CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 587

_id caadria2015_233
id caadria2015_233
authors Fernando, Ruwan and Robin Drogemuller
year 2015
title Recapitulation in Generating Spatial Layouts
doi https://doi.org/10.52842/conf.caadria.2015.199
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 199-207
summary The noted 19th century biologist, Ernst Haeckel, put forward the idea that the growth (ontogenesis) of an organism recapitulated the history of its evolutionary development. While this idea is defunct within biology, the idea has been promoted in areas such as education (the idea of an education being the repetition of the civilizations before). In the research presented in this paper, recapitulation is used as a metaphor within computer-aided design as a way of grouping together different generations of spatial layouts. In most CAD programs, a spatial layout is represented as a series of objects (lines, or boundary representations) that stand in as walls. The relationships between spaces are not usually explicitly stated. A representation using Lindenmayer Systems (originally designed for the purpose of modelling plant morphology) is put forward as a way of representing the morphology of a spatial layout. The aim of this research is not just to describe an individual layout, but to find representations that link together lineages of development. This representation can be used in generative design as a way of creating more meaningful layouts which have particular characteristics. The use of genetic operators (mutation and crossover) is also considered, making this representation suitable for use with genetic algorithms.
keywords Generative Design, Lindenmayer Systems, Spatial Layouts
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2015_11.71
id sigradi2015_11.71
authors Medina, Viviana Hernaiz Diez de; Macruz, Andrea; Ginés, Pau
year 2015
title Morphogenetic processes in architectonical design
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 637-641.
summary This paper presents the relationship between morphogenetic concepts in nature and the creation of a generative system as a design process. This biomimetic approach generates an adaptive system that is able to respond to different parameters corresponding to the site where the membrane growths, contributing to the development of a new understanding of architecture in which the digital system and the performance of the material are reciprocal.
series SIGRADI
email
last changed 2016/03/10 09:55

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
doi https://doi.org/10.52842/conf.acadia.2015.357
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia15_161
id acadia15_161
authors Baharlou, Ehsan; Menges, Achim
year 2015
title Toward a Behavioral Design System: An Agent-Based Approach for Polygonal Surfaces Structures
doi https://doi.org/10.52842/conf.acadia.2015.161
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 161-172
summary The following research investigates the development of an agent-based design method as an integrative design tool for polygonal surface structures. The aim of this research is to develop a computational tool that self-organizes the emergence of polygonal surface structures from interaction between its constitutive lattices. This research focuses on the ethological level of morphogenesis that is relevant to the animal or insect societies, whereby agents mediate the material organizations with environmental aspects. Meanwhile, behavior-based approaches are investigated as a bottom-up system to develop a computational framework in which the lower-level features constantly interact. The lower-level features such as material properties (e.g., geometric descriptions) are abstracted into building blocks or agents to construct the agent’s morphology. The abstracted principles, which define the agent’s morphology, are aggregated into a generative tool to explore the emergent complexities. This exploration coupled with the generative constraint mechanisms steers the collective agents system toward the cloud of solutions; hence, the collective behaviors of agents constitute the polygonal surface structures. This polygonal system is a bottom up approach of developing the complex surface that emerges through topological and topographical interaction between cells and their surrounding environment. Subsequently, the integrative system is developed through agent-based parametric modelling, in which the knowledge-based system as a top-down approach is substituted with the agent system together with its morphological features and significant behaviors.
keywords Agent-Based System, Behavioral-Based System, Polygonal Surface Structures, Self-Organization and Emergence
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2015_118
id ecaade2015_118
authors Ferreira, Bruno and Leitão, António
year 2015
title Generative Design for Building Information Modeling
doi https://doi.org/10.52842/conf.ecaade.2015.1.635
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 635-644
summary Generative Design (GD) is a programming-based approach for Architecture that is becoming increasingly popular amongst architects. However, most Generative Design approaches were thought for traditional Computer Aided Design (CAD) tools and are not adequate for the Building Information Modeling (BIM) paradigm. This paper proposes a solution that extends GD to be used with BIM applications while preserving and taking advantage of its ideas. The solution will be evaluated by developing a connection between Revit, a well-known BIM tool, and Rosetta, a programming environment for GD, and by implementing the necessary programming language features that allows GD to be used in the context of BIM tool.
wos WOS:000372317300069
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=cba54e6e-7025-11e5-81ea-00190f04dc4c
last changed 2022/06/07 07:50

_id caadria2015_139
id caadria2015_139
authors Herr, Christiane M. and Ryan C. Ford
year 2015
title Adapting Cellular Automata as Architectural Design Tools
doi https://doi.org/10.52842/conf.caadria.2015.169
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 169-178
summary In this paper we examine the adaptations cellular automata (CA) are typically subjected to when they are applied to architectural designing. We argue that, despite a number of earlier studies that portrayed CA as generic generative design tools, the transition from generic CA to specific design tools is not yet well understood. To describe this transition, we first examine this aspect in a number of previous studies relating CA to architectural design. In a following detailed analysis of an applied design case study, we trace similarities between findings made in the literature review to findings made in the case study and extend them with additional observations. We conclude with a summary of challenges and opportunities met by architectural designers employing and developing CA for design purposes.
keywords Cellular automata; generative design; design research; design tools.
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2015_086
id caadria2015_086
authors Huang, Weixin and Weiguo Xu
year 2015
title Generative Design Begins with Physical Experiment
doi https://doi.org/10.52842/conf.caadria.2015.117
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 117-126
summary It is understand the physical world is composed of various complex systems which behave and evolve in their own way. Through observing the motion of matters in physical world, we can start to understand various swarm behaviours, and these behaviours becomes a very rich library of references when exploring the potential of generative design. In the last 2 years, a new design procedure has been introduced in the digital architectural design studio of ** University. It does not start from site investigation or document research, but starts from any kind of physical experiment which the students are interested in. The students are asked to simulate the experiments in computer with software or scripts wrote by themselves. In the final stage, the students gather information through on-site investigation, and then use the digital tools they have developed to generate architectural design. Since the physical world is composed of huge amount of individual objects, all experiments explored in this design studio demonstrate certain swarm behaviours. These behaviours could be similar to that of the complex systems in architecture, or could imply new possibilities of organization in architecture.
keywords Generative design, complex system, experiment, simulation, parametric design
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2015_307
id ecaade2015_307
authors Kallegias, Alexandros and Erdine, Elif
year 2015
title Design by Nature: Concrete Infiltrations
doi https://doi.org/10.52842/conf.ecaade.2015.2.513
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 513-520
summary The paper aims to address methods of realizing computationally generated self-organizing systems on a one-to-one scale with the employment of a singular material system. The case study described in this paper is the outcome of an investigation which has explored earth scaffolding, fabric form-work, and concrete materiality during an international three-week architecture workshop. Real-time generative form-finding methods based on branching and bundling systems in nature have been developed and simulated in an open-source programming environment. The outcome of the simulation stage has been analyzed structurally via Finite Element Analysis (FEA), results of which have served as inputs for the fine-tuning of the simulation. Final three-dimensional geometry has been fabricated by employing fabric, essentially forming the fabric form-work. Fabric form-work is then laid on top of the earth scaffolding, followed by the process of concrete casting. From a pedagogical point of view, the research focuses on the integration of digital design techniques between various design/architecture/analysis platforms combined with basic and advanced techniques of construction within a limited time frame.abstract here by clicking this paragraph.
wos WOS:000372316000058
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia15_407
id acadia15_407
authors Kim, Dongil; Lee, Seojoo
year 2015
title A Systemized Aggregation with Generative Growth Mechanism in Solar Environment
doi https://doi.org/10.52842/conf.acadia.2015.407
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 407-415
summary The paper demonstrates a work-in-progress research on an agent-based aggregation model for architectural applications with a system of assembly based on environmental data acted as a driver for a growth mechanism. Even though the generative design and algorithms have been widely employed in the field of art and architecture, such applications tend to stay in morphological explorations. This paper examines an aggregation model based on Diffusion Limited Aggregation system incorporating solar environment analysis for global perspective of aggregation, the geometry research for lattice systems, and morphological principles of unit module in agent scale. The later part of this research paper demonstrates the potential of a design process through the “Constructed Cloud” case study, including site-specific applications and the implementation of the systematized rule set.
keywords Aggregation, Generative Algorithm, Diffusion Limited Aggregation, Responsive Growth Mechanism, Solar Environment, Responsive System / Algorithm, Adaptable Architecture, Data Analysis, Systemized Architecture, Truncated Octahedron, Sun Oriented Aggregation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia15_110
id acadia15_110
authors Marcu, Mara; Tang, Ming
year 2015
title Data Mapping and Ornament in Digital Craft
doi https://doi.org/10.52842/conf.acadia.2015.110
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 110-120
summary With an ever-increasing index of digital artifacts, we have begun to exhaust variation as an adaptive technique. The problem with incremental modulation (here understood as sequential and slowly progressing change of a set of parameters within a field condition) is that in essence it leads to morphologically equivalent and, hence, repetitive patterns of habitation. While the role of variation proved key in pushing forward an essential body of research testing and optimizing principles of mass customization, its residual effects become critically disconcerting. This paper presents an investigation of tectonic mutations for the generation of form, seen through data simulation experiments and machining artifacts. Through several projects we investigate the effects of ornament created as a result of the new relationship between generative modeling, simulation, and fabrication in the digital age. Subject to (de)generative mutation techniques, ornament can be under-stood as a result of overlaid data, whether the data is performance related or not, in both massing and surface conditions. This new working methodology will mitigate between the incertitude regarding time, history and memory, and by reinventing their relation it will reassess ornament’s agency within the digital culture. Design methods are extended by exploring, collecting, analyzing, and representing data through various materialization processes. Design is therefore reconsidered as being injected with the concepts of data driven design and dependent on the inter-play between performance and aesthetics. In this way, we consider the footprint - or the subsequent impact - of the human onto the nonhuman using artificial intelligence as a medium. These intentionally or accidentally engraved layers of information begin to describe potential trajectories of novel survival modes in the Anthropocene.
keywords Data mapping, ornament, generative modeling, simulation, CNC fabrication, degenerative mutation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaade2015_293
id ecaade2015_293
authors Batliner, Curime; Newsum, MichaelJake and Rehm, M.Casey
year 2015
title Live: Synchronous Computing in Robot Driven Design
doi https://doi.org/10.52842/conf.ecaade.2015.2.277
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 277-286
summary Challenging our contemporary understanding of representation and simulation in architecture SCI-Arc has been developing a unique digital/physical design platform where the relationships between humans, machines and matter are constantly in flux re-calibrating, reshuffling, reordering aligning digital and physical and vis versa. The robot as a technology takes an important role in these new ideation environments. “Live” is an applicaton which enables real-time robotic control and grants the robot substantial agency situating it as an interactive design tool that immediately responds to designed signal and sensor inputs in its environment. Current research explores interactive environments, gesture based human-machine interactions and autonomous agent driven design programs.
wos WOS:000372316000033
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=6fff29ba-6fe7-11e5-a661-eb66006fc007
last changed 2022/06/07 07:54

_id acadia15_274
id acadia15_274
authors Fougere, Daniel; Goold, Ryan; Velikov, Kathy
year 2015
title Pneuma-Technics // Methods for Soft Adaptive Environments
doi https://doi.org/10.52842/conf.acadia.2015.274
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 274-283
summary This work-in-progress paper explores the opportunity to rethink the relationships architecture has with the environment and human behavior. Adaptive systems are gaining traction in the discourse as relationships between the built environment, the natural environment and its users evolve over time. This project, Pneuma-Technics, investigates pneumatic methods in the built environment, composite materials and components, computation, physical computing and sensory actuation. The objective is to advance a developing typology of responsive systems: a breathing architecture that is sensitive to its changing environment. Pneuma-Technics is actuated breath in built form - pneuma, the Greek word for “to breath,” and technics, the Greek word for technique/craft in art. The project imagines the potentials of a soft, interactive surface that allows for the passage of light, air, and human vision, yet maintains enclosure and insulation as necessary for architectural performance. These innovations project new futures onto traditional methods of architectural production and engage in nontraditional materials to develop unique environments. Pneuma-Technics’ is a body of research that consists of tangible experiments for the advancement of soft environments. However, we design for these potential futures as materials, methods, and collaborative action evolve the discourse toward adaptive technologies.
keywords Pneumatics, Soft Robotics, Adaptive Architecture
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2015_061
id caadria2015_061
authors Hyun, Kyung Hoon; Aram Min, Sun-Joong Kim and Ji-Hyun Lee
year 2015
title Finding Relationships Between Visitor Traffics around Major Attractions and the Surrounding Environments in Theme Parks
doi https://doi.org/10.52842/conf.caadria.2015.777
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 777-784
summary The objective of the paper is to find the relationship between the visitors’ traffic flows throughout the park and the distribution of the service facilities in four different Disneyland theme parks. This paper argues that there are patterns for attraction placement of specific functions such as shops, restaurants, and attractions to manipulate the human traffic. Instead of evaluating moving time and visitors’ preferences, we focused on analysing the spatial arrangements of the thematic areas and the locations of the service facilities to understand which factors influence the traffics around attractions. To do that, an agent analysis method is used to simulate the human traffics which was then analyzed with each service capacities, theme park routes, number of restaurants, shops and attractions in each thematic areas. Our results indicate that there are shared patterns of traffic flows around attractions for four different Disneyland parks. Moreover, the traffic flows around attractions did not show significant relationship with attraction capacities themselves for all of the Disneylands.
keywords Attraction placement; Theme Park Management; Visitor Traffic flow; Agent Analysis.
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2015_065
id caadria2015_065
authors Matsubayashi, Michio; and Shun Watanabe
year 2015
title Generating Schematic Diagrams of MEP Systems from 3D Building Information Models for Use in Conservation
doi https://doi.org/10.52842/conf.caadria.2015.293
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 293-302
summary In this paper, we propose a method of generating schematic diagrams from 3D models of mechanical, electrical and plumbing (MEP) systems in order to represent this information in a more traditional, user-friendly format. It can be difficult to grasp the relationships between various MEP elements in building information models (BIM) because they are represented in a visually complex, three-dimensional manner. On the other hand, the relationships between building elements can be easily understood when using traditional schematic diagrams. First, sets of connected elements are extracted from a 3D model of MEP elements using their connection properties. Next, various elements of these systems are identified as nodes and their connections are represented as edges. Finally, these systems are displayed as a schematic diagram using element attribute information.
keywords BIM; Schematic Diagram; Attribute Information; Graph; Existing Buildings.
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2015_sp_10.311
id sigradi2015_sp_10.311
authors Pires, Janice de Freitas; Pereira, Alice Cybis
year 2015
title Accessibility to Educational Materials TEAR_AD Network through the delimitation of a Domain Taxonomy
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 823-826.
summary This paper describes a process of identifying a taxonomy for describing learning materials made available in the context of a Virtual Learning Environment for Architecture and Design and produced by partner groups coming from different institutions. Paying attention to the specificity of the knowledge structure conveyed in such materials, exemplified in the case study of the digital graphic representation material, the importance of seeking by different terminologies combining concepts, techniques and technologies involved in different approaches to the same subject was observed, by allowing to characterize the structure of the teaching material and, through relationships among its terms, identify the connection between other learning objects for architectural design.
keywords Learning Objects, Architecture and Design, Taxonomy, Design Education, Digital Technologies
series SIGRADI
email
last changed 2016/03/10 09:57

_id eaea2015_t3_paper16
id eaea2015_t3_paper16
authors Sahin, Murat; Torun, Ayse Ozbil
year 2015
title Architecture Education and the City amid Change
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.427-438
summary Emphasising the significance of web of relations between design education and urban environment, this paper focuses on the interaction between dramatic changes in the city of ?stanbul and architecture education environment. The study covers findings of questionnaires and interviews conducted with ?stanbulians of multiple professions, quantitative and spatial data on the transformation of the city, emerging architectural activities and the panorama of the schools of architecture and their interactions. The paper explores how the key components of learning environment are affected by the turbulence of dynamic relationships in such a vibrant atmosphere, while struggling with the rapid pace of the change of dynamics of education and education technologies and environment.
keywords architecture education; city change ; ?stanbul; transformation
series EAEA
email
last changed 2016/04/22 11:52

_id acadia15_497
id acadia15_497
authors Sandoval Olascoaga, Carlos; Victor-Faichney, John
year 2015
title Flows, Bits, Relationships: Construction of Deep Spatial Understanding
doi https://doi.org/10.52842/conf.acadia.2015.497
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 497-512
summary The number of variables acting upon urban landscapes is numerous and interconnected, closely resembling complex systems in constant dynamic transformation. Current analytical methods and descriptions of the city are domain specific, limited in scope, and discretize the city into quantifiable individual representations, resulting in an equally limited urban policy and design. If we are to produce urban systems capable of contributing to the robustness and resiliency of cities, we ought to understand and represent the comprehensive network of actors that construct contemporary urban landscapes. On one hand, the natural sciences approach the analysis of complex systems by primarily focusing on the development of models capable of describing their stochastic formation, remaining agnostic to the contextual properties of their individual components and oftentimes discretizing the otherwise continuous relationships among parts. signers work in groups. They need to share information either synchronously or asynchronously as they work with parametric modeling software, as with all computer-aided design tools. Receiving information from collaborators while working may intrude on their work and thought processes. Little research exists on how the reception of design updates influences designers in their work. Nor do we know much about designer preferences for collaboration. In this paper, we examine how sharing and receiving design updates affects designers’ performances and preferences. We present a system prototype to share changes on demand or in continuous mode while performing design tasks. A pilot study measuring the preferences of nine pairs of designers for different combinations of control modes and design tasks shows statistically significant differences between the task types and control modes. The types of tasks affect the preferences of users to the types of control modes. In an apparent contradiction, user preference of control modes contradicts task performance time.
keywords Networks, graphs, web-mapping, GIS, urban mapping, spatial analysis, urban databases, visual representation, spatial cognition
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2015_265
id ecaade2015_265
authors Hosey, Shannon; Beorkrem, Christopher, Damiano, Ashley, Lopez, Rafael and McCall, Marlena
year 2015
title Digital Design for Disassembly
doi https://doi.org/10.52842/conf.ecaade.2015.2.371
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 371-382
summary The construction and building sector is now widely known to be one of the biggest energy consumers, carbon emitters, and creators of waste. Some architectural agendas for sustainability focus on energy efficiency of buildings that minimize their energy intake during their lifetime - through the use of more efficient mechanical systems or more insulative wall systems. One issue with these sustainability models is that they often ignore the hierarchy of energy within architectural design. The focus on the efficiency is but one aspect or system of the building assembly, when compared to the effectiveness of the whole, which often leads to ad-hoc ecology and results in the all too familiar “law of unintended consequences” (Merton, 1936). As soon as adhesive is used to connect two materials, a piece of trash is created. If designers treat material as energy, and want to use energy responsibly, they can prolong the lifetime of building material by designing for disassembly. By changing the nature of the physical relationship between materials, buildings can be reconfigured and repurposed all the while keeping materials out of a landfill. The use of smart joinery to create building assemblies which can be disassembled, has a milieu of new possibilities created through the use of digital manufacturing equipment. These tools afford designers and manufacturers the ability to create individual joints of a variety of types, which perform as well or better than conventional systems. The concept of design for disassembly is a recognizable goal of industrial design and manufacturing, but for Architecture it remains a novel approach. A classic example is Kieran Timberlake's Loblolly House, which employed material assemblies “that are detailed for on-site assembly as well as future disassembly and redeployment” (Flat, Inc, 2008). The use of nearly ubiquitous digital manufacturing tools helps designers create highly functional, precise and effective methods of connection which afford a building to be taken apart and reused or reassembled into alternative configurations or for alternative uses. This paper will survey alternative energy strategies made available through joinery using digital manufacturing and design methods, and will evaluate these strategies in their ability to create diassemblable materials which therefore use less energy - or minimize the entropy of energy over the life-cycle of the material.
wos WOS:000372316000043
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4075520a-6fe7-11e5-bcc8-f7d564ea25ed
last changed 2022/06/07 07:50

_id caadria2015_105
id caadria2015_105
authors Hosny, A.; N. Jacobson and Z. Seibold
year 2015
title Voxel Beam
doi https://doi.org/10.52842/conf.caadria.2015.755
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 755-764
summary Voxelbeam explores precedents in the optimization of architectural structures, namely the Sydney Opera house Arup beam. The authors research three areas crucial to conceiving an innovative contemporary reinterpretation of the beam: A shift in structural analysis techniques from analytical to numerical models such as topology optimization, the fundamental differences between digital and analog representations of structural forces, and the translation of structural analysis data into methods for digital fabrication. The research aims to re-contextualize the structural beam within contemporary digital platforms, explores the architectural implications of topology optimization, and proposes two fabrication strategies based on the analysis results – including automated off-site pre-casting and multi-material 3d printing.
keywords Digital Fabrication, Topology Optimization, Multi-material 3D Printing, Emergent Structural Design, Arup Beam.
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia15_81
id acadia15_81
authors Hussein, Ahmed
year 2015
title Sandworks / Sand Tectonic Prototype
doi https://doi.org/10.52842/conf.acadia.2015.081
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 81-94
summary This paper outlines a material based research that proposes a time-based architecture that extends Frei Otto’s research of sand formations using sand’s natural angle of repose. The tectonic system focuses on developing compressive structures of sand for hot climate desert areas through a zero-waste formative process whose architecture reorganizes materials naturally available on the site. Formations are hardened as a surface through the phase changing properties of a saline solution which crystallizes when cooled, bonding with the sand. The proportion of insulation material defines the building life span redistributes the materials back into its environment at the end of its cycle. The materiality and spatial qualities of the project are based on the conical and constant angle surfaces generated through the gravitational process of sand formation. Between the digital opportunities of sand formation and its physical possibilities, this paper outlines the analogue-digital methods of sand computation through a comprehensive study in four main sections; material system, material computation, design system and robotic fabrication.
keywords Material computation, analogues digital methods, Sand, Digital design and robotic fabrication, ecological tectonic system
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_859933 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002