CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 590

_id ecaade2015_265
id ecaade2015_265
authors Hosey, Shannon; Beorkrem, Christopher, Damiano, Ashley, Lopez, Rafael and McCall, Marlena
year 2015
title Digital Design for Disassembly
doi https://doi.org/10.52842/conf.ecaade.2015.2.371
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 371-382
wos WOS:000372316000043
summary The construction and building sector is now widely known to be one of the biggest energy consumers, carbon emitters, and creators of waste. Some architectural agendas for sustainability focus on energy efficiency of buildings that minimize their energy intake during their lifetime - through the use of more efficient mechanical systems or more insulative wall systems. One issue with these sustainability models is that they often ignore the hierarchy of energy within architectural design. The focus on the efficiency is but one aspect or system of the building assembly, when compared to the effectiveness of the whole, which often leads to ad-hoc ecology and results in the all too familiar “law of unintended consequences” (Merton, 1936). As soon as adhesive is used to connect two materials, a piece of trash is created. If designers treat material as energy, and want to use energy responsibly, they can prolong the lifetime of building material by designing for disassembly. By changing the nature of the physical relationship between materials, buildings can be reconfigured and repurposed all the while keeping materials out of a landfill. The use of smart joinery to create building assemblies which can be disassembled, has a milieu of new possibilities created through the use of digital manufacturing equipment. These tools afford designers and manufacturers the ability to create individual joints of a variety of types, which perform as well or better than conventional systems. The concept of design for disassembly is a recognizable goal of industrial design and manufacturing, but for Architecture it remains a novel approach. A classic example is Kieran Timberlake's Loblolly House, which employed material assemblies “that are detailed for on-site assembly as well as future disassembly and redeployment” (Flat, Inc, 2008). The use of nearly ubiquitous digital manufacturing tools helps designers create highly functional, precise and effective methods of connection which afford a building to be taken apart and reused or reassembled into alternative configurations or for alternative uses. This paper will survey alternative energy strategies made available through joinery using digital manufacturing and design methods, and will evaluate these strategies in their ability to create diassemblable materials which therefore use less energy - or minimize the entropy of energy over the life-cycle of the material.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4075520a-6fe7-11e5-bcc8-f7d564ea25ed
last changed 2022/06/07 07:50

_id acadia15_185
id acadia15_185
authors Mogas-Soldevila, Laia; Duro-Royo, Jorge; Oxman, Neri
year 2015
title Form Follows Flow: A Material-Driven Computational Workflow for Digital Fabrication of Large-Scale Hierarchically Structured Objects
doi https://doi.org/10.52842/conf.acadia.2015.185
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 185-193
summary In the natural world, biological matter is structured through growth and adaptation, resulting in hierarchically structured forms with tunable material computation. Conventional digital design tools and processes, by contrast, prioritize shape over matter, lacking integration between modeling, analysis, and fabrication. We present a novel computational environment and workflow for the design and additive manufacturing of large-scale hierarchically structured objects. The system, composed by custom multi-barrel deposition attached to robotic positioning, integrates material properties, fabrication constraints and environmental forces to design and construct full-scale architectural components. Such components are physically form-found by digitally extruding natural polymers with functionally graded mechanical and optical properties informed by desired functionality and executed through flow-based fabrication. In this approach, properties such as viscosity, velocity, and pressure embed information in two-dimensional printing patterns and induce three-dimensional shape formation of the fabricated part. As a result, the workflow associates physical material and fabrication constraints to virtual design tools for modeling and analysis, challenging traditional design workflows and prioritizing flow over form.
keywords Material-driven Design, Additive Manufacturing, Integrated Design Workflows, Digital Fabrication, Digital Design Process, Material Ecology
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2015_301
id ecaade2015_301
authors Wit, Andrew John
year 2015
title The One Day House - Intelligent Systems for Adaptive Buildings
doi https://doi.org/10.52842/conf.ecaade.2015.2.643
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 643-650
wos WOS:000372316000071
summary As the global population continues to climb and environmental conditions become further unpredictable, the creation of a more robust, intelligent, adaptable yet affordable housing system will become an evermore-significant issue. Existing housing typologies find themselves lagging behind other industries such as aerospace and even automotive, lacking advanced fabrication infrastructures as well as embedded intelligent technologies that could allow for: Global interconnectivity and or manipulation, automatic software/hardware updating and physical/computational adaptability. The use of advanced tools for manufacturing resembling industrial robotics, 3D printing and as well as intelligent fabrication systems currently remains nearly non-existent. Constructed using outdated design methodologies, materials and construction techniques, the current dwelling functions merely as an enclosure for life rather then an integrated system for information, comfort and commerce. This paper questions the current typology of “house” through the rethinking of not only form and material, but by reimagining the dwelling as a whole. Rather then observing the dwelling as a static form for infrastructural permanence, this paper redefines the home as a globalized commodity, which is both physically and technologically connected and adaptable.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7412002e-6e91-11e5-b62c-00190f04dc4c
last changed 2022/06/07 07:57

_id caadria2015_172
id caadria2015_172
authors Choo, Thian-Siong and Patrick Janssen
year 2015
title Performance-Based Parametric Design : A Framework for Building Envelope Design
doi https://doi.org/10.52842/conf.caadria.2015.603
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 603-612
summary Existing performance-based design exploration methods typically suffer from a lack of real-time feedback and a lack of actionable feedback. This paper proposes a hybrid design exploration method that overcomes these issues by combining parametric modelling, surrogate modelling, and evolutionary algorithms. The proposed method is structured as a mixed-initiative approach, in which parametric modelling is the key to creating a synergistic relationship between the architect and the computational system. Surrogate-based techniques will address the issue of real-time feedback, the evolutionary exploration techniques will address the issue of actionable feedback. As a first stage in developing the PEX method, this paper reports on two experiments conducted to identify an appropriate surrogate modelling technique that is efficient and robust.
keywords Performance-based design, parametric modelling, surrogate modelling, evolutionary algorithms
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia15_311
id acadia15_311
authors Ahrens, Chandler
year 2015
title Klimasymmetry, Locating Thermal Tactility
doi https://doi.org/10.52842/conf.acadia.2015.311
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 311-322
summary The Klimasymmetry research project is part of ongoing investigations that ask how the design of a surface emanating radiant heating and cooling can influence the non-visual spatial boundaries created by asymmetrical thermal conditions. This research investigates the nature of the surface as an initiator of a thermal environment in an attempt to locate thermal tactility and the spatial perception according to radiant heat transfer. Surface qualities such as the quantity of area and thermal capacity of the material affects the ability of the panel to emit or absorb electromagnetic radiation, informing the geometry, topography, and location of each panel relative to the human body.
keywords Thermal behavior, Radiant panel system, Material computation, Digital Fabrication, Fabric forming, Glass Fiber Reinforced Gypsum
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
doi https://doi.org/10.52842/conf.acadia.2015.357
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia15_123
id acadia15_123
authors Askarinejad, Ali; Chaaraoui, Rizkallah
year 2015
title Spatial Nets: the Computational and Material Study of Reticular Geometries
doi https://doi.org/10.52842/conf.acadia.2015.123
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 123-135
summary Reticular systems are in many aspects a distinct taxonomy of volumetric geometries. In comparison with the conventional embodiment of a ‘volume’ that encapsulates a certain quantity of space with a shell reticular geometries emerge from the accumulation of micro elements to define a gradient of space. Observed in biological systems, such structures result from their material properties and formation processes as well as often ‘simple’ axioms that produce complex results. In micro or macro levels, from forest tree canopies to plant cell walls these porous volumes are not shaped to have a singular ‘solution’ for a purpose; they provide the fundamental geometric characteristics of a ‘line cloud’ that is simultaneously flexible in response to its environment, porous to other systems (light, air, liquids) and less susceptible to critical damage. The porosity of such systems and their volumetric depth also result in kinetic spatial qualities in a 4D architectural space. Built upon a ‘weaving’ organization and the high performance material properties of carbon fiber composite, this research focuses on a formal grammar that initiates the complex system of a reticular volume. A finite ‘lexical’ axiom is consisted of the basic characters of H, M and L responding to the anchor points on the highest, medium and lower levels of the extruding loom. The genome thus produces a string of data that in the second phase of programming are assigned to 624 points on the loom. The code aims to distribute the nodes across the flat line cloud and organize the sequence for the purpose of overlapping the tensioned strings. The virtually infinite results are then assessed through an evolutionary solver for confining an array of favorable results that can be then selected from by the designer. This research focuses on an approximate control over the fundamental geometric characteristics of a reticular system such as node density and directionality. The proposal frames the favorable result of the weave to be three-dimensional and volumetric – avoiding distinctly linear or surface formations.
keywords Reticular Geometries, Weaving, Line Clouds, Three-dimensional Form-finding, Carbon fiber, Prepreg composite, Volumetric loom, Fiberous Materials, Weaving fabrication, Formal Language, Lexical design, Evolutionary solver
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia15_161
id acadia15_161
authors Baharlou, Ehsan; Menges, Achim
year 2015
title Toward a Behavioral Design System: An Agent-Based Approach for Polygonal Surfaces Structures
doi https://doi.org/10.52842/conf.acadia.2015.161
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 161-172
summary The following research investigates the development of an agent-based design method as an integrative design tool for polygonal surface structures. The aim of this research is to develop a computational tool that self-organizes the emergence of polygonal surface structures from interaction between its constitutive lattices. This research focuses on the ethological level of morphogenesis that is relevant to the animal or insect societies, whereby agents mediate the material organizations with environmental aspects. Meanwhile, behavior-based approaches are investigated as a bottom-up system to develop a computational framework in which the lower-level features constantly interact. The lower-level features such as material properties (e.g., geometric descriptions) are abstracted into building blocks or agents to construct the agent’s morphology. The abstracted principles, which define the agent’s morphology, are aggregated into a generative tool to explore the emergent complexities. This exploration coupled with the generative constraint mechanisms steers the collective agents system toward the cloud of solutions; hence, the collective behaviors of agents constitute the polygonal surface structures. This polygonal system is a bottom up approach of developing the complex surface that emerges through topological and topographical interaction between cells and their surrounding environment. Subsequently, the integrative system is developed through agent-based parametric modelling, in which the knowledge-based system as a top-down approach is substituted with the agent system together with its morphological features and significant behaviors.
keywords Agent-Based System, Behavioral-Based System, Polygonal Surface Structures, Self-Organization and Emergence
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_226
id caadria2015_226
authors Bidgoli, Ardavan and Daniel Cardoso-Llach
year 2015
title Towards A Motion Grammar for Robotic Stereotomy
doi https://doi.org/10.52842/conf.caadria.2015.723
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 723-732
summary This paper presents progress towards the definition of a motion grammar for robotic stereotomy. It describes a vocabulary of motions able to generate complex forms by cutting, slicing, and/or carving 3-D blocks of material using a robotic arm and a custom made cutting tool. While shape grammars usually deal with graphical descriptions of designs, a motion grammar seeks to address the 3-D harmonic movements of machine, tool, and material substrate choreographically, suggesting motion as a generative vehicle of exploration in both designing and making. Several models and prototypes are presented and discussed.
keywords Generative Fabrication; Robots in Architecture; Hot Wire cutting; Shape Grammars; Stereotomy; Computational Making.
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2015_3.111
id sigradi2015_3.111
authors Brand?o, Filipe; Paio, Alexandra; Sousa, José Pedro; Rato, Vasco
year 2015
title Cork Re-Wall. Computational Methods of Automatic Generation and Digital Fabrication of Cork Partition Walls for Building Renovation
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 86-93.
summary Developments in computational design methods and their integration with digital fabrication processes are ushering a customized fabrication paradigm. This paradigm is particularly suited to renovation of old buildings built with traditional construction techniques, a diversified corpus in which interventions are surgical and unique, and where partition walls play the central role. Insulation Cork Board and OSB, natural and renewable materials, can have an important role in a material system that responds to this context. Cork re-Wall is a parametrically modelled construction system and a file-to-factory digital process to generate high quality custom solutions to respond to diverse renovation design challenges.
keywords Cork, Wood Frame, Digital Fabrication, Renovation, Parametric Design
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia15_47
id acadia15_47
authors Chaaraoui, Rizkallah; Askarinejad, Ali
year 2015
title Anisoptera; Anisopteran Deformation and the Latent Geometric Patterns of Wood Envelopes
doi https://doi.org/10.52842/conf.acadia.2015.047
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 47-56
summary Advancements in technologies provide Architects, today, with the means to expose new expressive forms using traditional materials. It is therefore possible to design dynamic actuating systems, where several different expressions, or differentiations inherent in the same material, are able to modify its topology and enhance its properties. Wood, traditionally used in construction, is given static expression during its life cycle, where an alignment, or assembly detail, helps retain its original shape. This research outlines the integration of specific and individual anatomical information of wood during the design process. It aids in utilizing the analyzed biological variability and natural irregularities of wood within a material-based architecture, in view of developing a lightweight, and light-filtering dynamic skin. Additionally, the research helps to explore an understanding of the differentiated material composition of wood as its major capacity, rather than its deficiency. Moreover, it analyzes form, material, and structure, as complex interrelations that are embedded in, and explored through an integral design process that seeks to employ typically disregarded, highly differentiated flat materials, in view of enhancing their latent dimensional deformation potential. The main focus of this research is to explore that latent geometric deformation of emerging patterns based on an array of heterogeneous wood veneers in relation to their Hygroscopic and Anisotropic properties. These properties are expressed through a set of flat skins and Mobius arrangements, articulating complex geometric ranges that reveal additional properties, such as bendability and flexibility.
keywords Shape-shifting, Geometric patterns, Anisotropic, Hygroscopic, Open systems, Building envelope
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia15_00
id acadia15_00
authors Combs, Lonn and Perry, Chris (eds.)
year 2015
title ACADIA 2105: Computational Ecologies: Design in the Anthropocene
doi https://doi.org/10.52842/conf.acadia.2015
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), 533 p.
summary Computational Ecologies: Design in the Anthropocene, seeks to engage a new period of enivironmental uncertainty by raising the question as to whether architecture should embark on establishing new affiliations beyond the human; a fundamental redefinition of the discipline as something no longer significant for “us” alone. If the Anthropocene has ushered in a new era of existential threat for human civilization, how does architecture not only rethink conventional forms of “program,” and by extension “performance,” privileging nonhuman alongside human forms of “use,” but a new material, formal, and spatial aesthetics as well?
keywords Anthopocene, computation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:49

_id caadria2016_415
id caadria2016_415
authors Crolla, Kristof and Adam Fingrut
year 2016
title Protocol of Error: The design and construction of a bending-active gridshell from natural bamboo
doi https://doi.org/10.52842/conf.caadria.2016.415
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 415-424
summary This paper advocates alternative methods to overcome the impossibility of realising ‘perfect’ digital designs. It discusses Hong Kong’s 2015 ‘ZCB Bamboo Pavilion’ as a methodological case study for the design and construction of architecture from unprocessed natu- ral bamboo. The paper critically evaluates protocols set up to deal with errors resulting from precise digital design systems merging with inconsistent natural resources and onsite craftsmanship. The paper starts with the geometric and tectonic description of the project, illus- trating a complex and restrictive construction context. Bamboo’s unique growth pattern, structural build-up and suitability as a bending- active material are discussed and Cantonese bamboo scaffolding craftsmanship is addressed as a starting point for the project. The pa- per covers protocols, construction drawings and assembly methods developed to allow for the incorporation and of large building toler- ances and dimensional variation of bamboo. The final as-built 3d scanned structure is compared with the original digital model. The pa- per concludes by discussing the necessity of computational architec- tural design to proactively operate within a field of real-world inde- terminacy, to focus on the development of protocols that deal with imperfections, and to redirect design from the virtual world towards the latent opportunities of the physical.
keywords Bamboo; bending-active gridshells; physics simulation; form-finding; indeterminacy
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_217
id ecaade2015_217
authors Davis, Felecia and Dumitrescu, Delia
year 2015
title What and When Is the Textile? Extending the Reach of Computation through Textile Expression
doi https://doi.org/10.52842/conf.ecaade.2015.2.417
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 417-426
wos WOS:000372316000048
summary The authors of this article argue for 'making time appear' in computational materials and objects so that it can be used to help people become aware of their relation to their environments. [Hallnäs & Redström 2001] As more computational and responsive materials come into play when designing architectural spaces designers might consider opening up the dimension of time to 'make time appear' rather than disappear. [Hallnäs & Redström 2001] Computational materials are materials which transform expression and respond to inputs read by computer programs. Making time appear can have many uses particularly in applications where people can be helped by the awareness of unfolding of time, where the temporality is linked to transformative body experience rather than project efficiency or collapsing distance. If architects, designers, engineers and others could begin to consider and use time as a way to promote reflection then it would be possible to design materials which could expand human thinking through the material itself.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=44daf674-70d7-11e5-8041-1b36fa35af4a
last changed 2022/06/07 07:56

_id ecaade2015_178
id ecaade2015_178
authors Decker, Martina
year 2015
title Soft Robotics and Emergent Materials in Architecture
doi https://doi.org/10.52842/conf.ecaade.2015.2.409
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 409-416
wos WOS:000372316000047
summary This paper investigates the potential of soft robotics that are enabled by emergent materials in architecture. Distributed, adaptive soft robotics holds the promise to address many issues in architectural environments such as energy efficiency as well as user comfort and safety.Two examples out of a series of experiments conducted in the Material Dynamics Lab at the New Jersey Institute of Technology are being introduced and serve as a vehicle to explore distributed soft robotics in architectural environments. The design process and project development methods of the soft robotic systems integrated the fabrication of working proof of concept prototypes as well as their testing.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=0a4cda54-70d7-11e5-8283-c31aaf067374
last changed 2022/06/07 07:55

_id ecaade2015_48
id ecaade2015_48
authors Edemskaya, Elizaveta and Agkathidis, Asterios
year 2015
title Vladimir Shukhov - A Critical Review on Digital Architecture
doi https://doi.org/10.52842/conf.ecaade.2015.1.395
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 395-402
wos WOS:000372317300043
summary This paper is a critical review on advantages and disadvantages of contemporary digital architecture, in retrospect to Vladimir Shukhov's design techniques, applied in the early 20th century. After investigating Shukhov's structural systems, this paper explores the relationship between performance and form, questioning the necessity of high-complexity structures. It will present unpublished archive material of his early work and stimulate a valuable discussion by comparing it with contemporary projects designed by renowned architects. The study on Shukhov focuses on his tessellation method of double-curved surfaces using simple standardized elements. The study of present digital approaches revolves around leading architects using computational tools (e.g. Foster and Partners, Buro Happold and Arup), who have materialized high complexity structures composed by irregular units. Our findings highlight advantages and disadvantages of contemporary computational approaches.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=bbc13038-7022-11e5-936a-d7a776e5d67a
last changed 2022/06/07 07:55

_id ecaade2015_247
id ecaade2015_247
authors Garcia, Manuel Jimenez and Retsin, Gilles
year 2015
title Design Methods for Large Scale Printing
doi https://doi.org/10.52842/conf.ecaade.2015.2.331
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 331-339
wos WOS:000372316000039
summary With an exponential increase in the possibilities of computation and computer-controlled fabrication, high density information is becoming a reality in digital design and architecture. However, construction methods and industrial fabrication processes have not yet been reshaped to accommodate the recent changes in those disciplines. Although it is possible to build up complex simulations with millions of particles, the simulation is often disconnected from the actual fabrication process. Our research proposes a bridge between both stages, where one drives the other, producing a smooth transition from design to production. A particle in the digital domain becomes a drop of material in the construction method.The architect's medium of expression has become much more than a representational tool in the last century, and more recently it has evolved even beyond a series of rules to drive from design to production. The design system is the instruction itself; embedding structure, material and tectonics and gets delivered to the very end of the construction chain, where it gets materialised. The research showcased in this paper investigates tectonic systems associated with large scale 3D printing and additive manufacturing methods, inheriting both material properties and fabrication constraints at all stages from design to production. Computational models and custom design software packages are designed and developed as strategies to organise material in space in response to specific structural and logistical input.Although the research has developed a wide spectrum of 3D printing methods, this paper focuses only on two of the most recent projects, where different material and computational logics were investigated. The first, titled Filamentrics, intends to develop free-form space frames, overcoming their homogeneity by introducing robotic plastic extrusion. Through the use of custom made extruders a vast range of high resolution prototypes were developed, evolving the design process towards the fabrication of precise structures that can be materialised using additive manufacturing but without the use of a layered 3D printing method. Instead, material limitations were studied and embedded in custom algorithms that allow depositing material in the air for internal connectivity. The final result is a 3x2x2.5m structure that demonstrates the viability of this construction method for being implemented in more industrial scenarios.While Filamentrics is reshaping the way we could design and build light weight structures, the second project Microstrata aims to establish new construction methods for compression based materials. A layering 3D printing method combines both the deposition of the binder and the distribution of an interconnected network of capillaries. These capillaries are organised following structural principles, configuring a series of channels which are left empty within the mass. In a second stage aluminium is cast in this hollow space to build a continuous tension reinforcement.
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=07a6d8e0-6fe7-11e5-9994-cb14cd908012
last changed 2022/06/07 07:51

_id caadria2015_033
id caadria2015_033
authors Hadilou, Arman
year 2015
title Phototropism of Tensile Façade System through Material Agency
doi https://doi.org/10.52842/conf.caadria.2015.127
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 127-136
summary This paper researches material agencies, mechanical systems and façade designs that are able to respond to environmental changes through local interactions, inspired by biological systems. These are based on a model of distributed intelligence founded on plants and animal collectives, from which intelligent behavior emerges through simple local associations. Biological collective systems integrate material form and responsiveness and have the potential to inform new architectural and engineering strategies. The design approach of this research is based on a data-driven methodology spanning from design inception to simulation and physical modeling. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. The driving concepts are three types of evolutionary adaptation: flexibility, acclimation, and learning. The proposed façade system is a responsive textile shading structure which uses integrated actuators that moderate their local environments through simple interactions with their immediate neighbors. Computational techniques coupled to material logics create an integral design framework leading to heterogeneous environmental and structural conditions, producing local responses to environmental stimuli and ultimately effective performance of the whole system.
keywords Responsive facade; phototropism; material intelligence.
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2019_626
id caadria2019_626
authors Hahm, Soomeen, Maciel, Abel, Sumitiomo, Eri and Lopez Rodriguez, Alvaro
year 2019
title FlowMorph - Exploring the human-material interaction in digitally augmented craftsmanship
doi https://doi.org/10.52842/conf.caadria.2019.1.553
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 553-562
summary It has been proposed that, after the internet age, we are now entering a new era of the '/Augmented Age/' (King, 2016). Physician Michio Kaku imagined the future of architects will be relying heavily on Augmented Reality technology (Kaku, 2015). Augmented reality technology is not a new technology and has been evolving rapidly. In the last three years, the technology has been applied in mainstream consumer devices (Coppens, 2017). This opened up possibilities in every aspect of our daily lives and it is expected that this will have a great impact on every field of consumer's technology in near future, including design and fabrication. What is the future of design and making? What kind of new digital fabrication paradigm will emerge from inevitable technological development? What kind of impact will this have on the built environment and industry? FlowMorph is a research project developed in the Bartlett School of Architecture, B-Pro AD with the collaboration of the authors and students as a 12 month MArch programme, we developed a unique design project trying to answer these questions which will be introduced in this paper.
keywords Augmented Reality, Mixed Reality, Virtual Reality, Design Augmentation, Digital Fabrication, Cognition models, Conceptual Designing, Design Process, Design by Making, Generative Design, Computational Design, Human-Machine Collaboration, Human-Computer Collaboration, Human intuition in digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2015_10.307
id sigradi2015_10.307
authors Herrera, Pablo C.
year 2015
title Mathematics and computation: Using visual programming to develop didactic materials in a learning environment
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 581-588.
summary We analyse the problem of creating didactic material for teaching and evaluating mathematics in the first year of a School of Architecture. By using visual programming, science professor used codes (formulae) to represent in a software their proposals, instead of drawing them themselves. Through this experience we create a database of codes with computational solutions that allows faculty to modify, reuse, visualise and print in the same platform that she students will use while developing their designs. In this way we aim to maximise the link between mathematics and design as fundamental base for the control of complex shapes.
keywords Visual Programming, Mathematics Education, Architectural Education, Latin America, 3D Printing
series SIGRADI
email
last changed 2016/03/10 09:53

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_983536 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002