CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
doi https://doi.org/10.52842/conf.acadia.2019.168
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_170
id caadria2015_170
authors Chen, Yu Chen and Chao-Ming Wang
year 2015
title The Research of Human-Computer Interaction by Combining Affective Computing into Chinese Calligraphy Art
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 55-64
doi https://doi.org/10.52842/conf.caadria.2015.055
summary Calligraphy is one of the important cultures in Chinese world. The rich strokes, structures and forms make the Chinese calligraphy an art. As the writing script is closely correlated to the emotions of the writer, a lot of scholars explore the correlation between the Chinese calligraphy lines and affect from the perspectives of psychology and art. In this study, it introduces the affective-computing technology and combines the digital media from the perspective of Chinese calligraphy and emotions, to develop an interactive calligraphy-art device. It re-interprets the Chinese calligraphy art with the digital tool and installs the pulse sensor and pressure sensor in the Chinese pen brush, so as to detect the user’s pulse and writing power. Moreover, it converts the physiological signals into affect and provides visual feedback in real time, which includes the changes and motions of the Chinese calligraphy lines. The study proposes contacting the traditional Chinese calligraphy with a new human-computer interaction mode. With the visual feedback effect during the interaction, it allows the user to know the close correlation between the Chinese calligraphy and the emotions. Through the work, the Chinese calligraphy art can be carried forward.
keywords Chinese Calligraphy Art; Human-Computer Interaction; Affective Computing.
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2015_221
id ecaade2015_221
authors Junk, Stefan and Matt, Rebecca
year 2015
title Workshop Digital Manufacturing - A New and Practical Approach to Combine CAAD and Digital Manufacturing in Architectural Design Education
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 103-110
doi https://doi.org/10.52842/conf.ecaade.2015.2.103
wos WOS:000372316000013
summary The opportunities for the use of Digital Manufacturing in the field of architecture have increased tremendously over the past years. Today, already a large variety of methods and processes are used for the production of architectural models or even prototypes and design models. By now, this new technology has also become firmly established in the education of students. In this context, especially the theoretical basics of digital manufacturing, that is to say the integration of CAAD with the manufacturing process, and the special characteristics of the additive manufacturing, i.e. assembly in layers, are taught. As a demonstration of the practical application of the new technology of 3D printing, this paper will focus on the Workshop Digital Manufacturing. Due to the new approach of this workshop, which relies on the assembly of a 3D printer from an assembly kit, the students gain profound insights into the technology and functionality of 3D printers. In a next step, the students realize various models with the 3D-printer and in doing so develop design guidelines for additive manufacturing autonomously.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=52a83db6-6fe7-11e5-992c-a7fd95009077
last changed 2022/06/07 07:52

_id caadria2015_218
id caadria2015_218
authors Ku, Kihong and Daniel Chung
year 2015
title Digital Fabrication Methods of Composite Architectural Panels for Complex Shaped Buildings
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 703-712
doi https://doi.org/10.52842/conf.caadria.2015.703
summary Composite materials have been explored in architecture for their high performance characteristics that allow customization of functional properties of lightness, strength, stiffness and fracture toughness. Particularly, engineering advancements and better understanding of fiber composites have resulted in growing applications for architectural structures and envelopes. As most developments started outside the realm of architecture such as automobile and aeronautical industries, there is need to advance knowledge in architectural design to take advantage of this new technology. In this paper, the authors introduce preliminary results of new digitally driven fabrication methods for fiber-reinforced composite sandwich panels for complex shaped buildings. This research examined the material properties, manufacturing methods and fabrication techniques needed to develop a proof of concept system using off-the-shelf production technology that ultimately can be packaged into a containerized facility for on-site panel production. Experiments focused on developing a digitally controlled deformable mold to create composite relief structures for highly customized geometrical façade components. Research findings of production materials, methods, assembly techniques, are discussed to offer insights into novel opportunities for architectural composite panel fabrication and commercialization.
keywords Fiber reinforced polymer; fiber composites; adjustable mold; architectural panel; complex shape.
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id sigradi2015_11.34
id sigradi2015_11.34
authors Bacinoglu, Saadet Zeynep
year 2015
title From material to material with new abilities. Performative Skin: an unfinished product derived through the organizational logic as developed through research on ‘movement’
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 631-636.
summary This paper presents the process and products from research on ‘a movement behavior’, transforming the initial surface from one state to other states. The study developed an initial model of material organization inspired by nature: the adaptable exoskeleton of the armadillium vulgare. Through geometric analysis of functional variation in the exoskeleton’s unit shape, and physical model making, the underlying principle is translated into design & production rules. The generative model of ‘an adaptable segmented system’ is constructed through a geometric abstraction of the exoskeleton, achieving diverse functions such as variability in form, volume, porosity, flexibility and strength, through a distribution of ‘material geometry’ with the folding technique. The potentiality of this parametric physical model (based on simple systematicity) is questioned in relation to diverse situations that result in complex surface adaptations. This research shows the formulation of a design intention.
keywords Digital Craft, Folding, Material Computation, Informed Matter
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2015_237
id caadria2015_237
authors Bazalo, Frano. and Tane J. Moleta
year 2015
title Responsive Algorithms
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 209-218
doi https://doi.org/10.52842/conf.caadria.2015.209
summary An algorithm is a process of addressing a problem in a finite number of steps. In the context of architectural design, algorithmic thinking means taking on an interpretive role to understand the results in relation to design criteria, knowing how to modify the code to explore new options, and speculating on further design potentials. The application of algorithms within architecture often addresses the developed design stages, primarily to optimise structure, test environmental performance or to resolve complex construction. This research aims to explore algorithmic tools with a focus on early stage design. This design stage is often developed using traditional processes and is where algorithmic applications have been less successfully executed. The objectives are to algorithmically explore the areas of space planning, programme layout, form finding and form optimisation within early stage architectural design. Through the combination of a range of diverse algorithms, this research has an ultimate aim of integrating a computational workflow into practice at the early design stage.
keywords Computational design, Early stage design
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2015_100
id ecaade2015_100
authors Braumann, Johannes and Brell-Cokcan, Sigrid
year 2015
title Adaptive Robot Control - New Parametric Workflows Directly from Design to KUKA Robots
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 243-250
doi https://doi.org/10.52842/conf.ecaade.2015.2.243
wos WOS:000372316000029
summary In the past years the creative industry has made great advancements in the area of robotics. Accessible robot simulation and control environments based on visual programming systems such as Grasshopper and Dynamo now allow even novice users to quickly and intuitively explore the potential of robotic fabrication, while expert users can use their programming knowledge to create complex, parametric robotic programs. The great advantage of using visual programming for robot control lies in the quick iterations that allow the user to change both geometry and toolpaths as well as machinic parameters and then simulate the results within a single environment. However, at the end of such an iterative optimization process the data is condensed into a robot control data file, which is then copied over to the robot and thus loses its parametric relationship with the code that generated it. In this research we present a newly developed system that allows a dynamic link between the robot and the controlling PC for parametrically adjusting robotic toolpaths and collecting feedback data from the robot itself - enabling entirely new approaches towards robotic fabrication by even more closely linking design and fabrication.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=9d9da7bc-70ef-11e5-b2fd-efbb508168fd
last changed 2022/06/07 07:54

_id acadia15_223
id acadia15_223
authors Brell-Cokcan, Sigrid; Braumann, Johannes
year 2015
title Toward Adaptive Robot Control Strategies
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 223-231
doi https://doi.org/10.52842/conf.acadia.2015.223
summary Within just a few years, industrial robots have become a significant field of research within the creative industry. Due to their inherent multi-functionality they are now being used for a wide range of applications, from conceptualized ideas of human-robot interaction, to interactive media and full-scale fabrication. A significant enabling factor has been the development of designer-centric visual programming environments that make it possible for users from the creative industry to program robotic arms in an accessible and intuitive fashion. In our ongoing research we are exploring new possibilities for industrial robots in the creative industry by branching into two opposite directions: Using custom software to compensate for the limitations of used, cheap industrial robots by outsourcing computation-intensive operations, and developing new interfaces for adaptive robot control, thus dynamically coupling the robot with the visual programming environment itself.
keywords Adaptive robot control, visual programming, interfaces, industrial robots
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2015_483
id cf2015_483
authors Caetano, Inês; Santos, Luís and Leitão, António
year 2015
title From idea to shape, from algorithm to design: A framework for the generation of contemporary façades
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 483.
summary Nowadays, there is a growing interest in buildings' envelops presenting complex geometries and patterns. This interest is related with the use of new design tools, such as Generative Design, which promotes a greater design exploration. In this paper we discuss and illustrate a structured and systematic computational framework for the generation of facade designs. This framework includes (1) a classification of facades into different categories that we consider computationally relevant, and (2) an identification and implementation of a set of algorithms and strategies that address the needs of the different designs.
keywords generative design, facades, algorithms.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_323
id cf2015_323
authors Celani, Gabriela; Sedrez, Maycon; Lenz, Daniel and Macedo, Alessandra
year 2015
title The future of the architect’s employment: To which extent can architectural design be computerised?
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 323.
summary This paper was motivated by Frey and Osborne’s [1] work about the probability of different occupations being computerised in the near future, titled “The Future of Employment”. In their study, the architect’s profession had a very low probability of being automated, which does not do justice to the past fifty years of research in the field of architectural design automation. After reviewing some concepts in economics and labor, and identifying three categories of tasks in regards to automation, we propose a new estimate, by looking independently at 30 architectural tasks. We also took into account the reported advances in the automation of these tasks through scientific research. We conclude that there is presently a change in skill requirements for architects, suggesting that we have to rethink architectural education, so architects will not need to compete against the computer in the near future.
keywords Computerisation, design automation, architectural profession, architectural education.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_135
id cf2015_135
authors Cuperschmid, Ana Regina M.; Ruschel, Regina C. and Monteiro, Ana Maria R. de G.
year 2015
title Augmented Reality: Recognition of Multiple Models Simultaneously
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 135-154.
summary The problem at hand is to ensure that the perception by means of Augmented Reality (AR) is hence reliable and opinions resulting from a Participatory Design (PD) mediated by this technology could be incorporated into the design solution. This paper presents the evaluation of multiple 3D models recognition in AR, with or without an auxiliary projection. Leisure area designs involve urban equipment of various dimensions that are visualized simultaneously. Therefore, it was necessary to verify if the participants were capable of recognizing them and which would be the best way to visualize: exclusively with the iPad screen or with the iPad associated with an external projection – to verify whether the visualization using an external projection would amplify the visualization area. The results obtained in the evaluation were used to improve the AR application and also, to develop guidelines for the AR use in a PD.
keywords Augmented Reality, Recognition, User Experience Evaluation.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id sigradi2015_000
id sigradi2015_000
authors Cybis Perreira, Alice T.; Pupo, Regiane T. (Ed.)
year 2015
title Project Information for Interaction
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0; vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015
summary The chosen theme "Project Information for interaction" reveals one of the most important ways that technology has offered to improve the design process by integrating information into the elements of digital graphic in a parametric way. This integration allows many design professionals to interact on the same model, enabling simulations, materializations, revisions with data more close to the reality, avoiding errors and wastes. Projects with highest social responsibility can be performed by inserting this new way of designing in education and professional practices. So, this conference is dedicated to give time and space for presentations and discussions of researches and experiences in this area applied to the various fields such as Architecture, Urbanism, Design, Animation, Arts, among others. Looking into another perspective, this issue also brings the concept of Smart Cities, where the provision of information integrated with graphics inserted in the towns components (streets, open areas, buildings and objects), allow more responsible interactions, generating sustainable and collaborative actions among citizens.

series SIGRADI
email
last changed 2016/03/10 09:50

_id caadria2015_030
id caadria2015_030
authors Daas, Mahesh and Andrew Wit
year 2015
title Pedagogy of Architectural Robotics
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 3-12
doi https://doi.org/10.52842/conf.caadria.2015.003
summary As computation and robotics become more prevalent in all aspects of architecture, their impact on education assumes greater importance. The paper presents the outcomes of a collaborative undergraduate architectural design studio that investigates the realms of architectural robotics and computation by stepping into the fecund intersections between multiple disciplines. The pedagogical prototype, Unsolicited: An Inconvenient Studio, broadly focused on the topics of robotics and responsive architectures. The notion of robotics was interpreted to include a range of robotic technologies and their formal manifestations in the form of biomorphic, mechanomorphic, polymorphic, and amorphic robots, and interactive architecture. Taught using a recently developed framework that focuses on self-organizing systems and the creation of innovative technology-driven design entrepreneurs rather than merely on the creation of designed artefacts, students found themselves not only innovating with new digital technologies but also bridging architecture, urbanism and computer science. The paper describes the pedagogy, processes, and outcomes of the studio.
keywords Robotics; interactive architecture; pedagogy; innovation; studio.
series CAADRIA
email
last changed 2022/06/07 07:56

_id eaea2015_t2_paper04
id eaea2015_t2_paper04
authors Frank, Tim; Luke, Christina; Roosevelt, Chris
year 2015
title Envisioning our First-Principles Predecessors: Legacies of Climatization in Ancient Anatolian Structures
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.152-164
summary The homogenization of our current building culture makes vernacular structures around the world extremely vulnerable to desuetude and calls to question how new forms of representation can highlight alternative facets of our built heritage. This paper explores the changing nature of heritage interpretation and offers new methods in representing vernacular structures, highlighting their exquisite atmospheric disposition through the use of state-of-the-art computer simulation programs. The ancient Anatolian region and its vast inventory of exemplary antiquities serves as the site of investigation, encompassing an area that stretches from the western Aegean coastline to the south eastern plain. The results of this study indicate that the intensified development density of these building complexes produce unique models of collective living, establishing a rich inventory of intermediary spatial types that inflect the daily and seasonal variations of the temperate Anatolian climate.
keywords vernacular heritage; passive climatization; computational simulation
series EAEA
email
last changed 2016/04/22 11:52

_id cf2015_328
id cf2015_328
authors Gamez, Oscar; Bignon, Jean-Claude and Duchanois, Gilles
year 2015
title Assisted construction of non-standard wooden walls and envelope structures by parametric modeling
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 328.
summary We introduce a parametric modeling method in the field of computer-aided architectural conception, which aims to produce non-standard wooden walls and envelopes with CNC machinery. This method explores the application of polygonal cellular structures (as patterns) on facade and envelope interventions for new and old projects. We innovate by bringing the 3D production environment complexity into the conception model to improve the production of manifold woodworking items by CNC (Computer Numerical Control) 3D fabrication. A recent experimentation, tests the entire workflow from parametric modeling to production of two full-scale prototypes. The results prove the range of inputs offered by the method to be functional, though it needs various improvements in order to optimize parametric modeling and digital fabrication procedures. Future research will focus on treating a wider range of joints via parametric modeling and deal with joint creation regardless wall deformation to expand the morphological approach of non-standard wooden walls design.
keywords Non-standard walls, Computer-aided architectural design, Wood construction, Parametric modeling, CNC fabrication, Mass customization.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_ws-robowood
id ecaade2015_ws-robowood
authors Hornung, Philipp; Johannes Braumann, Reinhold Krobath, Sigrid Brell-Cokcan and Georg Glaeser
year 2015
title Robotic Woodcraft: Creating Tools for Digital Design and Fabrication
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 33-36
doi https://doi.org/10.52842/conf.ecaade.2015.2.033
wos WOS:000372316000004
summary Robotic Woodcraft is a transdisciplinary, arts-based investigation into robotic arms at the University for Applied Arts Vienna. Bringing together the craftsmen of the Department for Wood Technology, the geometers of the Department for Arts and Technology, the young industrial design office Lucy.D and the roboticists of the Association for Robots in Architecture, the research project explores new approaches on how to couple high-tech robotic arms with high-end wood fabrication. In the eCAADe workshop, participants are introduced to KUKA|prc (parametric robot control, Braumann and Brell-Cokcan, 2011) and shown approaches on how to create their own digital fabrication tools for customized fabrication processes involving wood.
keywords Robotic woodcraft; Arts-based research; Robotic fabrication; Visual programming; Parametric robot control
series eCAADe
last changed 2022/06/07 07:50

_id ecaade2015_265
id ecaade2015_265
authors Hosey, Shannon; Beorkrem, Christopher, Damiano, Ashley, Lopez, Rafael and McCall, Marlena
year 2015
title Digital Design for Disassembly
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 371-382
doi https://doi.org/10.52842/conf.ecaade.2015.2.371
wos WOS:000372316000043
summary The construction and building sector is now widely known to be one of the biggest energy consumers, carbon emitters, and creators of waste. Some architectural agendas for sustainability focus on energy efficiency of buildings that minimize their energy intake during their lifetime - through the use of more efficient mechanical systems or more insulative wall systems. One issue with these sustainability models is that they often ignore the hierarchy of energy within architectural design. The focus on the efficiency is but one aspect or system of the building assembly, when compared to the effectiveness of the whole, which often leads to ad-hoc ecology and results in the all too familiar “law of unintended consequences” (Merton, 1936). As soon as adhesive is used to connect two materials, a piece of trash is created. If designers treat material as energy, and want to use energy responsibly, they can prolong the lifetime of building material by designing for disassembly. By changing the nature of the physical relationship between materials, buildings can be reconfigured and repurposed all the while keeping materials out of a landfill. The use of smart joinery to create building assemblies which can be disassembled, has a milieu of new possibilities created through the use of digital manufacturing equipment. These tools afford designers and manufacturers the ability to create individual joints of a variety of types, which perform as well or better than conventional systems. The concept of design for disassembly is a recognizable goal of industrial design and manufacturing, but for Architecture it remains a novel approach. A classic example is Kieran Timberlake's Loblolly House, which employed material assemblies “that are detailed for on-site assembly as well as future disassembly and redeployment” (Flat, Inc, 2008). The use of nearly ubiquitous digital manufacturing tools helps designers create highly functional, precise and effective methods of connection which afford a building to be taken apart and reused or reassembled into alternative configurations or for alternative uses. This paper will survey alternative energy strategies made available through joinery using digital manufacturing and design methods, and will evaluate these strategies in their ability to create diassemblable materials which therefore use less energy - or minimize the entropy of energy over the life-cycle of the material.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4075520a-6fe7-11e5-bcc8-f7d564ea25ed
last changed 2022/06/07 07:50

_id ecaade2015_81
id ecaade2015_81
authors Hudson, Roland; Schaefer, Gavin, Kroeker, Richard, Forest, Neil and Burnay, Diogo
year 2015
title Subdivision Surface Modeling to Foster Responsive Design Solutions in an Integrated Multi-disciplinary Team
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 403-413
doi https://doi.org/10.52842/conf.ecaade.2015.1.403
wos WOS:000372317300044
summary This paper documents an architectural project developed using subdivision surface modelling. Subdivision surfaces are not new, and the tools are readily available in many 3d modelling applications. Despite their age and availability and recognised benefits they are rarely applied in architectural projects furthermore there is paucity of published case studies that demonstrate these tools in action. The second contribution to the field that this paper offers is in recognising the way in which subdivision surfaces can provide a new form of collaboration. Our core team consisted of architect, artist and 3d modeller and the project was inspired by a ceramic sculpture with unusual geometry. Subdivision surface modelling enabled a unique form of design exploration, feedback and communication between people with diverse skills. This case study therefore offers both insight into applied use of subdivision modelling and further depth into the way it enables interdisciplinary collaboration.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=d57fa2ac-7022-11e5-b34f-83875df41ff7
last changed 2022/06/07 07:50

_id ascaad2010_097
id ascaad2010_097
authors Kenzari, Bechir
year 2010
title Generative Design and the Reduction of Presence
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 97-106
summary Digital design/fabrication is slowly emancipating architectural design from its traditional static/representational role and endowing it instead with a new, generative function. In opposition to the classical isomorphism between drawings and buildings, wherein the second stand as translations of the first, the digital design/fabrication scenario does not strictly fall within a semiotic frame as much as within a quasi biological context, reminiscent of the Aristotelian notion of entelechy. For the digital data does not represent the building as much it actively works to become the building itself. Only upon sending a given file to a machine does the building begin to materialize as an empirical reality, And eventually a habitable space as we empirically know it. And until the digital data actualizes itself, the building qua building is no more than one single, potential possibility among many others. This new universe of digital design/fabrication does not only cause buildings to be produced as quick, precise, multiply-generated objects but also reduces their presence as original entities. Like cars and fashion items, built structures will soon be manufactured as routinely-consumed items that would look original only through the subtle mechanisms of flexibility: frequent alteration of prototype design (Style 2010, Style 2015..) and “perpetual profiling” (mine, yours, hers,..). The generic will necessarily take over the circumstantial. But this truth will be veiled since “customized prototypes” will be produced or altered to individual or personal specifications. This implies that certain “myths” have to be generated to speed up consumption, to stimulate excessive use and to lock people into a continuous system which can generate consumption through a vocabulary of interchangeable, layered and repeatable functions. Samples of “next season’s buildings” will be displayed and disseminated to enforce this strategy of stimulating and channeling desire. A degree of manipulation is involved, and the consumer is flattered into believing that his or her own free assessment of and choice between the options on offer will lead him or her to select the product the advertiser is seeking to sell. From the standpoint of the architect as a maker, the rising upsurge of digital design and fabrication could leave us mourning the loss of what has been a personal stomping ground, namely the intensity of the directly lived experiences of design and building. The direct, sensuous contact with drawings, models and materials is now being lost to a (digital) realm whose attributes refer to physical reality only remotely. Unlike (analogue) drawings and buildings, digital manipulations and prototypes do not exercise themselves in a real space, and are not subjected in the most rigorous way to spatial information. They denote in this sense a loss of immediacy and a withering of corporal thought. This flexible production of space and the consequent loss of immediate experience from the part of the designer will be analyzed within a theoretical framework underpinned mainly by the works of Walter Benjamin. Samples of digitally-produced objects will be used to illustrate this argument.
series ASCAAD
email
last changed 2011/03/01 07:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_256039 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002