CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id phd_MariadaPiedade_Ferreira
id phd_MariadaPiedade_Ferreira
authors Ferreira, Maria da Piedade
year 2015
title Embodied Emotions: Observations and Experiments in Architecture and Corporeality
source University of Lisbon
summary This thesis is dedicated to the topic of the relationship between the Body and Architecture, in particular regarding the contemporary “embodied mind” theory. It includes a theoretical review on the topic based on the study of the different ways Architecture has followed the transformations that the views on the Body have endured throughout Western history, under the evolution and influence of different disciplines such as philosophy, technology, science, religion and art. Within this context, the thesis proposes a methodology based on performance arts, which explores the use of embodied practices in design education. Such a methodology aimed at testing how it is possible to influence users’ emotions using architectural space. The thesis argues that this can be achieved through a process of empathy between the users’ body and architectural space. To support this claim, the thesis presents a set of experiments undertaken in the context of architectural teaching. The results of such experiments were evaluated through the analysis of video and photo documentation, as well as through quantitative and qualitative data collected using emotion measurement tools and questionnaires, respectively.
keywords Embodied Mind; Empathy; Performance Art
series thesis:PhD
email
last changed 2017/10/17 11:33

_id cf2015_279
id cf2015_279
authors Abdelmohsen, Sherif M. and Massoud, Passaint M.
year 2015
title Making Sense of those Batteries and Wires: Parametric Design between Emergence and Autonomy
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 279-296.
summary This paper reports on the process and outcomes of a digital design studio that integrates parametric design and generative systems in architectural and urban design projects. It explores the interrelationship between the emergence of innovative formal representations using parametric design systems on the one hand, and design autonomy; more specifically the conscious process of generating and developing an architectural concept, on the other. Groups of undergraduate students working on an architectural project are asked to identify a specific conceptual parti that addresses an aspect of architectural quality, define strategies that satisfy those aspects, and computational methodologies to implement those strategies, such as rule-based systems, self-organization systems, and genetic algorithms. The paper describes the educational approach and studio outcomes, discusses implications for CAAD education and curricula, and addresses issues to be considered for parametric and generative software development.
keywords Parametric modeling, generative design, emergence, autonomy, design exploration, CAAD curriculum.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_235
id ecaade2015_235
authors Ahmar, Salma El and Fioravanti, Antonio
year 2015
title Biomimetic-Computational Design for Double Facades in Hot Climates - A Porous Folded Façade for Office Buildings
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 687-696
doi https://doi.org/10.52842/conf.ecaade.2015.2.687
wos WOS:000372316000076
summary Biomimetic design is an approach that is gaining momentum among architects and designers. Computational design and performance simulation software represent powerful tools that help in applying biomimetic ideas in architectural design and in understanding how such proposals would behave. This paper addresses the challenge of reducing cooling loads while trying to maintain daylight needs of office buildings in hot climatic regions. Specifically, it focuses on double skin facades whose application in hot climates is somewhat controversial. Ideas from nature serve as inspiration in designing a porous, folded double façade for an existing building, aiming at increasing heat lost by convection in the façade cavity as well as reducing heat gained by radiation. The cooling loads and daylight autonomy of an office room are compared before and after the proposed design to evaluate its performance.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=f87306fc-6e90-11e5-845a-00190f04dc4c
last changed 2022/06/07 07:54

_id caadria2015_090
id caadria2015_090
authors Altabtabai, Jawad and Wei Yan
year 2015
title A User Interface for Parametric Architectural Design Reviews
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 65-74
doi https://doi.org/10.52842/conf.caadria.2015.065
summary Architectural form and performance are affected by the designer's graphical representation methods. Parametric CAD systems, as design and representation tools, have become ubiquitous in architectural practice and education. Literature in the area of parametric design reviews is scarce and focused within building inspection and construction coordination domains. Additionally, platforms marketed as design review tools lack basic functionality for conducting comprehensive, parametric, and performance-based reviews. We have developed a user interface prototype where geometric and non-geometric information of a Building Information Model were translated into an interactive gaming environment. The interface allows simultaneous occupation and simulation of spatial geometry, enabling the user to engage with object parameters, as well as, performance-based, perspectival, diagrammatic, and orthographic representations for total spatial and performance comprehension.
keywords Design cognition; Virtual/augmented reality and interactive environments; Human-computer interaction.
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2015_8.81
id sigradi2015_8.81
authors Alvarado, Rodrigo García; Lobos, Danny; Nope, Alberto; Tinapp, Frank
year 2015
title BIM + UAV Assessment of Roofs’ Solar Potential
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 336-340.
summary This paper describes a novel method for determining the capacity to generate solar energy integrated into the roofs of buildings by aerial survey using UAVs and BIM models for sizing the covering surfaces and integration of solar panels. Various digital procedures are enchained like planning of trajectories, image processing, geometric reconstitution, simulation of solar radiation and calculation of energy generation to promote on-site installation of clean energy sources in existing buildings, to ensure a more sustainable habitat.
keywords BIM, UAV, Solar Energy, Sustainable Building
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2015_10.74
id sigradi2015_10.74
authors Angulo, Antonieta; Velasco, Guillermo Vásquez de
year 2015
title Virtual Sketching: Instructional Low Resolution Virtual Reality Simulations
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 506-513.
summary This research paper describes the implementation of virtual reality immersive simulation studios in academia, facilitated by the use of the “Virtual Sketching Method” (VSM). The VSM allows the basic expression of architectural forms and the perceptual experience of interior and exterior spaces. It fosters simulations based on render-less (low resolution) visualization in contrast to other simulation workflows based on render-more (high resolution) visualization techniques. It bridges between different types of media and supports iterative cycles of formulation, prototyping, and assessment. The paper reports on students’ learning outcomes and their qualitative correlation with the VSM usability and effectiveness in design learning.
keywords Virtual Reality, Immersive Simulation, Spatial Design, Virtual Sketching, Design Instruction
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
doi https://doi.org/10.52842/conf.acadia.2015.357
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_048
id caadria2015_048
authors Austin, Matthew and Gavin Perin
year 2015
title The Other Digital
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 829-838
doi https://doi.org/10.52842/conf.caadria.2015.829
summary The paper compares the implications of glitch aesthetics as an alternative digital design process to the more the commonly used algorithmic processes. It will argue the synthetic nature of architectural production in the digital age is used typically to privilege the representation of form through lines and curves, while the production of glitches rely on the image. This reliance on the image means that the pixel comes to the forefront as a possible new medium of architectural drawing. This paper therefore aims to outline the advantages and problems with using ‘glitches’ within architectural production.
keywords Glitch aesthetics; Processing; theory; algorithmic design; process.
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2015_486
id cf2015_486
authors Aydin, Asli and Özkar, Mine
year 2015
title Material computability of indeterminate plaster behavior
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 486.
summary In this study, we revisit the concepts of abstraction and materialization with regards to the theoretical framework of new materialism. Underlining the changing relationship between design through abstraction (DtA) and design through materialization (DtM) in design history, we propose an integration of the two towards achieving design emergence. Additional to a theoretical framework, we provide a showcase through material experiments of plaster and abstractions in the form of shape computation. We discuss results as parameters for future digital implementations and potentials for design practice and education.
keywords Shape computation, new materialism.
series CAAD Futures
type normal paper
email
last changed 2015/06/29 09:30

_id acadia15_161
id acadia15_161
authors Baharlou, Ehsan; Menges, Achim
year 2015
title Toward a Behavioral Design System: An Agent-Based Approach for Polygonal Surfaces Structures
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 161-172
doi https://doi.org/10.52842/conf.acadia.2015.161
summary The following research investigates the development of an agent-based design method as an integrative design tool for polygonal surface structures. The aim of this research is to develop a computational tool that self-organizes the emergence of polygonal surface structures from interaction between its constitutive lattices. This research focuses on the ethological level of morphogenesis that is relevant to the animal or insect societies, whereby agents mediate the material organizations with environmental aspects. Meanwhile, behavior-based approaches are investigated as a bottom-up system to develop a computational framework in which the lower-level features constantly interact. The lower-level features such as material properties (e.g., geometric descriptions) are abstracted into building blocks or agents to construct the agent’s morphology. The abstracted principles, which define the agent’s morphology, are aggregated into a generative tool to explore the emergent complexities. This exploration coupled with the generative constraint mechanisms steers the collective agents system toward the cloud of solutions; hence, the collective behaviors of agents constitute the polygonal surface structures. This polygonal system is a bottom up approach of developing the complex surface that emerges through topological and topographical interaction between cells and their surrounding environment. Subsequently, the integrative system is developed through agent-based parametric modelling, in which the knowledge-based system as a top-down approach is substituted with the agent system together with its morphological features and significant behaviors.
keywords Agent-Based System, Behavioral-Based System, Polygonal Surface Structures, Self-Organization and Emergence
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2016_673
id sigradi2016_673
authors Baquero, Pablo; Calixto, Victor; Orciuoli, Affonso; Vincent, Charles
year 2016
title Simulation and prototyping benefits on digital fabrication [Teaching experience on previous workshops]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.981-985
summary This paper explains how parametric methods are informed by simulation and prototyping, methods that were deployed during some series of digital fabrication workshops, their evolution and specifically with the objective of fabricating using combination of materials and CNC techniques, such as, 3d printing, laser cutting and milling machine. Teaching these workshops were the results of simulating and prototyping with students from the Biodigital Master (ESARQ UIC 2016) and a workshop done during Sigradi (Florianopolis 2015).
keywords Teaching, 3D printing, Milling, Patterns, Collaboration, Fabrication
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2015_293
id ecaade2015_293
authors Batliner, Curime; Newsum, MichaelJake and Rehm, M.Casey
year 2015
title Live: Synchronous Computing in Robot Driven Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 277-286
doi https://doi.org/10.52842/conf.ecaade.2015.2.277
wos WOS:000372316000033
summary Challenging our contemporary understanding of representation and simulation in architecture SCI-Arc has been developing a unique digital/physical design platform where the relationships between humans, machines and matter are constantly in flux re-calibrating, reshuffling, reordering aligning digital and physical and vis versa. The robot as a technology takes an important role in these new ideation environments. “Live” is an applicaton which enables real-time robotic control and grants the robot substantial agency situating it as an interactive design tool that immediately responds to designed signal and sensor inputs in its environment. Current research explores interactive environments, gesture based human-machine interactions and autonomous agent driven design programs.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=6fff29ba-6fe7-11e5-a661-eb66006fc007
last changed 2022/06/07 07:54

_id acadia15_195
id acadia15_195
authors Belesky, Philip; Monacella, Rosalea; Burry, Mark; Burry, Jane
year 2015
title A Field in Flux: Exploring the Application of Computational Design Techniques to Landscape Architectural Design Problems
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 195-202
doi https://doi.org/10.52842/conf.acadia.2015.195
summary Landscape architectural design problems are under-served by the current canon of computational design techniques. More investigations into modeling landscape phenomena would improve the capabilities of designers working in this field. This paper introduces some of the problems specific to the intersection of computational design and landscape architecture through a case study in generating planting plans using parametric techniques. This illustrates issues of temporality, complexity, and dynamism that distinguish land form from built form alongside the opportunities and challenges found in adapting computation to the design of natural systems.
keywords Landscape modeling, ecological modeling, landscape architecture, systems design, environmental simulation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2015_sp_8.78
id sigradi2015_sp_8.78
authors Bernal, Alberto Nope; Alvarado, Rodrigo García; Flores, Javier Guarachi; Carvajal, Ricardo Arellano
year 2015
title Analysis of active solar parameters in health
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 792-796.
summary This work was developed based on the register of health servicesin the municipality of Concepción Chile, selecting three establishments as models of concentrated consume. Technical morphological and location characteristics of each facility were analyzed in order to identify the volumetric relation, the influence of shadows and solar potential roofs and facades, linking with the future implementation of materials and technologies that present thermal and /or photovoltaic properties. The computer implementation of parameterization and simulation applied to the morphology of each facility analyzed the active parameters that affecting solar gain, stating a relationship between volume, solar collection, and the percentage of energy demand covered.
keywords Solar Energy, Parametric Design, Active Parameters, Health Facilities, Chile
series SIGRADI
email
last changed 2016/03/10 09:47

_id ijac201715302
id ijac201715302
authors Borges de Vasconselo, Tássias and David Sperling
year 2017
title From representational to parametric and algorithmic interactions: A panorama of Digital Architectural Design teaching in Latin America
source International Journal of Architectural Computing vol. 15 - no. 3, 215-229
summary This study focuses on the context of graphic representation technologies and digital design on Architectural teaching in Latin America. From categories proposed by Oxman and Kotnik and through a mapping study framed by a systematic review in CumInCAD database, it is presented a panorama of the state-of-art of the digital design on Architectural teaching in the region, between 2006 and 2015. The results suggest a context of coexistence of representational interaction and parametric interaction, as well as a transition from one to another and the emergence of the first experiments in algorithmic interaction. As this mapping shows an ongoing movement toward Digital Architectural Design in Latin America in the last decade, and points out its dynamics in space in time, it could contribute to strengthen a crowdthinking network on this issue in the region and with other continents.
keywords Computer-aided architectural design, Digital Architectural Design teaching, interaction with digital media, levels of design computability, Latin America, mapping study
series journal
email
last changed 2019/08/07 14:03

_id ecaade2015_100
id ecaade2015_100
authors Braumann, Johannes and Brell-Cokcan, Sigrid
year 2015
title Adaptive Robot Control - New Parametric Workflows Directly from Design to KUKA Robots
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 243-250
doi https://doi.org/10.52842/conf.ecaade.2015.2.243
wos WOS:000372316000029
summary In the past years the creative industry has made great advancements in the area of robotics. Accessible robot simulation and control environments based on visual programming systems such as Grasshopper and Dynamo now allow even novice users to quickly and intuitively explore the potential of robotic fabrication, while expert users can use their programming knowledge to create complex, parametric robotic programs. The great advantage of using visual programming for robot control lies in the quick iterations that allow the user to change both geometry and toolpaths as well as machinic parameters and then simulate the results within a single environment. However, at the end of such an iterative optimization process the data is condensed into a robot control data file, which is then copied over to the robot and thus loses its parametric relationship with the code that generated it. In this research we present a newly developed system that allows a dynamic link between the robot and the controlling PC for parametrically adjusting robotic toolpaths and collecting feedback data from the robot itself - enabling entirely new approaches towards robotic fabrication by even more closely linking design and fabrication.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=9d9da7bc-70ef-11e5-b2fd-efbb508168fd
last changed 2022/06/07 07:54

_id cf2015_331
id cf2015_331
authors Brodeschi, Michal; Pilosof, Nirit Putievsky and Kalay, Yehuda E.
year 2015
title The definition of semantic of spaces in virtual built environments oriented to BIM implementation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 331-346.
summary The BIM today can be a provider of inputs to performance analysis of different phenomena such as thermal comfort, energy consumption or winds. All these assessments are fundamental to the post occupation of the building. The attainment of approximate information of how the future building would behave under these conditions will reduce the waste of materials and energy resources. The same idea is used for evaluating the users occupation. Through simulation of human behavior is possible to evaluate which design elements can be improved. In complex structures such as hospital buildings or airports is quite complex for architects to determine optimal design solutions based on the tools available nowadays. These due to the fact users are not contemplated in the model. Part of the data used for the simulation can be derived from the BIM model. The three-dimensional model provides parametric information, however are not semantically enriched. They provide parameters to elements but not the connection between them, not the relationship. It means that during a simulation Virtual Users can recognize the elements represented in BIM models, but not what they mean, due to the lack of semantics. At the same time the built environment may assume different functions depending on the physical configuration or activities that are performed on it. The status of the space may reveal differences and these changes occur constantly and are dynamic. In an initial state, a room can be noisy and a moment later, quiet. This can determine what type of activities the space can support according to each change in status. In this study we demonstrate how the spaces can express different semantic information according to the activity performed on it. The aim of this paper is to simulate the activities carried out in the building and how they can generate different semantics to spaces according to the use given to it. Then we analyze the conditions to the implementation of this knowledge in the BIM model.
keywords BIM, Virtual Sensitive Environments, Building Use Simulation, Semantics.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_005
id cf2015_005
authors Celani, Gabriela; Sperling, David M. and Franco, Juarez M. S. (eds.)
year 2015
title Preface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 5-13.
summary Since 1985 the Computer-Aided Architectural Design Futures Foundation has fostered high level discussions about the search for excellence in the built environment through the use of new technologies with an exploratory and critical perspective. In 2015, the 16th CAAD Futures Conference was held, for the first time, in South America, in the lively megalopolis of Sao Paulo, Brazil. In order to establish a connection to local issues, the theme of the conference was "The next city". The city of Sao Paulo was torn down and almost completely rebuilt twice, from the mid 1800s to the mid 1900s, evolving from a city built in rammed-earth to a city built in bricks and then from a city built in bricks to a city built in concrete. In the 21st century, with the widespread use of digital technologies both in the design and production of buildings, cities are changing even faster, in terms of layout, materials, shapes, textures, production methods and, above all, in terms of the information that is now embedded in built systems.Among the 200 abstracts received in the first phase, 64 were selected for presentation in the conference and publication in the Electronic Proceedings, either as long or short papers, after 3 tough evaluation stages. Each paper was reviewed by at least three different experts from an international committee of more than 80 highly experienced researchers. The authors come from 23 different countries. Among all papers, 10 come from Latin-American institutions, which have been usually under-represented in CAAD Futures. The 33 highest rated long papers are also being published in a printed book by Springer. For this reason, only their abstracts were included in this Electronic Proceedings, at the end of each chapter.The papers in this book have been organized under the following topics: (1) modeling, analyzing and simulating the city, (2) sustainability and performance of the built environment, (3) automated and parametric design, (4) building information modeling (BIM), (5) fabrication and materiality, and (6) shape studies. The first topic includes papers describing different uses of computation applied to the study of the urban environment. The second one represents one of the most important current issues in the study and design of the built environment. The third topic, automated and parametric design, is an established field of research that is finally becoming more available to practitioners. Fabrication has been a hot topic in CAAD conferences, and is becoming ever more popular. This new way of making design and buildings will soon start affecting the way cities look like. Finally, shape studies are an established and respected field in design computing that is traditionally discussed in CAAD conferences.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_220
id caadria2015_220
authors Cheng, Nancy Y.; Mehrnoush Latifi Khorasgani, Nicholas Williams, Daniel Prohasky and Jane Burry
year 2015
title Understanding Light in Building Skin Design
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 323-332
doi https://doi.org/10.52842/conf.caadria.2015.323
summary This paper describes a design approach for discerning solar gain and assigning appropriate external shading devices. The approach includes a macro analysis locating where and when the building receives direct sunlight and locating desired interior daylighting; along with a micro analysis of how folded sun-shading motifs filter or block direct sunlight. The approach uses a collaborative analytical workflow with feedback from virtual and physical simulations informing design explorations. This iterative, reciprocating process is illustrated by student efforts to design shading structures for a building based on incident solar radiation. Designers begin with cutting and folding paper study models, then lasercut 2D tessellation patterns to create sculptural shading screens to be examined with a heliodon. Physical daylighting modeling reveals aesthetic opportunities to develop with parametric design. Motifs are then digitally modeled and analysed for shading effectiveness. Analysing the solar radiation of simple motifs helps beginners learn the software for subsequent urban situations. The efficacy of these simulations is discussed along with ways that the results could be interpreted to initiate design decisions for a building skin.
keywords Solar simulation; collaborative design; folding surfaces; physical and digital simulation.
series CAADRIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_317608 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002