-based systems, self-organization systems, and genetic algorithms. The paper describes the educational approach and studio outcomes, discusses implications for CAAD education and curricula, and addresses issues to be considered for parametric and generative software development.
keywords Parametric modeling, generative design, emergence, autonomy, design exploration, CAAD curriculum.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_240
id cf2015_240
authors Aksoy, Yazgi Badem; Çagdas, Gülen and Balaban, Özgün
year 2015
title A model for sustainable site layout design of social housing with Pareto Genetic Algorithm: SSPM
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 240.
summary Nowadays as the aim to reduce the environmental impact of buildings becomes more apparent, a new architectural design approach is gaining momentum called sustainable architectural design. Sustainable architectural design process includes some regulations itself, which requires calculations, comparisons and consists of several possible conflicting objectives that need to be considered together. A successful green building design can be performed by the creation of alternative designs generated according to all the sustainability parameters and local regulations in conceptual design stage. As there are conflicting criteria's according to LEED and BREAM sustainable site parameters, local regulations and local climate conditions, an efficient decision support system can be developed by the help of Pareto based non-dominated genetic algorithm (NSGA-II) which is used for several possibly conflicting objectives that need to be considered together. In this paper, a model which aims to produce site layout alternatives according to sustainability criteria for cooperative apartment house complexes, will be mentioned.
keywords Sustainable Site Layout Design, Multi Objective Genetic Algorithm, LEED-BREEAM.
series CAAD Futures
type normal paper
email
last changed 2015/06/29 09:30

_id acadia17_102
id acadia17_102
authors Aparicio, German
year 2017
title Data-Insight-Driven Project Delivery: Approach to Accelerated Project Delivery Using Data Analytics, Data Mining and Data Visualization
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 102-109
doi https://doi.org/10.52842/conf.acadia.2017.102
summary Today, 98% of megaprojects face cost overruns or delays. The average cost increase is 80% and the average slippage is 20 months behind schedule (McKinsey 2015). It is becoming increasingly challenging to efficiently support the scale, complexity and ambition of these projects. Simultaneously, project data is being captured at growing rates. We continue to capture more data on a project than ever before. Total data captured back in 2009 in the construction industry reached over 51 petabytes, or 51 million gigabytes (Mckinsey 2016). It is becoming increasingly necessary to develop new ways to leverage our project data to better manage the complexity on our projects and allow the many stakeholders to make better more informed decisions. This paper focuses on utilizing advances in data mining, data analytics and data visualization as means to extract project information from massive datasets in a timely fashion to assist in making key informed decisions for project delivery. As part of this paper, we present an innovative new use of these technologies as applied to a large-scale infrastructural megaproject, to deliver a set of over 4,000 construction documents in a six-month period that has the potential to dramatically transform our industry and the way we deliver projects in the future. This paper describes a framework used to measure production performance as part of any project’s set of project controls for accelerated project delivery.
keywords design methods; information processing; data mining; big data; data visualization
series ACADIA
email
last changed 2022/06/07 07:55

_id ecaade2015_215
id ecaade2015_215
authors Balakrishnan, Bimal and Oprean, Danielle
year 2015
title Communication, Coordination and Collaboration: Media affordances and Team Performance in a Collaborative Design Environment
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 225-232
doi https://doi.org/10.52842/conf.ecaade.2015.2.225
wos WOS:000372316000027
summary Advances in digital media are encouraging designers to adopt digital tools during early stages of design ideation as well as to facilitate collaboration in design teams. Collaborative environments for design teams should take into consideration both the multimodal nature of design representation as well as the complexity of team cognition. Collaborative tools that take a “black-box” approach often limit affordances for design ideation and collaboration. We describe here a collaborative environment that we put together using a kit-of-parts approach and underlying theoretical considerations. We also describe systematic usability evaluation of the collaborative environment by constraining select media affordances and qualitatively examining the impact on a team's design process. Preliminary findings were used to improve the environment and lay the groundwork for developing tele-collaborative environments.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=d219f772-6e90-11e5-b69a-00190f04dc4c
last changed 2022/06/07 07:54

_id cf2015_326
id cf2015_326
authors Borges, Marina and Fakury, Ricardo H.
year 2015
title Structural design based on performance applied to development of a lattice wind tower
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 326.
summary This paper studies the process of parametric and algorithmic design, integrating structural analysis and design for the generation of complex geometric structures. This methodology is based on the Performative Model, where the shape is generated using performance criteria. In the approach, the development of complex structures is only possible by reversing the process of thinking to generate the form with established parameters for geometry, material and loading aspects. Thus, the structural engineer no longer only participates in the evaluation phase but also appears in the early stages, creating a process of exploration and production of common knowledge among architects and engineers. To research performance-based design, the development of a conceptual lattice for a wind tower is proposed. Thus, a system is made to generate geometries using Rhinoceros software, the Grasshopper plugin, and the VB programming language, integrated with stress analysis through the Scan & Solve plugin.
keywords Structural Design, Parametric and Algorithm Architecture, Structural Analysis, Performative Model, Lattice Wind Tower.
series CAAD Futures
email
last changed 2015/06/29 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_551898 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002