CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 581

_id ecaade2015_158
id ecaade2015_158
authors Kim, Do-Young; Jang, DoJin and author), Sung-AhKim
year 2015
title A Symbiotic Interaction of Virtual and Physical Models in Designing Smart Building Envelope
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 633-642
doi https://doi.org/10.52842/conf.ecaade.2015.2.633
wos WOS:000372316000070
summary The building needs to be designed to minimize its environmental footprint and to be sufficiently adaptive to changing indoor and outdoor environmental conditions. The smart building envelope is an interactive system which is adaptive to environmental conditions by transforming its shape and functions. This is a kind of machine, not like a traditional building component, which should be based on integrated engineering design methods in addition to the exploration of formal aesthetics. As artistic genius or technical skill alone cannot not fully support the design of such a novel product, the design needs to be systemized by introducing a product development method such as prototyping in other industries. Prototyping needs to be integrated in school environment, even if it requires fundamental reconfiguration of current computer-based design studios. This paper aims at proposing a teaching methodology for educating the prototyping-based design of smart building envelope system in digital design studio. This methodology allows novice designers to operate interactions between virtual-physical models. And sketches are used to share ideas to other collaborators such as programming, mechanical operations without technical knowledge. The interactions between virtual-physical models and sketches contribute to not only complement virtual models and physical models, but also achieve high-performance of smart building envelope practically.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=215b1984-6e90-11e5-9ee8-00190f04dc4c
last changed 2022/06/07 07:52

_id acadia15_263
id acadia15_263
authors Ahlquist, Sean
year 2015
title Social Sensory Architectures: Articulating Textile Hybrid Structures for Multi-Sensory Responsiveness and Collaborative Play
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 263-273
doi https://doi.org/10.52842/conf.acadia.2015.263
summary This paper describes the development of the StretchPLAY prototype as a part of the Social Sensory Surfaces research project, focusing on the design of tactile and responsive environments for children with Autism Spectrum Disorder (ASD). The project is directed specifically at issues with sensory processing, the inability of the nervous system to filter sensory input in order to indicate an appropriate response. This can be referred to as a “traffic jam” of sensory data where the intensity of such unfiltered information leads to an over-intensified sensory experience, and ultimately a dis-regulated state. To create a sensory regulating environments, a tactile structure is developed integrating physical, visual and auditory feedback. The structure is defined as a textile hybrid system integrating a seamless knitted textile to form a continuous topologically complex surface. Advancements in the fabrication of the boundary structure, of glass-fiber reinforced rods, enable the form to be more robustly structured than previous examples of textile hybrid or tent-like structures. The tensioned textile is activated as a tangible interface where sensing of touch and pressure on the surface triggers ranges of visual and auditory response. A specific child, a five-year old girl with ASD, is studied in order to tailor the technologies as a response to her sensory challenges. This project is a collaboration with students, researchers and faculty in the fields of architecture, computer science, information (human-computer interaction), music and civil engineering, along with practitioners in the field of ASD-based therapies.
keywords Textile Hybrid, Knitting, Sensory Environment, Tangible Interface, Responsive systems and environments
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia15_469
id acadia15_469
authors Speranza, Philip; Keisler, Ryan; Mai, Jiawei Vincent
year 2015
title Social Interaction and Cohesion Tool: A Dynamic Design Approach for Barcelona’s Superilles
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 469-481
doi https://doi.org/10.52842/conf.acadia.2015.469
summary A glitch is defined as a temporary, transient fault in a system that corrects itself. Glitches are cracks, frictions that create ‘openings’ in a particular system, revealing new meanings of the system itself. As opposed to its typical negative connotation, the glitch finds here a positive meaning and a generative quality. The concept is in fact employed as a research strategy to embed serendipity in the built environment through urban systems, places and experiences that use responsive technologies. When glitches relate to the built environment, people find new connections with places, shifting the relationship from the ordinary towards the unexpected and the unpredictable.
keywords Social Interaction, Urban Design, Big Data, Simulation + Intuition, Interactive Architecture, Open Source in Design, Parametric and Evolutionary Design, Design Computing and Cognition
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2024_35
id ecaade2024_35
authors Agkathidis, Asterios; Song, Yang; Symeonidou, Ioanna
year 2024
title AI-Assisted Design: Utilising artificial intelligence as a generative form-finding tool in architectural design studio teaching
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 619–628
doi https://doi.org/10.52842/conf.ecaade.2024.2.619
summary Artificial Intelligence (AI) tools are currently making a dynamic appearance in the architectural realm. Social media are being bombarded by word-to-image/image-to-image generated illustrations of fictive buildings generated by tools such as ‘Midjourney’, ‘DALL-E’, ‘Stable Diffusion’ and others. Architects appear to be fascinated by the rapidly generated and inspiring ‘designs’ while others criticise them as superficial and formalistic. In continuation to previous research on Generative Design, (Agkathidis, 2015), this paper aims to investigate whether there is an appropriate way to integrate these new technologies as a generative tool in the educational architectural design process. To answer this question, we developed a design workflow consisting of four phases and tested it for two semesters in an architectural design studio in parallel to other studio units using conventional design methods but working on the same site. The studio outputs were evaluated by guest critics, moderators and external examiners. Furthermore, the design framework was evaluated by the students through an anonymous survey. Our findings highlight the advantages and challenges of the utilisation of AI image synthesis tools in the educational design process of an architectural design approach.
keywords AI, GAI, Generative Design, Design Education
series eCAADe
email
last changed 2024/11/17 22:05

_id caadria2015_049
id caadria2015_049
authors Holzer, Dominik
year 2015
title Digital Convergence In The Design Studio
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 469-478
doi https://doi.org/10.52842/conf.caadria.2015.469
summary The increased proliferation of computational tools for building performance evaluation during conceptual design has led to a fundamental transformation in architectural education over the past decade. Morphological exploration and form-finding in the studio setting now gets more and more enriched by environmental performance feedback that allows students to test their design in unprecedented ways. This paper contextualises the underlying developments leading to this changed context that results in greater convergence of information from various software applications, facilitated via digital means. The author presents the process and the outcomes of a recent architectural design studio as an example of how this convergence unfolds in an academic setting. The studio example highlights how the fluid interaction between parametric design techniques and environmental performance feedback enriches the students’ abilities to engage with their design processes in innovative ways.
keywords Parametric Design; Environmental Performance Optimisation; Multidisciplinary Design; Convergence; Optioneering.
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2015_086
id caadria2015_086
authors Huang, Weixin and Weiguo Xu
year 2015
title Generative Design Begins with Physical Experiment
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 117-126
doi https://doi.org/10.52842/conf.caadria.2015.117
summary It is understand the physical world is composed of various complex systems which behave and evolve in their own way. Through observing the motion of matters in physical world, we can start to understand various swarm behaviours, and these behaviours becomes a very rich library of references when exploring the potential of generative design. In the last 2 years, a new design procedure has been introduced in the digital architectural design studio of ** University. It does not start from site investigation or document research, but starts from any kind of physical experiment which the students are interested in. The students are asked to simulate the experiments in computer with software or scripts wrote by themselves. In the final stage, the students gather information through on-site investigation, and then use the digital tools they have developed to generate architectural design. Since the physical world is composed of huge amount of individual objects, all experiments explored in this design studio demonstrate certain swarm behaviours. These behaviours could be similar to that of the complex systems in architecture, or could imply new possibilities of organization in architecture.
keywords Generative design, complex system, experiment, simulation, parametric design
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2015_176
id ecaade2015_176
authors Moorhouse, Jon and Peter, Herbert
year 2015
title [2+2] Two Architects and Two Galleries
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 199-206
doi https://doi.org/10.52842/conf.ecaade.2015.2.199
wos WOS:000372316000024
summary This paper addresses the needs of exhibition curation with the concept of a virtual gallery (which may or may not be translated into reality). Curation is often an overly linear process - as opposed to an iterative exercise, whereby collaboration between stakeholders is somewhat limited by time, distance and the opportunity for virtual communication. This suggests that the implementation of a system for sharing visual data - especially in the real-time mode that a virtual studio might offer - could facilitate a more dynamic and iterative design process, where the design team remains engaged throughout.Two (architectural) designers - from Vienna, Austria and Liverpool, UK - are collaborating to create a process for exhibition design for existing venue, involving international stakeholders in remote locations. The key outcome for this research is to create a framework for future collaborative workflow that enhances the delivery of exhibition design through improved decision-making, without the need for all of the team to have extensive software knowledge.The paper thence reflects on current experience, reporting changes in curatorial processes and suggesting areas of added value that might benefit future works.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=47ff3c32-6e90-11e5-af39-00190f04dc4c
last changed 2022/06/07 07:58

_id ecaade2015_211
id ecaade2015_211
authors Stellingwerff, Martijn
year 2015
title The MOOC-ability of Design Education
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 57-60
doi https://doi.org/10.52842/conf.ecaade.2015.2.057
wos WOS:000372316000008
summary In the past three years, Massive Open Online Courses (MOOCs) have become an important new way for universities to reach out to possible matriculates, life long learners and alumni. Although MOOCs already cover a vast amount of subjects and curricula, it is remarkable to ascertain the lack of Architectural Design courses on the main platforms like edX and Coursera. Online courses do cover design aspects, e.g. about styles and building materials, but 'design as activity' is an exceptional subject in the portfolio of available MOOCs. In contrast, the CAAD community was one of the first to develop Virtual Design Studio's (VDS) and experimental predecessors of MOOC platforms, such as the AVOCAAD course database system (Af Klercker et al. 2001). Yet, the query 'MOOC' still does not ring a bell in the CUMINCAD publication database (per May 2015). In this paper I will explore a palette of design education settings, in order to find a fit to what a MOOC platform can offer. I will compare the 'MOOC-ability' of Design Education to chances in Virtual Design Studio's and developments in ubiquitous mobile platforms.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=fe4b575c-6e8e-11e5-a43c-c7a045e8393b
last changed 2022/06/07 07:56

_id ecaade2015_284
id ecaade2015_284
authors Wit, Andrew and Daas, Mahesh
year 2015
title Memos from an Inconvenient Studio - Unsolicited Projects for Responsive Architectures
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 177-184
doi https://doi.org/10.52842/conf.ecaade.2015.2.177
wos WOS:000372316000022
summary Computation, robotics and intelligent building/fabrication systems are finding themselves ever more prevalent within both practice and education. The assimilation of these new tools and methodologies within the pedagogy of architectural education continues to gain greater importance as we perceive their rapid evolution and integration within surrounding emergent fields. Through the model of an Inconvenient Studio, this paper examines the intersection between interdisciplinary collaboration, architectural robotics and computation as a means of gaining a broader understanding of how the architectural learning environment can be transformed into a self-organizing system for emergent solutions. The pedagogical prototype for an Inconvenient Studio was broadly focused on the topics of architectural robotics and responsive architectures interpreted through a range of robotic technologies and their manifestations such as biomorphic, mechanomorphic, polymorphic and amorphic robotics. Through a set of three “Memos” (Self-Organization, Autonomy, Sentience), this paper will describe how students created innovative technology-driven think tanks that produced design entrepreneurs.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e2614828-6e8c-11e5-90d3-5363f2e5743b
last changed 2022/06/07 07:57

_id cf2015_240
id cf2015_240
authors Aksoy, Yazgi Badem; Çagdas, Gülen and Balaban, Özgün
year 2015
title A model for sustainable site layout design of social housing with Pareto Genetic Algorithm: SSPM
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 240.
summary Nowadays as the aim to reduce the environmental impact of buildings becomes more apparent, a new architectural design approach is gaining momentum called sustainable architectural design. Sustainable architectural design process includes some regulations itself, which requires calculations, comparisons and consists of several possible conflicting objectives that need to be considered together. A successful green building design can be performed by the creation of alternative designs generated according to all the sustainability parameters and local regulations in conceptual design stage. As there are conflicting criteria's according to LEED and BREAM sustainable site parameters, local regulations and local climate conditions, an efficient decision support system can be developed by the help of Pareto based non-dominated genetic algorithm (NSGA-II) which is used for several possibly conflicting objectives that need to be considered together. In this paper, a model which aims to produce site layout alternatives according to sustainability criteria for cooperative apartment house complexes, will be mentioned.
keywords Sustainable Site Layout Design, Multi Objective Genetic Algorithm, LEED-BREEAM.
series CAAD Futures
type normal paper
email
last changed 2015/06/29 09:30

_id ecaade2015_246
id ecaade2015_246
authors Andraos, Sebastian
year 2015
title DMR: A Semantic Robotic Control Language
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 261-268
doi https://doi.org/10.52842/conf.ecaade.2015.2.261
wos WOS:000372316000031
summary DMR is a semantic robot-control language that attempts to change our relationship with machines and create true human-robot collaboration through intuitive interfacing. To this end, DMR is demonstrated in the DMR Interface, an Android app, which accepts semantic vocal commands as well as containing a GUI for feedback and verification. This app is combined with a robot-mounted 3D camera to enable robotic interaction with the surroundings or compensate for unpredictable environments. This combination of tools gives users access to adaptive automation whereby a robot is no longer given explicit instructions but instead is given a job to do and will adapt its movements to execute this regardless of any slight changes to the goal or environment. The major advantages of this system come in the vagueness of the instructions given and a constant feedback of task accomplishment, approaching the manner in which we subconsciously control our bodies or would guide another person to achieve a goal.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=1d9c3f50-6fe2-11e5-8742-0b2879594625
last changed 2022/06/07 07:54

_id acadia15_161
id acadia15_161
authors Baharlou, Ehsan; Menges, Achim
year 2015
title Toward a Behavioral Design System: An Agent-Based Approach for Polygonal Surfaces Structures
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 161-172
doi https://doi.org/10.52842/conf.acadia.2015.161
summary The following research investigates the development of an agent-based design method as an integrative design tool for polygonal surface structures. The aim of this research is to develop a computational tool that self-organizes the emergence of polygonal surface structures from interaction between its constitutive lattices. This research focuses on the ethological level of morphogenesis that is relevant to the animal or insect societies, whereby agents mediate the material organizations with environmental aspects. Meanwhile, behavior-based approaches are investigated as a bottom-up system to develop a computational framework in which the lower-level features constantly interact. The lower-level features such as material properties (e.g., geometric descriptions) are abstracted into building blocks or agents to construct the agent’s morphology. The abstracted principles, which define the agent’s morphology, are aggregated into a generative tool to explore the emergent complexities. This exploration coupled with the generative constraint mechanisms steers the collective agents system toward the cloud of solutions; hence, the collective behaviors of agents constitute the polygonal surface structures. This polygonal system is a bottom up approach of developing the complex surface that emerges through topological and topographical interaction between cells and their surrounding environment. Subsequently, the integrative system is developed through agent-based parametric modelling, in which the knowledge-based system as a top-down approach is substituted with the agent system together with its morphological features and significant behaviors.
keywords Agent-Based System, Behavioral-Based System, Polygonal Surface Structures, Self-Organization and Emergence
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia16_362
id acadia16_362
authors Beesley, Philip; Ilgun, Zeliha, Asya; Bouron, Giselle; Kadish, David; Prosser, Jordan; Gorbet, Rob; Kulic, Dana; Nicholas, Paul; Zwierzycki, Mateusz
year 2016
title Hybrid Sentient Canopy: An implementation and visualization of proprioreceptive curiosity-based machine learning
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 362-371
doi https://doi.org/10.52842/conf.acadia.2016.362
summary This paper describes the development of a sentient canopy that interacts with human visitors by using its own internal motivation. Modular curiosity-based machine learning behaviour is supported by a highly distributed system of microprocessor hardware integrated within interlinked cellular arrays of sound, light, kinetic actuators and proprioreceptive sensors in a resilient physical scaffolding system. The curiosity-based system involves exploration by employing an expert system composed of archives of information from preceding behaviours, calculating potential behaviours together with locations and applications, executing behaviour and comparing result to prediction. Prototype architectural structures entitled Sentient Canopy and Sentient Chamber developed during 2015 and 2016 were developed to support this interactive behaviour, integrating new communications protocols and firmware, and a hybrid proprioreceptive system that configured new electronics with sound, light, and motion sensing capable of internal machine sensing and externally- oriented sensing for human interaction. Proprioreception was implemented by producing custom electronics serving photoresistors, pitch-sensing microphones, and accelerometers for motion and position, coupled to sound, light and motion-based actuators and additional infrared sensors designed for sensing of human gestures. This configuration provided the machine system with the ability to calculate and detect real-time behaviour and to compare this to models of behaviour predicted within scripted routines. Testbeds located at the Living Architecture Systems Group/Philip Beesley Architect Inc. (LASG/PBAI, Waterloo/Toronto), Centre for Information Technology (CITA, Copenhagen) National Academy of Sciences (NAS) in Washington DC are illustrated.
keywords intedisciplinary/collaborative design, intelligent environments, artificial intelligence, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id caadria2015_206
id caadria2015_206
authors Chien, Sheng-Fen; Hsiu-Pai Su and Yu-Wei Huang
year 2015
title Parade
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 375-384
doi https://doi.org/10.52842/conf.caadria.2015.375
summary It is import to formalize design knowledge to capture tacit design experience and techniques. This research aims to utilize the power of patterns and language to formulate knowledge of parametric design. We have found through our own experience of learning and teaching parametric design, examples are the most familiar form of learning. We proposed a way of documenting design knowledge in four parts: pattern, example, case and source. We have implemented the repository as a web browser based system, named PARADE. A preliminary study of the system is conducted.
keywords Design pattern; knowledge repository; parametric design.
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2015_303
id ecaade2015_303
authors Coroado, Luís; Pedro, Tiago, D'Alpuim, Jorge, Eloy, Sara and Dias, MiguelSales
year 2015
title VIARMODES: Visualization and Interaction in Immersive Virtual Reality for Architectural Design Process
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 125-134
doi https://doi.org/10.52842/conf.ecaade.2015.1.125
wos WOS:000372317300014
summary The complexity of today´s architecture solutions brings the need to integrate, in the design process, digital tools for creation, visualization, representation and evaluation of design solutions. This paper proposes the adoption of a new Virtual Reality (VR) tool, referred to as VIARmodes, to support the architectural design process with an improved communication across different specialities, towards the facilitation of the project decision process. This tool allows a complete visualization of the design, specifically useful during the detailed design phase, including the architecture design and of other engineering specialities, progressively and interactively adapting the project visualization to the information needed for each discipline. With a set of 3 different visualization modes simulated in real scale within a Virtual Environment (VE), and adopting natural human-computer interaction by using speech, the system allows a team of architect and engineers, to visualize and interact with the proposed design during a collaborative design brief. We carried a usability evaluation study with 12 architects. The study showed that the tool was perceived to be effective and its use efficient during the design process, especially during the detailed design phase.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4129cbae-70c8-11e5-be63-27454208986c
last changed 2022/06/07 07:56

_id sigradi2015_000
id sigradi2015_000
authors Cybis Perreira, Alice T.; Pupo, Regiane T. (Ed.)
year 2015
title Project Information for Interaction
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0; vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015
summary The chosen theme "Project Information for interaction" reveals one of the most important ways that technology has offered to improve the design process by integrating information into the elements of digital graphic in a parametric way. This integration allows many design professionals to interact on the same model, enabling simulations, materializations, revisions with data more close to the reality, avoiding errors and wastes. Projects with highest social responsibility can be performed by inserting this new way of designing in education and professional practices. So, this conference is dedicated to give time and space for presentations and discussions of researches and experiences in this area applied to the various fields such as Architecture, Urbanism, Design, Animation, Arts, among others. Looking into another perspective, this issue also brings the concept of Smart Cities, where the provision of information integrated with graphics inserted in the towns components (streets, open areas, buildings and objects), allow more responsible interactions, generating sustainable and collaborative actions among citizens.

series SIGRADI
email
last changed 2016/03/10 09:50

_id acadia23_v3_19
id acadia23_v3_19
authors Dickey, Rachel
year 2023
title Material Interfaces
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary Based on our current daily rate, 85,410 hours is the average amount of time that an adult in the United States will spend on their phone in a lifetime (Howarth 2023). This is time spent texting, tweeting, emailing, snapping, chatting, posting, and interacting with an interface which each of us carry in our pocket. Kelly Dobson explains, “We psychologically view the cell phone as an extension of our bodies, which is why when you accidentally forget it or leave it behind you feel you have lost apart of yourself” (2013). In reality, this device is just one of many technologies which affect our relationship with our bodies and the physical world. Additionally, Zoom meetings, social media networks, on-line shopping, and delivery robots, all increasingly detach our bodies and our senses from our everyday experiences and interactions. In response to digital culture, Liam Young writes, “Perhaps the day will come when we turn off our target ads, navigational prompts, Tinder match notifications, and status updates to find a world stripped bare, where nothing is left but scaffolds and screens” (2015). Make no mistake; the collection of projects shared in these field notes is intended to be a counterpoint to such a prophesied future. However, the intent is not to try to compete with technology, but rather, to consider the built environment itself as an interface, encouraging interaction through feedback and responsivity directly related to human factors, finding ways to re-engage the body through design.
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id ecaade2015_193
id ecaade2015_193
authors Eloy, Sara; Ourique, Lázaro, Pedro, Tiago, Resende, Ricardo, Dias, MiguelSales and Freitas, João
year 2015
title Analysing People's Movement in the Built Environment via Space Syntax, Objective Tracking and Gaze Data
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 341-350
doi https://doi.org/10.52842/conf.ecaade.2015.1.341
wos WOS:000372317300037
summary In this paper we use analysis tools from Space Syntax and objective observation of the human behaviour, to understand the impact of landmarks in the walking patterns of users of spaces. Our case study was a large exterior public open space (University Campus), in which participants could walk freely and simultaneously be tracked by several sensors. We carried Space Syntax analysis for this space, and then collected Global Positioning System (GPS) tracking information and used a mobile eye-tracking device to acquire eye gaze information. The collected data allowed us to map and analyse each subject behaviour in the public space. A more specific analysis was done to four selected landmarks that, according to the Space Syntax analysis, were the ones with higher integration values. Results indicate that landmarks with such higher integration values show also a larger count of fixations and saccades of gaze interaction.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4c23b54e-702b-11e5-b1b2-53e73ebc791b
last changed 2022/06/07 07:55

_id sigradi2015_9.152
id sigradi2015_9.152
authors Faria, José Neto de; Oliveira, Mirtes Marins; Palos, Karine Itao
year 2015
title Architecture, Design and Information Visualization (Data): different phases of data between the perception and clarification
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 451-458.
summary The article develops a reflection on the different stages of information (data) in the relations of mediation between ‘individual interpreter’ and ‘information systems’, and the agency of the processes of perception, interpretation and clarification. The goal was to identify, understand and describe how ‘information systems’ enact the different stages of articulation of ‘information’, from “propensity” to ‘concatenation’, and from ‘critical’ to the ‘action’. Tests and analysis of the effects of ‘information systems’ were observed in ‘narrative accounts’ of ‘individual interpreter’. However, the conclusion is that the social conformation of ‘strategies for obtaining information’ prevails on the properties of ‘information system’.
keywords Design, Information, Information Architecture, Information Design, Information Visualization
series SIGRADI
email
last changed 2016/03/10 09:51

_id caadria2015_096
id caadria2015_096
authors Fukuda, Tomohiro; Toshiki Tokuhara and Nobuy-Oshi Yabuki
year 2015
title Development of A Kinematic Physical Model for Building Volume Simulation
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 241-250
doi https://doi.org/10.52842/conf.caadria.2015.241
summary Both a physical model and VR are three-dimensional expression tools to enable intuitive understanding; however, both have pros and cons. Thus, this research took up the challenge of developing a kinematic physical model system for volume simulation of buildings or a city by using a physical model and VR data integrally. The developed system consists both of hardware which packed 105 lifting rods into a grid (the height of the rods could be changed individually by stepper motors) and of software which calculated the height of each rod from the VR data and lifted the rods. Through conducting verification experiments on the prototype system, a physical urban model could be produced in about two minutes, within acceptable error limits. In conclusion, the proposed method was evaluated as feasible and effective.
keywords Kinematic model; physical model; Virtual Reality; rapid prototyping; building volume simulation; interaction.
series CAADRIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_171911 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002