CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 304

_id ecaade2015_37
id ecaade2015_37
authors Forster, Julia; Fritz, Sara, Schleicher, Johannes and Rab, Nikolaus
year 2015
title Developer Tools for Smart Approaches to Responsible-Minded Planning Strategies
doi https://doi.org/10.52842/conf.ecaade.2015.1.545
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 545-551
summary The city of Vienna follows a long-term initiative to become a Smart City. Within 2050 it aims to reduce 80% of the CO2 emissions (in comparison to 1990) and looks forward to generate ways for a sustainable energy production. (Smart City Framework Strategy 2014) Reaching this targets requires a complex planning process which involves interdisciplinary stakeholders and decision makers. An interactive multi-dimensional environment, comprising spatial objects and data models, is a helpful tool during these planning processes. This paper proposes a suitable path for the development of a structural framework for such an environment. The benefits of such an environment are shown in detail, based on an application of the economic solar heat potential in Vienna.
wos WOS:000372317300059
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2015_188
id caadria2015_188
authors Krakhofer, Stefan and Martin Kaftan
year 2015
title Augmented Reality Design Decision Support Engine for the Early Building Design Stage
doi https://doi.org/10.52842/conf.caadria.2015.231
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 231-240
summary Augmented reality has come a long way and experienced a paradigm shift in 1999 when the ARToolKit was released as open source. The nature of interaction between the physical world and the virtual-world has changed forever. Fortunately for the AECO industry, the transition from traditional Computer Aided Design to virtual building design phrased as Building Information Modeling has created a tremendous potential to adopt Augmented Reality. The presented research is situated in the early design stage of project inception and focuses on supporting informed collective decision-making, characterized by a dynamic back and forth analytical process generating large amounts of data. Facilitation aspects, such as data-collection, storage and access to enable comparability and evaluation are crucial for collective decision-making. The current research has addressed these aspects by means of data accessibility, visualization and presentation. At the core of the project is a custom developed Augmented Reality framework that enables data interaction within the design model. In order to serve as a collaborative decision support engine, the framework also allows multiple models and their datasets to be displayed and exercised simultaneously. The paper demonstrates in the case study the successful application of the AR tool during collaborative design decision meetings.
keywords Augmented Reality; Design Decision Support; Data Visualization.
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2015_152
id ecaade2015_152
authors Rosenberg, Moritz and Straßl, Benjamin
year 2015
title SHOPGENERATOR v2:Automated Design, Analysis and Optimization of Shopping Layouts
doi https://doi.org/10.52842/conf.ecaade.2015.2.503
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 503-512
summary In shop design a common method to maximize sales is to manipulate the customers through spatial arrangements of shelves and products. The aim of this practice is that shoppers have to spend a long time in the store and pass a high quantity of products. Using this technique requires a lot of empirical analysis of POS (point of sale) data and experimentation with product and shelf arrangements, while not upsetting the customers by guiding them through a “shopping maze”. For this reason we developed a tool that semi-automatically - just a couple of inputs concerning the type of shop are required - creates different shopping layouts which are later analyzed and optimized for visibility and product placement. This tool aims to support shop designers in an early planning stage. This is done by creating and testing a large number of different shopping layouts without having to conduct experiments in an actually built environment..
wos WOS:000372316000057
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=51e1517e-6f79-11e5-bdcf-7b685ac8d7c5
last changed 2022/06/07 07:56

_id cf2015_175
id cf2015_175
authors Sauda, Eric; Beorkrem, Chris; Souvenir, Richard; Lanclos, Donna and Spurlock Scott
year 2015
title Intelligent Architectural Settings Using a Computer Vision Based Visual Analytic Interface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 175-189.
summary This paper presents a framework to enable the understanding and designing of interactive architectural settings. We present our work in interactive public displays in the lobbies of university building, demonstrating both the design and evaluative dimensions. We identify the need for a method to understand meaningful behavior in architectural settings. We then present a unique approach combining computer vision and ethnography in a visual analytic interface using the SENSING Toolkit, a computer vision framework for collecting and storing long-term, large-scale human motion, and VALSE (Visual Analytics for Large-Scale Ethnography) an interactive, visual analytic interface called designed to allow domain experts to query and understand the data. Finally, we propose a new concept of media rich spaces that we call intelligent architectural settings.
keywords Smart buildings, computer vision, ethnography, visual analytics.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_53
id ecaade2015_53
authors Duro-Royo, Jorge; Mogas-Soldevila, Laia and Oxman, Neri
year 2015
title Physical Feedback Workflows in Fabrication Information Modeling (FIM) - Analysis and Discussion of Exemplar Cases across Media, Disciplines and Scales
doi https://doi.org/10.52842/conf.ecaade.2015.2.299
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 299-307
summary Novel digital fabrication platforms enable the design and construction of materially sophisticated structures with high spatial resolution in manufacturing. However, virtual-to-physical workflows and their associated software environments are yet to incorporate such capabilities. Our research sets the stage for seamless physical feedback workflows across media, disciplines and scales. We have coined the term Fabrication Information Modeling (FIM) to describe this approach. As preliminary methods we have developed four computational strategies for the design and digital construction of custom systems. These methods are presented in the context of specific design challenges and include a biologically driven fiber construction algorithm; an anatomically driven shell-to-wearable translation protocol; an environmentally-driven swarm printing system; and a manufacturing-driven hierarchical fabrication platform. We discuss and analyze these four challenges in terms of their capabilities to integrate design across media, disciplines and scales through concepts such as multi-dimensionality, media-informed computation and trans-disciplinary data.
wos WOS:000372316000035
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e41927e2-6fe7-11e5-a181-5b730dc456c4
last changed 2022/06/07 07:55

_id cf2015_331
id cf2015_331
authors Brodeschi, Michal; Pilosof, Nirit Putievsky and Kalay, Yehuda E.
year 2015
title The definition of semantic of spaces in virtual built environments oriented to BIM implementation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 331-346.
summary The BIM today can be a provider of inputs to performance analysis of different phenomena such as thermal comfort, energy consumption or winds. All these assessments are fundamental to the post occupation of the building. The attainment of approximate information of how the future building would behave under these conditions will reduce the waste of materials and energy resources. The same idea is used for evaluating the users occupation. Through simulation of human behavior is possible to evaluate which design elements can be improved. In complex structures such as hospital buildings or airports is quite complex for architects to determine optimal design solutions based on the tools available nowadays. These due to the fact users are not contemplated in the model. Part of the data used for the simulation can be derived from the BIM model. The three-dimensional model provides parametric information, however are not semantically enriched. They provide parameters to elements but not the connection between them, not the relationship. It means that during a simulation Virtual Users can recognize the elements represented in BIM models, but not what they mean, due to the lack of semantics. At the same time the built environment may assume different functions depending on the physical configuration or activities that are performed on it. The status of the space may reveal differences and these changes occur constantly and are dynamic. In an initial state, a room can be noisy and a moment later, quiet. This can determine what type of activities the space can support according to each change in status. In this study we demonstrate how the spaces can express different semantic information according to the activity performed on it. The aim of this paper is to simulate the activities carried out in the building and how they can generate different semantics to spaces according to the use given to it. Then we analyze the conditions to the implementation of this knowledge in the BIM model.
keywords BIM, Virtual Sensitive Environments, Building Use Simulation, Semantics.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_005
id cf2015_005
authors Celani, Gabriela; Sperling, David M. and Franco, Juarez M. S. (eds.)
year 2015
title Preface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 5-13.
summary Since 1985 the Computer-Aided Architectural Design Futures Foundation has fostered high level discussions about the search for excellence in the built environment through the use of new technologies with an exploratory and critical perspective. In 2015, the 16th CAAD Futures Conference was held, for the first time, in South America, in the lively megalopolis of Sao Paulo, Brazil. In order to establish a connection to local issues, the theme of the conference was "The next city". The city of Sao Paulo was torn down and almost completely rebuilt twice, from the mid 1800s to the mid 1900s, evolving from a city built in rammed-earth to a city built in bricks and then from a city built in bricks to a city built in concrete. In the 21st century, with the widespread use of digital technologies both in the design and production of buildings, cities are changing even faster, in terms of layout, materials, shapes, textures, production methods and, above all, in terms of the information that is now embedded in built systems.Among the 200 abstracts received in the first phase, 64 were selected for presentation in the conference and publication in the Electronic Proceedings, either as long or short papers, after 3 tough evaluation stages. Each paper was reviewed by at least three different experts from an international committee of more than 80 highly experienced researchers. The authors come from 23 different countries. Among all papers, 10 come from Latin-American institutions, which have been usually under-represented in CAAD Futures. The 33 highest rated long papers are also being published in a printed book by Springer. For this reason, only their abstracts were included in this Electronic Proceedings, at the end of each chapter.The papers in this book have been organized under the following topics: (1) modeling, analyzing and simulating the city, (2) sustainability and performance of the built environment, (3) automated and parametric design, (4) building information modeling (BIM), (5) fabrication and materiality, and (6) shape studies. The first topic includes papers describing different uses of computation applied to the study of the urban environment. The second one represents one of the most important current issues in the study and design of the built environment. The third topic, automated and parametric design, is an established field of research that is finally becoming more available to practitioners. Fabrication has been a hot topic in CAAD conferences, and is becoming ever more popular. This new way of making design and buildings will soon start affecting the way cities look like. Finally, shape studies are an established and respected field in design computing that is traditionally discussed in CAAD conferences.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_273
id ecaade2015_273
authors Hunter, Jessica; Cheng, Alexandra, Tannert, Thomas, Neumann, Oliver and Meyboom, AnnaLisa
year 2015
title Extending the Perception of Wood - Research in Large Scale Surface Structures in Wood
doi https://doi.org/10.52842/conf.ecaade.2015.2.427
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 427-437
summary Architects have a renewed interest in surface structures and the renewable resource of wood, along with advanced digital design, analysis and machining techniques, offers a way of manifesting these forms. Wood is easily machined and has bending properties that lead to the ability to form curves. This paper looks at the properties of wood, informing design through its material characteristics. The research presented here contributes to this discourse through the development of large scale timber shell structures. We propose hyper efficient structures made out of laminated wood products to provide a new solution to long span construction while satisfying the demand for agency in form generation.
wos WOS:000372316000049
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7609b276-70d7-11e5-a36d-a71a6f180fc2
last changed 2022/06/07 07:50

_id ecaade2015_329
id ecaade2015_329
authors Kieferle, Joachim and Woessner, Uwe
year 2015
title BIM Interactive - About combining BIM and Virtual Reality - A Bidirectional Interaction Method for BIM Models in Different Environments
doi https://doi.org/10.52842/conf.ecaade.2015.1.069
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 69-75
summary The basic concept of BIM is a consistent 3D model of buildings containing all main data as base for collaboration for all disciplines. Since BIM-software is normally run on single workstations, the potential for direct collaboration is somehow limited. The focus of our ongoing research is to overcome these restrictions and to provide a platform for development and optimization by combining BIM and Virtual Reality (VR), linking BIM (Revit) with VR (COVISE). Projects as well as data can be visualized in VR and reviewed 1:1 scale even in team meetings. Compared to various existing approaches, our new approach is to have bidirectional data exchange between the systems. Changes in Revit are directly reflected in VR and vice versa, continuously updating the model and its underlying database. We have been able to implement a range of interactions, however it's still a long way to identify further useful interactions and to implement them.
wos WOS:000372317300008
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2015_82
id ecaade2015_82
authors Long, Nels; Greenstein, and Dane Clemenson
year 2015
title Buoyant Memory - Neuroscience for a Virtual Architecture
doi https://doi.org/10.52842/conf.ecaade.2015.1.055
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 55-60
summary Gravity prescribes a very specific maxim for the built environment represented by the horizontal layer cake we are all so familiar with. This is contrasted by designs such as the International Space Station where no floor is present and every surface provides some function whether storage, data display and instrumentation or biological support infrastructure. Because of the homogeneity of approach to each surface an astronaut requires literal markers to orient oneself within the vessel. Very seldom within the natural, earth-bound environment does one find oneself in a situation where “up” is a questionable vector. What happens when architecture is translated to the virtual. What is the role of the architect or of his or her architecture in a virtual universe. Would a virtual architecture itself not become a social engine, its social context being that of online gaming, crowdfunding and social media? This engine's main role being the creation of architecturally inspiring gathering spaces for learning, playing and community building.
wos WOS:000372317300006
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2015_110
id ecaade2015_110
authors Nagakura, Takehiko; Tsai, Daniel and Choi, Joshua
year 2015
title Capturing History Bit by Bit - Architectural Database of Photogrammetric Model and Panoramic Video
doi https://doi.org/10.52842/conf.ecaade.2015.1.685
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 685-694
summary Architecture changes in real time. It appears differently as the sun and weather shift. And over a long span, it naturally wears and decays or may be renovated. This paper discusses the use of two emerging low-cost technologies, photogrammetric modeling and panoramic video, for recording such transformations of buildings. These methods uniquely capture a moment in the existence of a building, and deliver its three dimensional appearance and the sense of traversing in it like no other conventional media. An approach with a database platform is proposed as a solution for storing recordings amassed from fieldwork and making useful heterogeneous representations out of these unique contents for studying architectural designs.
wos WOS:000372317300074
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e74479fc-7029-11e5-9c41-d78521461413
last changed 2022/06/07 07:59

_id ascaad2016_004
id ascaad2016_004
authors Peteinarelis, Alexandros; Socrates Yiannoudes
year 2016
title Algorithmic Thinking in Design and Construction - Working with parametric models
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 19-28
summary This paper examines the parametric model in algorithmic design processes, using the outcome of an educational digital design and fabrication course as a case study. In its long history, algorithmic design as a form-finding method, allowed designers to manage complex non-standard associative geometries, suggesting a shift from the digital representation of form, to its systematic representation into a parametric model through code. Rather than a style or a tool, the parametric model is best defined in mathematical terms; in practice it incorporates the organizational logic of the form and the topological associations of its parts, so that a change in its constitutive parameters will invoke a concerted update of the entire model, and, iteratively, formal and structural variations. In a series of design experiments that took place at the School of Architecture of the Technical University of Crete in the spring of 2015, we used parametric models represented into visual code, from the initial conceptual stage to fabrication. From the experience and outcome of this course, we deduced that, compared to other digital formation methods, parametric models allow the designer to constantly interact with the model through the code, producing discreet variations without losing control of the design intentions, by “searching” into a wide range (albeit finite) of virtual results. This suggested a shift in culturally embedded patterns of modernist design thinking.
series ASCAAD
email
last changed 2017/05/25 13:13

_id ecaade2015_240
id ecaade2015_240
authors Sousa, Jose Pedro; Varela, Pedro Azambuja and Martins, Pedro Filipe
year 2015
title Between Manual and Robotic Approaches to Brick Construction in Architecture
doi https://doi.org/10.52842/conf.ecaade.2015.2.361
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 361-370
summary Brick construction has a long and rich structural and aesthetic traditions in architecture, which can be traced back to the origins of our civilization. However, despite the remarkable works of Frank Lloyd Wright, Louis Kahn, Eladio Dieste or Alvar Aalto in the 20th century, the application of this construction process to address more irregular geometries is very difficult to be achieved by conventional manual means. In this context, the last decade assisted to emergence of robotic applications in architecture. While Gramazio & Kohler looked for solving non-standard brick structures, others, like the S.A.M. robot initiative, are interested in improving the productivity in the fabrication of regular brick structures. By surveying the recent advances on bricklaying automation, this paper is interested in reflecting on the actual role of manual brickwork. In doing so, the authors present the Brick Tower experiment developed at the DFL/CEAU/FAUP, where two different fabrications processes are critically compared: a robotic and a manual one, which is aided by a video projection technique. By describing and illustrating this experiment, the authors argue that it is possible to expand the traditional craft of bricklaying by devising simple strategies to increase the human capacity to understand and materialize more elaborated geometries. This research avenue can be relevant if one considers that manual work should remain the most common form of brickwork practice in the next decades.
wos WOS:000372316000042
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e6bc50e2-6fe6-11e5-9a3c-4332809e7acb
last changed 2022/06/07 07:56

_id ecaade2015_211
id ecaade2015_211
authors Stellingwerff, Martijn
year 2015
title The MOOC-ability of Design Education
doi https://doi.org/10.52842/conf.ecaade.2015.2.057
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 57-60
summary In the past three years, Massive Open Online Courses (MOOCs) have become an important new way for universities to reach out to possible matriculates, life long learners and alumni. Although MOOCs already cover a vast amount of subjects and curricula, it is remarkable to ascertain the lack of Architectural Design courses on the main platforms like edX and Coursera. Online courses do cover design aspects, e.g. about styles and building materials, but 'design as activity' is an exceptional subject in the portfolio of available MOOCs. In contrast, the CAAD community was one of the first to develop Virtual Design Studio's (VDS) and experimental predecessors of MOOC platforms, such as the AVOCAAD course database system (Af Klercker et al. 2001). Yet, the query 'MOOC' still does not ring a bell in the CUMINCAD publication database (per May 2015). In this paper I will explore a palette of design education settings, in order to find a fit to what a MOOC platform can offer. I will compare the 'MOOC-ability' of Design Education to chances in Virtual Design Studio's and developments in ubiquitous mobile platforms.
wos WOS:000372316000008
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=fe4b575c-6e8e-11e5-a43c-c7a045e8393b
last changed 2022/06/07 07:56

_id ecaade2015_200
id ecaade2015_200
authors Gargaro, Silvia and Fioravanti, Antonio
year 2015
title Towards a Context Knowledge Taxonomy - Combined Methodologies to Improve a Fast-Search Concept Extraction for an Ontology Population
doi https://doi.org/10.52842/conf.ecaade.2015.1.137
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 137-147
summary Context in Architectural Design can be defined-related-comparable to hypothesis and boundary conditions in mathematics. An eco-system that influences it by means of natural and artificial events, space and time dimension. The research has the aim to analyze the critical issues related to Context by providing a contribution to the study of interactions between Context Knowledge and Architectural Design and how it can be used to improve the performance of the buildings and reducing design mistakes. The research focusing on formal ontologies, has developed a model that enables a semantic approach to design application programs, to manage information, to answer design questions and to have a clear relation between the formal representation of the context domain and its meanings. This context model provides an advancement on the state of the art in simplified design assumptions, in term of ontology ambiguity and complexity reduction, by using algorithms to extract and optimize branches of the graph. The extraction does not limit the number of relations, that can be extended and improve context taxonomy coherency and accuracy.
wos WOS:000372317300015
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c8741aa2-702c-11e5-a273-83f9e53dafcf
last changed 2022/06/07 07:51

_id ecaade2016_113
id ecaade2016_113
authors Poinet, Paul, Baharlou, Ehsan, Schwinn, Tobias and Menges, Achim
year 2016
title Adaptive Pneumatic Shell Structures - Feedback-driven robotic stiffening of inflated extensible membranes and further rigidification for architectural applications
doi https://doi.org/10.52842/conf.ecaade.2016.1.549
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 549-558
summary The paper presents the development of a design framework that aims to reduce the complexity of designing and fabricating free-form inflatables structures, which often results in the generation of very complex geometries. In previous research the form-finding potential of actuated and constrained inflatable membranes has already been investigated however without a focus on fabrication (Otto 1979). Consequently, in established design-to-fabrication approaches, complex geometry is typically post-rationalized into smaller parts and are finally fabricated through methods, which need to take into account cutting pattern strategies and material constraints. The design framework developed and presented in this paper aims to transform a complex design process (that always requires further post-rationalization) into a more integrated one that simultaneously unfolds in a physical and digital environment - hence the term cyber-physical (Menges 2015). At a full scale, a flexible material (extensible membrane, e.g. latex) is actuated through inflation and modulated through additive stiffening processes, before being completely rigidified with glass fibers and working as a thin-shell under compression.
wos WOS:000402063700060
keywords pneumatic systems; robotic fabrication; feedback strategy; cyber-physical; scanning processes
series eCAADe
email
last changed 2022/06/07 08:00

_id eaea2015_t3_paper02
id eaea2015_t3_paper02
authors Acacia, Simonetta; Casanova, Marta
year 2015
title Recording and Publishing to Ensure Informed Choices for Future Generations
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.290-298
summary The paper presents the practical example of an information system applied to the built heritage, in particular to the Albergo dei Poveri, a monumental complex in the city of Genoa. A huge number of data and information have been organized in one database, in order to provide a synthesis of the building, acquainted with its complexity, and at the same time allow an in-depth knowledge; the graphical visualization by means of GIS eases to query the database. The final purpose of this work is to publish the project as a web-GIS that will allow all the interested parts to easily access and consult the wide knowledge and use it to make well-informed decisions about the conservation of built heritage.
keywords GIS; knowledge; historical building
series EAEA
email
last changed 2016/04/22 11:52

_id acadia15_263
id acadia15_263
authors Ahlquist, Sean
year 2015
title Social Sensory Architectures: Articulating Textile Hybrid Structures for Multi-Sensory Responsiveness and Collaborative Play
doi https://doi.org/10.52842/conf.acadia.2015.263
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 263-273
summary This paper describes the development of the StretchPLAY prototype as a part of the Social Sensory Surfaces research project, focusing on the design of tactile and responsive environments for children with Autism Spectrum Disorder (ASD). The project is directed specifically at issues with sensory processing, the inability of the nervous system to filter sensory input in order to indicate an appropriate response. This can be referred to as a “traffic jam” of sensory data where the intensity of such unfiltered information leads to an over-intensified sensory experience, and ultimately a dis-regulated state. To create a sensory regulating environments, a tactile structure is developed integrating physical, visual and auditory feedback. The structure is defined as a textile hybrid system integrating a seamless knitted textile to form a continuous topologically complex surface. Advancements in the fabrication of the boundary structure, of glass-fiber reinforced rods, enable the form to be more robustly structured than previous examples of textile hybrid or tent-like structures. The tensioned textile is activated as a tangible interface where sensing of touch and pressure on the surface triggers ranges of visual and auditory response. A specific child, a five-year old girl with ASD, is studied in order to tailor the technologies as a response to her sensory challenges. This project is a collaboration with students, researchers and faculty in the fields of architecture, computer science, information (human-computer interaction), music and civil engineering, along with practitioners in the field of ASD-based therapies.
keywords Textile Hybrid, Knitting, Sensory Environment, Tangible Interface, Responsive systems and environments
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia17_102
id acadia17_102
authors Aparicio, German
year 2017
title Data-Insight-Driven Project Delivery: Approach to Accelerated Project Delivery Using Data Analytics, Data Mining and Data Visualization
doi https://doi.org/10.52842/conf.acadia.2017.102
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 102-109
summary Today, 98% of megaprojects face cost overruns or delays. The average cost increase is 80% and the average slippage is 20 months behind schedule (McKinsey 2015). It is becoming increasingly challenging to efficiently support the scale, complexity and ambition of these projects. Simultaneously, project data is being captured at growing rates. We continue to capture more data on a project than ever before. Total data captured back in 2009 in the construction industry reached over 51 petabytes, or 51 million gigabytes (Mckinsey 2016). It is becoming increasingly necessary to develop new ways to leverage our project data to better manage the complexity on our projects and allow the many stakeholders to make better more informed decisions. This paper focuses on utilizing advances in data mining, data analytics and data visualization as means to extract project information from massive datasets in a timely fashion to assist in making key informed decisions for project delivery. As part of this paper, we present an innovative new use of these technologies as applied to a large-scale infrastructural megaproject, to deliver a set of over 4,000 construction documents in a six-month period that has the potential to dramatically transform our industry and the way we deliver projects in the future. This paper describes a framework used to measure production performance as part of any project’s set of project controls for accelerated project delivery.
keywords design methods; information processing; data mining; big data; data visualization
series ACADIA
email
last changed 2022/06/07 07:55

_id acadia16_362
id acadia16_362
authors Beesley, Philip; Ilgun, Zeliha, Asya; Bouron, Giselle; Kadish, David; Prosser, Jordan; Gorbet, Rob; Kulic, Dana; Nicholas, Paul; Zwierzycki, Mateusz
year 2016
title Hybrid Sentient Canopy: An implementation and visualization of proprioreceptive curiosity-based machine learning
doi https://doi.org/10.52842/conf.acadia.2016.362
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 362-371
summary This paper describes the development of a sentient canopy that interacts with human visitors by using its own internal motivation. Modular curiosity-based machine learning behaviour is supported by a highly distributed system of microprocessor hardware integrated within interlinked cellular arrays of sound, light, kinetic actuators and proprioreceptive sensors in a resilient physical scaffolding system. The curiosity-based system involves exploration by employing an expert system composed of archives of information from preceding behaviours, calculating potential behaviours together with locations and applications, executing behaviour and comparing result to prediction. Prototype architectural structures entitled Sentient Canopy and Sentient Chamber developed during 2015 and 2016 were developed to support this interactive behaviour, integrating new communications protocols and firmware, and a hybrid proprioreceptive system that configured new electronics with sound, light, and motion sensing capable of internal machine sensing and externally- oriented sensing for human interaction. Proprioreception was implemented by producing custom electronics serving photoresistors, pitch-sensing microphones, and accelerometers for motion and position, coupled to sound, light and motion-based actuators and additional infrared sensors designed for sensing of human gestures. This configuration provided the machine system with the ability to calculate and detect real-time behaviour and to compare this to models of behaviour predicted within scripted routines. Testbeds located at the Living Architecture Systems Group/Philip Beesley Architect Inc. (LASG/PBAI, Waterloo/Toronto), Centre for Information Technology (CITA, Copenhagen) National Academy of Sciences (NAS) in Washington DC are illustrated.
keywords intedisciplinary/collaborative design, intelligent environments, artificial intelligence, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 15HOMELOGIN (you are user _anon_621081 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002