CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 589

_id ecaade2015_261
id ecaade2015_261
authors Sharif, Shani and Gentry, Russell
year 2015
title BIM for Masonry: Development of BIM Plugins for the Masonry Unit Database
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 567-576
doi https://doi.org/10.52842/conf.ecaade.2015.1.567
wos WOS:000372317300061
summary Masonry Unit Database (MUD) is an integral part of Building Information Modeling for Masonry (BIM-M) initiative. MUD provides a data structure framework for storing the required data for digital representation of masonry units. Specific information about masonry units such as price, geometry and physical properties is needed throughout the lifecycle of a building project, including the design, construction, maintenance, and demolition stages. The development of MUD contributes to enhancement of masonry BIM tools for practitioners to incorporate up-to-date masonry product information into their projects. There are five main stages in the development of MUD: development of process map of masonry building project lifecycle, data requirement identification, physical design of database, design of data import structures, and finally design of data export structures. This paper focuses on the development of the SQL based MUD, and a Revit-Dynamo data export plugin for this database. The developed plugin is especially beneficial as it provides a tool for fast and accurate generation of the parametric and data enhanced masonry units as Revit families on the fly from the stored dimensions and attributes in the database. The generated masonry units with this method would be embedded in masonry wall systems in BIM building project.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=13b44e20-7022-11e5-ab9c-00190f04dc4c
last changed 2022/06/07 07:56

_id acadia15_417
id acadia15_417
authors van der Heijden, Ramon; Levelle, Evan; Riese, Martin
year 2015
title Parametric Building Information Generation for Design and Construction
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 417-429
doi https://doi.org/10.52842/conf.acadia.2015.417
summary Thermal Form, is architecture that does work. Or, it is the application of energy as information to architectural geometry, with the express purpose of using the resistance of structure against an opposing thermodynamic force, in order to manipulate and direct flows that exist in both the interior and along the exterior of a building. By examining the relationship between surface configuration, surface area and type of energy transfer occurring - with a focus on the mechanism of transfer - thermal form strategies can be used to further optimize existing building typologies and environmental control system strategies, or, perform a more radical detouring of the atmosphere of a building.
keywords Parametric, modeling, building ,information, generation, construction, fabrication
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2015_090
id caadria2015_090
authors Altabtabai, Jawad and Wei Yan
year 2015
title A User Interface for Parametric Architectural Design Reviews
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 65-74
doi https://doi.org/10.52842/conf.caadria.2015.065
summary Architectural form and performance are affected by the designer's graphical representation methods. Parametric CAD systems, as design and representation tools, have become ubiquitous in architectural practice and education. Literature in the area of parametric design reviews is scarce and focused within building inspection and construction coordination domains. Additionally, platforms marketed as design review tools lack basic functionality for conducting comprehensive, parametric, and performance-based reviews. We have developed a user interface prototype where geometric and non-geometric information of a Building Information Model were translated into an interactive gaming environment. The interface allows simultaneous occupation and simulation of spatial geometry, enabling the user to engage with object parameters, as well as, performance-based, perspectival, diagrammatic, and orthographic representations for total spatial and performance comprehension.
keywords Design cognition; Virtual/augmented reality and interactive environments; Human-computer interaction.
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2015_3.111
id sigradi2015_3.111
authors Brand?o, Filipe; Paio, Alexandra; Sousa, José Pedro; Rato, Vasco
year 2015
title Cork Re-Wall. Computational Methods of Automatic Generation and Digital Fabrication of Cork Partition Walls for Building Renovation
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 86-93.
summary Developments in computational design methods and their integration with digital fabrication processes are ushering a customized fabrication paradigm. This paradigm is particularly suited to renovation of old buildings built with traditional construction techniques, a diversified corpus in which interventions are surgical and unique, and where partition walls play the central role. Insulation Cork Board and OSB, natural and renewable materials, can have an important role in a material system that responds to this context. Cork re-Wall is a parametrically modelled construction system and a file-to-factory digital process to generate high quality custom solutions to respond to diverse renovation design challenges.
keywords Cork, Wood Frame, Digital Fabrication, Renovation, Parametric Design
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id cf2015_358
id cf2015_358
authors Tonn, Christian and Bringmann, Oliver
year 2015
title Point Clouds to BIM: Methods for Building Parts Fitting in Laser Scan Data
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 358-369.
summary New construction within existing buildings requires documentation of the existing buildings, in a form that one is familiar with from new construction or architectural design. Laser scanning is a powerful tool to survey the built reality. It provides a replica of the existing building in the form of a point cloud. The difficulty is to analyse the resulting amounts of data that has been generated and being able to interpret it as a Building Information Model (BIM). This article proposes a new generic approach for pattern recognition of architectural objects. The procedure is introduced through the use of two examples - polygon fitting, which is important for the generation of new building element classes and wall detection. The second part describes how individual components can be automatically connected to consistent networks. BIM systems walls should be aligned, within predefined limits of accuracy, either perpendicular to or in line with each other.
keywords point cloud, BIM, pattern recognition, components, wall alignment.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_485
id cf2015_485
authors Anaf, Márcia and Harris, Ana Lúcia Nogueira de Camargo
year 2015
title The geometry of Chuck Hoberman as the basis for the development of dynamic experimental structures
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 485.
summary The cognitive-theoretical foundation referring to teach drawing as a way of thinking, as well as the construction of the environment by means of drawing using transforming geometries and the formal and para-formal computational process, creating unusual geometries through generative design processes and methodologies, can be seen as some of the main possibilities in exploring dynamic experimental structures for an Adaptive Architecture. This article presents the development of a model for articulated facades, inspired by Hoberman´s Tessellates, and his Adaptive Building Initiative (ABI) project to develop facades models that respond in real time to environmental changes. In addition, we describe an experiment based on the retractable structures, inspired by Hoberman´s work and experimentations. Solutions for responsive facades can offer more flexible architectural solutions providing better use of natural light and contributing to saving energy. Using Rhinoceros and the Grasshopper for modeling and test the responsiveness, the parametric model was created to simulate geometric panels of hexagonal grids that would open and close in reaction to translational motion effects, regulating the amount of light that reaches the building.
keywords Parametric architecture, Hoberman´s Tessellates, Adaptive Building Initiative (ABI), Articulated Facades, Complex Geometries, Retractable structures, Retractable polyhedra.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_331
id cf2015_331
authors Brodeschi, Michal; Pilosof, Nirit Putievsky and Kalay, Yehuda E.
year 2015
title The definition of semantic of spaces in virtual built environments oriented to BIM implementation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 331-346.
summary The BIM today can be a provider of inputs to performance analysis of different phenomena such as thermal comfort, energy consumption or winds. All these assessments are fundamental to the post occupation of the building. The attainment of approximate information of how the future building would behave under these conditions will reduce the waste of materials and energy resources. The same idea is used for evaluating the users occupation. Through simulation of human behavior is possible to evaluate which design elements can be improved. In complex structures such as hospital buildings or airports is quite complex for architects to determine optimal design solutions based on the tools available nowadays. These due to the fact users are not contemplated in the model. Part of the data used for the simulation can be derived from the BIM model. The three-dimensional model provides parametric information, however are not semantically enriched. They provide parameters to elements but not the connection between them, not the relationship. It means that during a simulation Virtual Users can recognize the elements represented in BIM models, but not what they mean, due to the lack of semantics. At the same time the built environment may assume different functions depending on the physical configuration or activities that are performed on it. The status of the space may reveal differences and these changes occur constantly and are dynamic. In an initial state, a room can be noisy and a moment later, quiet. This can determine what type of activities the space can support according to each change in status. In this study we demonstrate how the spaces can express different semantic information according to the activity performed on it. The aim of this paper is to simulate the activities carried out in the building and how they can generate different semantics to spaces according to the use given to it. Then we analyze the conditions to the implementation of this knowledge in the BIM model.
keywords BIM, Virtual Sensitive Environments, Building Use Simulation, Semantics.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_317
id ecaade2015_317
authors Cavieres, Andres and Gentry, Russell
year 2015
title Masonry Regions: A New Approach for the Representation of Masonry Walls in BIM Applications
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 585-595
doi https://doi.org/10.52842/conf.ecaade.2015.1.585
wos WOS:000372317300063
summary The article describes the theoretical approach for the development of computational representations of masonry walls based on the concept of regions. A masonry region is intended to support the description of various levels of detail pertaining to a masonry wall assembly, capturing the evolution and complexity of design information from early conceptual stages down to construction and operation. Since different wall types are characterized by a different set of domain-specific requirements, a special emphasis is put on a flexible strategy for classification of different types of view-dependent masonry regions. This classification will provide the foundation upon which masonry specific parametric modeling and rule-checking applications can be elaborated in the future. It will also provide the basis for the definition of model views necessary for particular data queries and exchanges between design stakeholders. The article introduces the concept of regions, and discusses its implications and future steps.
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2015_170
id ecaade2015_170
authors Cavusoglu, Ömer Halil
year 2015
title The Position of BIM Tools in Conceptual Design Phase: Parametric Design and Energy Modeling Capabilities
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 607-612
doi https://doi.org/10.52842/conf.ecaade.2015.1.607
wos WOS:000372317300065
summary Numerous researchers point out that, in the early stages of architectural design, many significant decisions are taken to directly affect functional qualities, the performance of the building, aesthetics, and the relationship of the building with the natural environment and climate, even if there is no certain and valid information to create and obtain adequate design.In this paper, I particularly focus on the early stages of architectural design and search for the opportunities provided by Building Information Modeling (BIM) tools, towards the concept of performance analysis and parametric form seeking. Study also includes case study implementations which visualize the early processes of architectural design with benefits of BIM under different conditions to evaluate its opportunities during these design processes.
series eCAADe
email
last changed 2022/06/07 07:55

_id cf2015_005
id cf2015_005
authors Celani, Gabriela; Sperling, David M. and Franco, Juarez M. S. (eds.)
year 2015
title Preface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 5-13.
summary Since 1985 the Computer-Aided Architectural Design Futures Foundation has fostered high level discussions about the search for excellence in the built environment through the use of new technologies with an exploratory and critical perspective. In 2015, the 16th CAAD Futures Conference was held, for the first time, in South America, in the lively megalopolis of Sao Paulo, Brazil. In order to establish a connection to local issues, the theme of the conference was "The next city". The city of Sao Paulo was torn down and almost completely rebuilt twice, from the mid 1800s to the mid 1900s, evolving from a city built in rammed-earth to a city built in bricks and then from a city built in bricks to a city built in concrete. In the 21st century, with the widespread use of digital technologies both in the design and production of buildings, cities are changing even faster, in terms of layout, materials, shapes, textures, production methods and, above all, in terms of the information that is now embedded in built systems.Among the 200 abstracts received in the first phase, 64 were selected for presentation in the conference and publication in the Electronic Proceedings, either as long or short papers, after 3 tough evaluation stages. Each paper was reviewed by at least three different experts from an international committee of more than 80 highly experienced researchers. The authors come from 23 different countries. Among all papers, 10 come from Latin-American institutions, which have been usually under-represented in CAAD Futures. The 33 highest rated long papers are also being published in a printed book by Springer. For this reason, only their abstracts were included in this Electronic Proceedings, at the end of each chapter.The papers in this book have been organized under the following topics: (1) modeling, analyzing and simulating the city, (2) sustainability and performance of the built environment, (3) automated and parametric design, (4) building information modeling (BIM), (5) fabrication and materiality, and (6) shape studies. The first topic includes papers describing different uses of computation applied to the study of the urban environment. The second one represents one of the most important current issues in the study and design of the built environment. The third topic, automated and parametric design, is an established field of research that is finally becoming more available to practitioners. Fabrication has been a hot topic in CAAD conferences, and is becoming ever more popular. This new way of making design and buildings will soon start affecting the way cities look like. Finally, shape studies are an established and respected field in design computing that is traditionally discussed in CAAD conferences.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_324
id cf2015_324
authors Gerber, David Jason; Pantazis, Evangelos and Marcolino, Leandro Soriano
year 2015
title Design Agency: Prototyping Multi-Agent Systems in Architecture
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 324.
summary This paper presents research on the prototyping of multi-agent systems for architectural design. It proposes a design exploration methodology at the intersection of architecture, engineering, and computer science. The motivation of the work includes exploring bottom up generative methods coupled with optimizing performance criteria including for geometric complexity and objective functions for environmental, structural and fabrication parameters. The paper presents the development of a research framework and initial experiments to provide design solutions, which simultaneously satisfy complexly coupled and often contradicting objectives. The prototypical experiments and initial algorithms are described through a set of different design cases and agents within this framework; for the generation of façade panels for light control; for emergent design of shell structures; for actual construction of reciprocal frames; and for robotic fabrication. Initial results include multi-agent derived efficiencies for environmental and fabrication criteria and discussion of future steps for inclusion of human and structural factors.
keywords Generative Design, Parametric Design, Multi-Agent Systems, Digital Fabrication, Form Finding, Reciprocal Frames.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_010
id caadria2015_010
authors Gámez, Oscar; Jean-Claude Bignon and Gilles Duchanois
year 2015
title Assisted Construction of Non-Standard Wooden Walls and Envelope Structures by Parametric Modeling
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 653-662
doi https://doi.org/10.52842/conf.caadria.2015.653
summary The non-standard approach, widely discussed in the past years as Architecture progressively uses alternative design methods different from the Euclidean paradigm, has allowed architects to transform the way architecture is conceived and materialized. Such evolution uses computer-aided design along with automation in production to originate the environment for the aided architectural conception field in which we present a method, in its early development stage, intended to create non-standard walls and envelopes based on cellular patterns using wood as base material. We present the results obtained from modeling and building two full-scale prototypes of non-standard wooden walls.
keywords Non-standard walls; parametric modeling; CNC fabrication; cellular structures; wood construction.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ijac201513104
id ijac201513104
authors Holzer, Dominik
year 2015
title BIM and Parametric Design in Academia and Practice: The Changing Context of Knowledge Acquisition and Application in the Digital Age
source International Journal of Architectural Computing vol. 13 - no. 1, 65–82
summary This paper explores the consequences of the use of Building Information Modeling (BIM) and Parametric Design on contemporary architectural practice and associated changes to the roles and responsibilities therein. Knowledge changes associated to new skill-sets of young graduates and their positioning among experienced professionals will be analysed. On one hand the paper will scrutinise how the use of BIM and Parametric design challenges design and delivery of projects, on the other hand the paper will reflect on the extent academic institutions can or should respond to the challenges. What are the opportunities inherent to these changes in practice? How should they influence current academic curricula that include computational design and digital architecture? Based on targeted interviews with recent graduates who entered practice, a number of responses to the challenges and opportunities will be presented by the author for further consideration.
series journal
last changed 2019/05/24 09:55

_id caadria2015_049
id caadria2015_049
authors Holzer, Dominik
year 2015
title Digital Convergence In The Design Studio
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 469-478
doi https://doi.org/10.52842/conf.caadria.2015.469
summary The increased proliferation of computational tools for building performance evaluation during conceptual design has led to a fundamental transformation in architectural education over the past decade. Morphological exploration and form-finding in the studio setting now gets more and more enriched by environmental performance feedback that allows students to test their design in unprecedented ways. This paper contextualises the underlying developments leading to this changed context that results in greater convergence of information from various software applications, facilitated via digital means. The author presents the process and the outcomes of a recent architectural design studio as an example of how this convergence unfolds in an academic setting. The studio example highlights how the fluid interaction between parametric design techniques and environmental performance feedback enriches the students’ abilities to engage with their design processes in innovative ways.
keywords Parametric Design; Environmental Performance Optimisation; Multidisciplinary Design; Convergence; Optioneering.
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2015_157
id caadria2015_157
authors Janssen, Patrick
year 2015
title Parametric BIM Workflows
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 437-446
doi https://doi.org/10.52842/conf.caadria.2015.437
summary Building Information Modelling systems enable the creation of associative parametric models that include sets of interlinked parametric objects. Graph-based modelling systems on the other hand enable the creation of parametric models with more complex iterative behaviours. Parametric BIM workflows aim to link graph-based systems to BIM systems. A key requirement of such workflows is the ability to generate associative BIM models. However, current approaches to creating such workflows are complicated by the fact that the process of cooking is only able to generate explicit geometry. An alternative approach is proposed in which the cooking process is able to generate associative models, thereby enabling more user friendly and streamlined BIM workflows to be created.
keywords Building Information Modelling, Parametric modelling, BIM workflows
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2015_347
id cf2015_347
authors Krakhofer, Stefan
year 2015
title Closing the Loop: From Analysis to Transformation within BIM
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 347-357.
summary The shift from traditional CAD to BIM has created a significant potential to embed optimization processes in many stages of the design. The presented research is situated in the early design stage of inception and concept, focusing on analysis-driven-form-finding during the integrated design approach within a BIM environment. A custom analysis framework, has been developed and linked to a visual programming environment that allows the exchange of data with the parametric components of a BIM environment. The developed workflow and sequential split of functionalities enables a shared design environment for multiple experts and the design-team. The environment is intended to close the loop from analysis to parametric modeling in order to generate and evaluate building designs against performance criteria, with the aim to expedite the design decision process. The prototype has been presented to participants of the Deep-Space Cluster at SmartGeometry 2014.
keywords Algorithmic Design, Parametric Design, Parametric Analysis, Building Information Modeling, Design Automation.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_139
id ecaade2015_139
authors Krietemeyer, Bess and Rogler, Kurt
year 2015
title Real-Time Multi-Zone Building Performance Impacts of Occupant Interaction with Dynamic Façade Systems
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 669-678
doi https://doi.org/10.52842/conf.ecaade.2015.2.669
wos WOS:000372316000074
summary Recent developments in responsive electroactive materials are increasing the rate at which next-generation façade technologies can respond to environmental conditions, building energy demands, and the actions of building occupants. Simulating the real-time performance of dynamic façade systems is critical for understanding the impacts that occupant response will have on whole-building energy performance and architectural design. This paper describes a method for real-time analysis of the multi-zone building performance impacts of occupant interaction with a dynamic façade system, the Electroactive Dynamic Display System (EDDS). The objective is to optimize EDDS implementation and define system limitations, incorporate EDDS as a dynamic factor in multi-zone building energy analyses, and provide real-time feedback of building performance data based on environmental conditions and occupant interactions. Preliminary results of parametric simulation methods demonstrate the ability of dynamic façade systems to consider real-time occupant interaction in the analysis of daylighting and thermal performance of buildings.
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2015_064
id caadria2015_064
authors Meyer, J.; G. Duchanois, J-C. Bignon and A. Bouali
year 2015
title Computer Design and Digital Manufacturing of Folded Architectural Structures Composed of Wood Panels
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 641-650
doi https://doi.org/10.52842/conf.caadria.2015.641
summary The research presented in this paper revolves around the experimental development of the morpho-structural potential of folded architectural structures made of wood. The aims are to develop an innovative system for timber used in sustainable construction and to increase the inventory of wood architectural tectonics. Laminated timber panels associated with "digital production line" approach have opened up new perspectives for the building industry in creating prefabricated wooden structures. This article provides a characterization of the digital chain associated to the development of non-standard folded structures which consist of wood panels by way of a full-scale experimental pavilion. The purpose is the study of architectural design process from parametric modeling (through CNC machining) and assembly operations to production. Towards the completion of the pavilion, a number of analytical experiments have been performed.
keywords Architecture, folded structure, robotic fabrication, computational design, parametric modeling, wood panels.
series CAADRIA
email
last changed 2022/06/07 07:58

_id ijac201513205
id ijac201513205
authors Nahmad Vazquez, Alicia and Wassim Jabi
year 2015
title A Collaborative Approach to Digital Fabrication:A Case Study for the Design and Production of Concrete ‘Pop-up’ Structures
source International Journal of Architectural Computing vol. 13 - no. 2, 195-216
summary The research presented in this paper utilizes industrial robotic arms and new material technologies to model and explore a prototypical workflow for on-site robotic collaboration based on feedback loops. This workflow will ultimately allow for the construction of customized, free-form, on-site concrete structures without the need for complex formwork. The paper starts with an explanation of the relevance of collaborative robotics through history in the industry and in architecture. An argument is put forward for the need to move towards the development of collaborative processes based on feedback loops amongst the designer, the robot and the material, where they all inform each other continuously. This kind of process, with different degrees of autonomy and agency for each actor, is necessary for on-site deployment of robots. A test scenario is described using an innovative material named concrete canvas that exhibits hybrid soft fabric and rigid thin-shell tectonics. This research project illustrates the benefits of integrating information-embedded materials, masscustomization and feedback loops. Geometry scanning, parametric perforation pattern control, computational analysis and simulation, and robotic fabrication were integrated within a digital fabrication deployment scenario. The paper concludes with a detailed report of research findings and an outline for future work.
series journal
last changed 2019/05/24 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_791905 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002