CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id sigradi2015_000
id sigradi2015_000
authors Cybis Perreira, Alice T.; Pupo, Regiane T. (Ed.)
year 2015
title Project Information for Interaction
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0; vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015
summary The chosen theme "Project Information for interaction" reveals one of the most important ways that technology has offered to improve the design process by integrating information into the elements of digital graphic in a parametric way. This integration allows many design professionals to interact on the same model, enabling simulations, materializations, revisions with data more close to the reality, avoiding errors and wastes. Projects with highest social responsibility can be performed by inserting this new way of designing in education and professional practices. So, this conference is dedicated to give time and space for presentations and discussions of researches and experiences in this area applied to the various fields such as Architecture, Urbanism, Design, Animation, Arts, among others. Looking into another perspective, this issue also brings the concept of Smart Cities, where the provision of information integrated with graphics inserted in the towns components (streets, open areas, buildings and objects), allow more responsible interactions, generating sustainable and collaborative actions among citizens.

series SIGRADI
email
last changed 2016/03/10 09:50

_id ecaade2015_158
id ecaade2015_158
authors Kim, Do-Young; Jang, DoJin and author), Sung-AhKim
year 2015
title A Symbiotic Interaction of Virtual and Physical Models in Designing Smart Building Envelope
doi https://doi.org/10.52842/conf.ecaade.2015.2.633
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 633-642
wos WOS:000372316000070
summary The building needs to be designed to minimize its environmental footprint and to be sufficiently adaptive to changing indoor and outdoor environmental conditions. The smart building envelope is an interactive system which is adaptive to environmental conditions by transforming its shape and functions. This is a kind of machine, not like a traditional building component, which should be based on integrated engineering design methods in addition to the exploration of formal aesthetics. As artistic genius or technical skill alone cannot not fully support the design of such a novel product, the design needs to be systemized by introducing a product development method such as prototyping in other industries. Prototyping needs to be integrated in school environment, even if it requires fundamental reconfiguration of current computer-based design studios. This paper aims at proposing a teaching methodology for educating the prototyping-based design of smart building envelope system in digital design studio. This methodology allows novice designers to operate interactions between virtual-physical models. And sketches are used to share ideas to other collaborators such as programming, mechanical operations without technical knowledge. The interactions between virtual-physical models and sketches contribute to not only complement virtual models and physical models, but also achieve high-performance of smart building envelope practically.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=215b1984-6e90-11e5-9ee8-00190f04dc4c
last changed 2022/06/07 07:52

_id ecaade2015_231
id ecaade2015_231
authors Lonsing, Werner
year 2015
title Beyond Smart Remote Controls - Developing a More Integrated and Customizable Implementation of Automation in a Building by Utilizing Tools and Concepts from Makers
doi https://doi.org/10.52842/conf.ecaade.2015.2.679
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 679-686
wos WOS:000372316000075
summary “Home Automation” describes the connecting of electronic household appliances to a centralized control unit like e.g. an app on a smart phone or some control panel. The overall goal of these efforts is to provide a general remote control for existing devices. By comparison a concept of home automation as part of a building design process has yet not come into shape.
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2015_6.183
id sigradi2015_6.183
authors Pazmino, Ana Veronica; Braga, Rodrigo
year 2015
title Analysis tool for smart and interactive products
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 214-222.
summary This paper aims to demystify the term of interaction and intelligence to be applied with appropriate conceptual basis. Currently there are a lot of innovative products called interactive or intelligent, when in fact nothing but responsive products and low interaction. This paper presents the theoretical foundations of interaction levels and smart design (related to artificial intelligence), then it shows the deconstruction and analysis of interactive products through specific criteria. The result item is a tool for analyzing interactive and intelligent products.
keywords Interaction Design, Smart Design, Innovation
series SIGRADI
email
last changed 2016/03/10 09:57

_id ecaade2015_155
id ecaade2015_155
authors Rosenberg, Eliot; Haeusler, M Hank, Araullo, Rebekah and Gardner, Nicole
year 2015
title Smart Architecture-Bots & Industry 4.0 Principles for Architecture
doi https://doi.org/10.52842/conf.ecaade.2015.2.251
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 251-259
wos WOS:000372316000030
summary Industrial robots from the automotive industry are being repurposed for use in architecture fabrication research in academic institutions around the globe. They are adapted for a variety of fabrication techniques due to the versatility of their 6-axis arm configuration. Though their physical versatility is an advantage in research, their computational and sensory capabilities are rudimentary and have not evolved significantly in the past forty years of their existence. In the meantime the manufacturing industry has moved on by introducing new forms of manufacturing namely Industry 4.0. In this position paper we look at the characteristics necessary to bring architecture robotics into line with Industry 4.0 standards. By presenting the fabrication process as a relationship model of 'tool-process-outcome' we will examine the way in which these entities and their interrelations might be augmented vis-a-vis Cyber-Physical Systems (CPS), Social Robotics and Human-Computer Interaction (HCI) approaches such as the Tangible User Interface (TUI).
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2015_sp_12.402
id sigradi2015_sp_12.402
authors Ryberg, Maria Candelária; Bratti, Maria Luiza; Cavalcanti, Patrícia Biasi; Ely, Vera Helena Moro Bins
year 2015
title Participatory design experience for a milk collecting room of a hospital in Florianópolis
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 836-840.
summary This article describes the experience of a participatory design project of a milk collecting room. The objective of this project was to identify the desirable attributes of the environment and contemplate participatory design applications. The methodology used includes: AEIOU, SWOT analysis, Brainstorming, Wish Poems, interaction with the proposals using 3D modeling and Visual Selection. The present work confirms the benefits of the participatory process as a possibility to expand the comprehension of the user’s needs. Moreover, the project proved that digitalized graphic resources are easy to use and are beneficial to interaction with the present proposal.
keywords Participatory Design, Interior Design, Health Care Enviroments, Milk Bank
series SIGRADI
email
last changed 2016/03/10 09:59

_id caadria2015_190
id caadria2015_190
authors Wu, Yi-Sin and Teng-Wen Chang
year 2015
title HiGame: Improving Elderly Well-Being through Horticultural Interaction
doi https://doi.org/10.52842/conf.caadria.2015.095
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 95-104
summary Family support is the key to the well-being problems of elderly. Unlike health problem, mental is often depended on the social network of elderly. How to enhance elderly well-being problems will become how to increase the interaction between elderly and their family. Horticultural interaction proves to be an effective but smooth impact on improving well-being problems of elderly. With a built-in ambient display and interaction game in mind, a Horticultural Interaction Game (HiGame) is developed, that has connection of both physical and virtual spaces. Elderly through physical watering, weeding, fertilizing to interaction with distant family. And distant family use virtual game of to support elderly.
keywords Horticultural interaction game; Nature display; ambient display
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2015_130
id caadria2015_130
authors Hanna, R.
year 2015
title Parametric Tools and Creativity in Architectural Practice
doi https://doi.org/10.52842/conf.caadria.2015.613
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 613-622
summary This paper empirically tested the relationship between creativity and computing tools in two different architectural practice settings: one that extensively uses parametric tools for design and fabrication and another that predominantly uses conventional CAD tools in design. The paper surveyed 14 parametric practices and 17 non parametric practices from the UK. The results were statistically analysed using IBM_SPSS (Statistical Package for Social Sciences). The analysis of variance between the 2 groups revealed significant differences on the four domains of creativity. Statistical variance between the two groups on originality was big. Also the length of time subjects used parametric tools correlated significantly with three measures of creativity (fluency, variety and elaboration). Cluster analysis on design cognition of the two groups showed significant pattern differences on how each group structures the design process.
keywords Architectural practice: tools: creativity: Variance: SPSS.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2015_64
id ecaade2015_64
authors Nourian, Pirouz; Rezvani, Samaneh, Sariyildiz, Sevil and Hoeven, Franklinvander
year 2015
title CONFIGURBANIST - Urban Configuration Analysis for Walking and Cycling via Easiest Paths
doi https://doi.org/10.52842/conf.ecaade.2015.1.553
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 553-564
wos WOS:000372317300060
summary In a quest for promoting sustainable modes of mobility, we have revisited how feasible and suitable is it for people to walk or cycle to their destinations in a neighbourhood. We propose a few accessibility measures based on an 'Easiest Path' algorithm that provides also actual temporal distance between locations. This algorithm finds paths that are as short, flat and straightforward as possible. Considering several 'points of interest', the methods can answer such questions as “do I have a 5 minutes 'easy' walking/cycling access to all/any of these points?” or, “which is the preferred point of interest with 'easy' walking cycling access?” We redefine catchment zones using Fuzzy logics and allow for mapping 'closeness' considering preferences such as 'how far' people are willing to go on foot/bike for reaching a particular destination. The accessibility measures are implemented in the toolkit CONFIGURBANIST to provide real-time analysis of urban networks for design and planning.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=b1dffea2-70d9-11e5-8e0c-0377ddcc509c
last changed 2022/06/07 08:00

_id ecaade2015_138
id ecaade2015_138
authors Achten, Henri
year 2015
title Closing the Loop for Interactive Architecture - Internet of Things, Cloud Computing, and Wearables
doi https://doi.org/10.52842/conf.ecaade.2015.2.623
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 623-632
wos WOS:000372316000069
summary Interactive architecture occurs in buildings when part of the building engages in exchange of information with the user, in such a way that the interactive system adjusts it's assumptions about the user's needs and desires. Acquiring the user's needs and desires is no trivial task. Currently there are no techniques that will reliably make such assertions. Building a system that unobtrusively monitors the inhabitant seems to be a tall order, and making the system ask the user all the time is very distracting for the user. An alternative option has become available however: personal wearables are increasingly monitoring the user. Therefore it suffices that the interactive system of the building gets in touch with those wearables, rather than duplicating the sensing function of the wearables. The enabling technology for wearables is Internet of Things, which connects physical objects (smart objects) on a virtual level, and Cloud Computing, which provides a scalable storage environment for wearables and smart objects. In this paper we outline the implications of the convergence of these three technologies in the light of interactive architecture.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=fdd9e706-6e8f-11e5-b1d4-00190f04dc4c
last changed 2022/06/07 07:54

_id acadia15_263
id acadia15_263
authors Ahlquist, Sean
year 2015
title Social Sensory Architectures: Articulating Textile Hybrid Structures for Multi-Sensory Responsiveness and Collaborative Play
doi https://doi.org/10.52842/conf.acadia.2015.263
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 263-273
summary This paper describes the development of the StretchPLAY prototype as a part of the Social Sensory Surfaces research project, focusing on the design of tactile and responsive environments for children with Autism Spectrum Disorder (ASD). The project is directed specifically at issues with sensory processing, the inability of the nervous system to filter sensory input in order to indicate an appropriate response. This can be referred to as a “traffic jam” of sensory data where the intensity of such unfiltered information leads to an over-intensified sensory experience, and ultimately a dis-regulated state. To create a sensory regulating environments, a tactile structure is developed integrating physical, visual and auditory feedback. The structure is defined as a textile hybrid system integrating a seamless knitted textile to form a continuous topologically complex surface. Advancements in the fabrication of the boundary structure, of glass-fiber reinforced rods, enable the form to be more robustly structured than previous examples of textile hybrid or tent-like structures. The tensioned textile is activated as a tangible interface where sensing of touch and pressure on the surface triggers ranges of visual and auditory response. A specific child, a five-year old girl with ASD, is studied in order to tailor the technologies as a response to her sensory challenges. This project is a collaboration with students, researchers and faculty in the fields of architecture, computer science, information (human-computer interaction), music and civil engineering, along with practitioners in the field of ASD-based therapies.
keywords Textile Hybrid, Knitting, Sensory Environment, Tangible Interface, Responsive systems and environments
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2024_477
id caadria2024_477
authors Akbaylar Hayreter, Ipek, Gulec Ozer, Derya and As Cemrek, Handan
year 2024
title Enhancing Cultural Heritage Digitalization and Visitor Engagement Through LiDAR Scanning and Gamification
doi https://doi.org/10.52842/conf.caadria.2024.2.283
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 283–292
summary Cultural heritage assets are valuable, providing important information about humanity's past and conveying it to the future. Unfortunately, conventional documentation is insufficient to preserve them for the next generations. Furthermore, increasing visitor interaction with these assets and raising awareness has been one of the challenges in this field. In this paper, we will examine how mobile LiDAR (Laser Detection and Ranging) technology can be used to precisely scan and document historical sites and how it can be combined with gamification elements to provide visitors with better experiences. It is also important that the texture taken in mobile laser scanning can be used to better visualize 3D mesh models of the scanned objects, so the fastest application that produces 3D models is selected. The study area is Syedra Ancient City in Alanya / Turkey, where the research and excavation process has continued since 2015 and the restoration projects started in 2023. Future work includes the creation of experiences to provide a basis for gamification and revitalizing the story of the heritage for the visitors through digital storytelling and AR (Augmented Reality). Preserving historical sites while providing visitors with a more in-depth, vivid and enjoyable experience are important facts for enhancing cultural heritage and passing it on to future generations.
keywords Cultural Heritage, Digitalization, LiDAR, Mobile Laser Scanning, Digital Storytelling, Augmented Reality, Gamification
series CAADRIA
email
last changed 2024/11/17 22:05

_id sigradi2015_2.162
id sigradi2015_2.162
authors Almeida, Fernando; Andrade, Max
year 2015
title GIS as a catalyst tool for Smart Cities
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 46-50.
summary Every building has its individual and measurable role on resources consumption, waste generation and neighborhood impact within a city, and tracking this behavior is an essential task for establishing a sustainable path into a Smart City model. This paper preliminarily investigates how GIS can contribute in creating an integrated and dynamic system built to attend public utilities and urban management offices for parameters at various scales.
keywords GIS, Smart Cities, Urban Infrastructure, Public Services, Urban Management
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2015_090
id caadria2015_090
authors Altabtabai, Jawad and Wei Yan
year 2015
title A User Interface for Parametric Architectural Design Reviews
doi https://doi.org/10.52842/conf.caadria.2015.065
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 65-74
summary Architectural form and performance are affected by the designer's graphical representation methods. Parametric CAD systems, as design and representation tools, have become ubiquitous in architectural practice and education. Literature in the area of parametric design reviews is scarce and focused within building inspection and construction coordination domains. Additionally, platforms marketed as design review tools lack basic functionality for conducting comprehensive, parametric, and performance-based reviews. We have developed a user interface prototype where geometric and non-geometric information of a Building Information Model were translated into an interactive gaming environment. The interface allows simultaneous occupation and simulation of spatial geometry, enabling the user to engage with object parameters, as well as, performance-based, perspectival, diagrammatic, and orthographic representations for total spatial and performance comprehension.
keywords Design cognition; Virtual/augmented reality and interactive environments; Human-computer interaction.
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2015_246
id ecaade2015_246
authors Andraos, Sebastian
year 2015
title DMR: A Semantic Robotic Control Language
doi https://doi.org/10.52842/conf.ecaade.2015.2.261
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 261-268
wos WOS:000372316000031
summary DMR is a semantic robot-control language that attempts to change our relationship with machines and create true human-robot collaboration through intuitive interfacing. To this end, DMR is demonstrated in the DMR Interface, an Android app, which accepts semantic vocal commands as well as containing a GUI for feedback and verification. This app is combined with a robot-mounted 3D camera to enable robotic interaction with the surroundings or compensate for unpredictable environments. This combination of tools gives users access to adaptive automation whereby a robot is no longer given explicit instructions but instead is given a job to do and will adapt its movements to execute this regardless of any slight changes to the goal or environment. The major advantages of this system come in the vagueness of the instructions given and a constant feedback of task accomplishment, approaching the manner in which we subconsciously control our bodies or would guide another person to achieve a goal.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=1d9c3f50-6fe2-11e5-8742-0b2879594625
last changed 2022/06/07 07:54

_id caadria2015_084
id caadria2015_084
authors Asl, Mohammad Rahmani; Chengde Wu, Gil Rosen-Thal and Wei Yan
year 2015
title A New Implementation of Head-Coupled Perspective for Virtual Architecture
doi https://doi.org/10.52842/conf.caadria.2015.251
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 251-260
summary The process of projecting 3D scenes onto a two-dimensional (2D) surface results in the loss of depth cues, which are essential for immersive experience in the scenes. Various solutions are provided to address this problem, but there are still fundamental issues need to be addressed in the existing approaches for compensating the change in the 2D image due to the change in observer’s position. Existing studies use head-coupled perspective, stereoscopy, and motion parallax methods to achieve a realistic image representation but a true natural image could not be perceived because of the inaccuracy in the calculations. This paper describes in detail an implementation method of the technique to correctly project a 3D virtual environment model onto a 2D surface to yield a more natural interaction with the virtual world. The proposed method overcomes the inaccuracies in the existing head-coupled perspective viewing and can be used with common stereoscopic displays to naturally represent virtual architecture.
keywords Virtual reality; virtual architecture; head-coupled perspective; depth perception.
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia15_161
id acadia15_161
authors Baharlou, Ehsan; Menges, Achim
year 2015
title Toward a Behavioral Design System: An Agent-Based Approach for Polygonal Surfaces Structures
doi https://doi.org/10.52842/conf.acadia.2015.161
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 161-172
summary The following research investigates the development of an agent-based design method as an integrative design tool for polygonal surface structures. The aim of this research is to develop a computational tool that self-organizes the emergence of polygonal surface structures from interaction between its constitutive lattices. This research focuses on the ethological level of morphogenesis that is relevant to the animal or insect societies, whereby agents mediate the material organizations with environmental aspects. Meanwhile, behavior-based approaches are investigated as a bottom-up system to develop a computational framework in which the lower-level features constantly interact. The lower-level features such as material properties (e.g., geometric descriptions) are abstracted into building blocks or agents to construct the agent’s morphology. The abstracted principles, which define the agent’s morphology, are aggregated into a generative tool to explore the emergent complexities. This exploration coupled with the generative constraint mechanisms steers the collective agents system toward the cloud of solutions; hence, the collective behaviors of agents constitute the polygonal surface structures. This polygonal system is a bottom up approach of developing the complex surface that emerges through topological and topographical interaction between cells and their surrounding environment. Subsequently, the integrative system is developed through agent-based parametric modelling, in which the knowledge-based system as a top-down approach is substituted with the agent system together with its morphological features and significant behaviors.
keywords Agent-Based System, Behavioral-Based System, Polygonal Surface Structures, Self-Organization and Emergence
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2017_337
id cf2017_337
authors Barber, Gabriela; Lafluf, Marcos; Amen, Fernando Garcia; Accuosto, Pablo
year 2017
title Interactive Projection Mapping in Heritage: The Anglo Case
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 337-348.
summary This work is the outcome of a multidisciplinary collaboration in the context of the VidiaLab (Laboratorio de Visualización Digital Avanzada). It proposes an application of interactive video mapping techniques as a form of experiencing the Fray Bentos industrial landscape, declared as a World Heritage Site by UNESCO in 2015. An immersive environment was created by enriching a physical scale model of the site with projected digital images and information, providing new and attractive ways of interaction with the cultural heritage. Proposals for future work and educational applications of the developed tools are also discussed.
keywords Video Mapping, New Media Art, Heritage, Museum, Human-Computer Interaction
series CAAD Futures
email
last changed 2017/12/01 14:38

_id acadia16_362
id acadia16_362
authors Beesley, Philip; Ilgun, Zeliha, Asya; Bouron, Giselle; Kadish, David; Prosser, Jordan; Gorbet, Rob; Kulic, Dana; Nicholas, Paul; Zwierzycki, Mateusz
year 2016
title Hybrid Sentient Canopy: An implementation and visualization of proprioreceptive curiosity-based machine learning
doi https://doi.org/10.52842/conf.acadia.2016.362
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 362-371
summary This paper describes the development of a sentient canopy that interacts with human visitors by using its own internal motivation. Modular curiosity-based machine learning behaviour is supported by a highly distributed system of microprocessor hardware integrated within interlinked cellular arrays of sound, light, kinetic actuators and proprioreceptive sensors in a resilient physical scaffolding system. The curiosity-based system involves exploration by employing an expert system composed of archives of information from preceding behaviours, calculating potential behaviours together with locations and applications, executing behaviour and comparing result to prediction. Prototype architectural structures entitled Sentient Canopy and Sentient Chamber developed during 2015 and 2016 were developed to support this interactive behaviour, integrating new communications protocols and firmware, and a hybrid proprioreceptive system that configured new electronics with sound, light, and motion sensing capable of internal machine sensing and externally- oriented sensing for human interaction. Proprioreception was implemented by producing custom electronics serving photoresistors, pitch-sensing microphones, and accelerometers for motion and position, coupled to sound, light and motion-based actuators and additional infrared sensors designed for sensing of human gestures. This configuration provided the machine system with the ability to calculate and detect real-time behaviour and to compare this to models of behaviour predicted within scripted routines. Testbeds located at the Living Architecture Systems Group/Philip Beesley Architect Inc. (LASG/PBAI, Waterloo/Toronto), Centre for Information Technology (CITA, Copenhagen) National Academy of Sciences (NAS) in Washington DC are illustrated.
keywords intedisciplinary/collaborative design, intelligent environments, artificial intelligence, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia15_223
id acadia15_223
authors Brell-Cokcan, Sigrid; Braumann, Johannes
year 2015
title Toward Adaptive Robot Control Strategies
doi https://doi.org/10.52842/conf.acadia.2015.223
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 223-231
summary Within just a few years, industrial robots have become a significant field of research within the creative industry. Due to their inherent multi-functionality they are now being used for a wide range of applications, from conceptualized ideas of human-robot interaction, to interactive media and full-scale fabrication. A significant enabling factor has been the development of designer-centric visual programming environments that make it possible for users from the creative industry to program robotic arms in an accessible and intuitive fashion. In our ongoing research we are exploring new possibilities for industrial robots in the creative industry by branching into two opposite directions: Using custom software to compensate for the limitations of used, cheap industrial robots by outsourcing computation-intensive operations, and developing new interfaces for adaptive robot control, thus dynamically coupling the robot with the visual programming environment itself.
keywords Adaptive robot control, visual programming, interfaces, industrial robots
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_92855 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002