CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 347

_id acadia15_203
id acadia15_203
authors Ross, Elissa; Hambleton, Daniel
year 2015
title Exact Face-Offsetting for Polygonal Meshes
doi https://doi.org/10.52842/conf.acadia.2015.203
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 203-210
summary Planar-faced mesh surfaces such as triangular meshes are frequently used in an architectural setting. Face-offsetting operations generate a new mesh whose face planes are parallel and at a fixed distance from the face planes of the original surface. Face-offsetting is desirable to give thickness or layers to architectural elements. Yet, this operation does not generically preserve the combinatorial structure of the offset mesh. Current approaches to this problem are to restrict the geometry of the original mesh to ensure that the combinatorial structure of the underlying mesh is preserved. We present a general algorithm for face-offsetting polygonal meshes that places no restriction on the original geometry. The algorithm uses graph duality to describe the range of possible combinatorial outcomes at each vertex of the mesh. This approach allows the designer to specify independent offset distances for each face plane. The algorithm also produces a "perpendicular" structure joining the original mesh with the offset mesh, that consists of only planar elements (i.e. beams).
keywords Mesh offsetting, face-offsetting, architecture, dual graph, polygonal mesh, triangular mesh
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
doi https://doi.org/10.52842/conf.acadia.2015.357
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_233
id caadria2015_233
authors Fernando, Ruwan and Robin Drogemuller
year 2015
title Recapitulation in Generating Spatial Layouts
doi https://doi.org/10.52842/conf.caadria.2015.199
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 199-207
summary The noted 19th century biologist, Ernst Haeckel, put forward the idea that the growth (ontogenesis) of an organism recapitulated the history of its evolutionary development. While this idea is defunct within biology, the idea has been promoted in areas such as education (the idea of an education being the repetition of the civilizations before). In the research presented in this paper, recapitulation is used as a metaphor within computer-aided design as a way of grouping together different generations of spatial layouts. In most CAD programs, a spatial layout is represented as a series of objects (lines, or boundary representations) that stand in as walls. The relationships between spaces are not usually explicitly stated. A representation using Lindenmayer Systems (originally designed for the purpose of modelling plant morphology) is put forward as a way of representing the morphology of a spatial layout. The aim of this research is not just to describe an individual layout, but to find representations that link together lineages of development. This representation can be used in generative design as a way of creating more meaningful layouts which have particular characteristics. The use of genetic operators (mutation and crossover) is also considered, making this representation suitable for use with genetic algorithms.
keywords Generative Design, Lindenmayer Systems, Spatial Layouts
series CAADRIA
email
last changed 2022/06/07 07:50

_id eaea2015_t3_paper02
id eaea2015_t3_paper02
authors Acacia, Simonetta; Casanova, Marta
year 2015
title Recording and Publishing to Ensure Informed Choices for Future Generations
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.290-298
summary The paper presents the practical example of an information system applied to the built heritage, in particular to the Albergo dei Poveri, a monumental complex in the city of Genoa. A huge number of data and information have been organized in one database, in order to provide a synthesis of the building, acquainted with its complexity, and at the same time allow an in-depth knowledge; the graphical visualization by means of GIS eases to query the database. The final purpose of this work is to publish the project as a web-GIS that will allow all the interested parts to easily access and consult the wide knowledge and use it to make well-informed decisions about the conservation of built heritage.
keywords GIS; knowledge; historical building
series EAEA
email
last changed 2016/04/22 11:52

_id ecaade2015_138
id ecaade2015_138
authors Achten, Henri
year 2015
title Closing the Loop for Interactive Architecture - Internet of Things, Cloud Computing, and Wearables
doi https://doi.org/10.52842/conf.ecaade.2015.2.623
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 623-632
wos WOS:000372316000069
summary Interactive architecture occurs in buildings when part of the building engages in exchange of information with the user, in such a way that the interactive system adjusts it's assumptions about the user's needs and desires. Acquiring the user's needs and desires is no trivial task. Currently there are no techniques that will reliably make such assertions. Building a system that unobtrusively monitors the inhabitant seems to be a tall order, and making the system ask the user all the time is very distracting for the user. An alternative option has become available however: personal wearables are increasingly monitoring the user. Therefore it suffices that the interactive system of the building gets in touch with those wearables, rather than duplicating the sensing function of the wearables. The enabling technology for wearables is Internet of Things, which connects physical objects (smart objects) on a virtual level, and Cloud Computing, which provides a scalable storage environment for wearables and smart objects. In this paper we outline the implications of the convergence of these three technologies in the light of interactive architecture.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=fdd9e706-6e8f-11e5-b1d4-00190f04dc4c
last changed 2022/06/07 07:54

_id ecaade2015_280
id ecaade2015_280
authors Adilenidou, Yota
year 2015
title Error as Optimization - Using Cellular Automata Systems to Introduce Bias in Aggregation Models through Multigrids
doi https://doi.org/10.52842/conf.ecaade.2015.2.601
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 601-610
wos WOS:000372316000067
summary This paper is focusing on the idea of error as the origin of difference in form but also as the path and the necessity for optimization. It describes the use of Cellular Automata (CA) for a series of structural and formal elements, whose proliferation is guided through sets of differential grids (multigrids) and leads to the buildup of big span structures and edifices as, for example, a cathedral. Starting from the error as the main idea/tool for optimization, taxonomies of morphological errors occur and at a next step, they are informed with contextual elements to produce an architectural system. A toolbox is composed that can be implemented in different scales and environmental parameters, providing variation, optimization, complexity and detail density. Different sets of experiments were created starting from linear structural elements and continuing to space dividers and larger surface components.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=5cf73be0-6e8f-11e5-b7a4-1b188b87ef84
last changed 2022/06/07 07:54

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
doi https://doi.org/10.52842/conf.acadia.2019.168
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia15_263
id acadia15_263
authors Ahlquist, Sean
year 2015
title Social Sensory Architectures: Articulating Textile Hybrid Structures for Multi-Sensory Responsiveness and Collaborative Play
doi https://doi.org/10.52842/conf.acadia.2015.263
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 263-273
summary This paper describes the development of the StretchPLAY prototype as a part of the Social Sensory Surfaces research project, focusing on the design of tactile and responsive environments for children with Autism Spectrum Disorder (ASD). The project is directed specifically at issues with sensory processing, the inability of the nervous system to filter sensory input in order to indicate an appropriate response. This can be referred to as a “traffic jam” of sensory data where the intensity of such unfiltered information leads to an over-intensified sensory experience, and ultimately a dis-regulated state. To create a sensory regulating environments, a tactile structure is developed integrating physical, visual and auditory feedback. The structure is defined as a textile hybrid system integrating a seamless knitted textile to form a continuous topologically complex surface. Advancements in the fabrication of the boundary structure, of glass-fiber reinforced rods, enable the form to be more robustly structured than previous examples of textile hybrid or tent-like structures. The tensioned textile is activated as a tangible interface where sensing of touch and pressure on the surface triggers ranges of visual and auditory response. A specific child, a five-year old girl with ASD, is studied in order to tailor the technologies as a response to her sensory challenges. This project is a collaboration with students, researchers and faculty in the fields of architecture, computer science, information (human-computer interaction), music and civil engineering, along with practitioners in the field of ASD-based therapies.
keywords Textile Hybrid, Knitting, Sensory Environment, Tangible Interface, Responsive systems and environments
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2024_477
id caadria2024_477
authors Akbaylar Hayreter, Ipek, Gulec Ozer, Derya and As Cemrek, Handan
year 2024
title Enhancing Cultural Heritage Digitalization and Visitor Engagement Through LiDAR Scanning and Gamification
doi https://doi.org/10.52842/conf.caadria.2024.2.283
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 283–292
summary Cultural heritage assets are valuable, providing important information about humanity's past and conveying it to the future. Unfortunately, conventional documentation is insufficient to preserve them for the next generations. Furthermore, increasing visitor interaction with these assets and raising awareness has been one of the challenges in this field. In this paper, we will examine how mobile LiDAR (Laser Detection and Ranging) technology can be used to precisely scan and document historical sites and how it can be combined with gamification elements to provide visitors with better experiences. It is also important that the texture taken in mobile laser scanning can be used to better visualize 3D mesh models of the scanned objects, so the fastest application that produces 3D models is selected. The study area is Syedra Ancient City in Alanya / Turkey, where the research and excavation process has continued since 2015 and the restoration projects started in 2023. Future work includes the creation of experiences to provide a basis for gamification and revitalizing the story of the heritage for the visitors through digital storytelling and AR (Augmented Reality). Preserving historical sites while providing visitors with a more in-depth, vivid and enjoyable experience are important facts for enhancing cultural heritage and passing it on to future generations.
keywords Cultural Heritage, Digitalization, LiDAR, Mobile Laser Scanning, Digital Storytelling, Augmented Reality, Gamification
series CAADRIA
email
last changed 2024/11/17 22:05

_id cf2015_240
id cf2015_240
authors Aksoy, Yazgi Badem; Çagdas, Gülen and Balaban, Özgün
year 2015
title A model for sustainable site layout design of social housing with Pareto Genetic Algorithm: SSPM
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 240.
summary Nowadays as the aim to reduce the environmental impact of buildings becomes more apparent, a new architectural design approach is gaining momentum called sustainable architectural design. Sustainable architectural design process includes some regulations itself, which requires calculations, comparisons and consists of several possible conflicting objectives that need to be considered together. A successful green building design can be performed by the creation of alternative designs generated according to all the sustainability parameters and local regulations in conceptual design stage. As there are conflicting criteria's according to LEED and BREAM sustainable site parameters, local regulations and local climate conditions, an efficient decision support system can be developed by the help of Pareto based non-dominated genetic algorithm (NSGA-II) which is used for several possibly conflicting objectives that need to be considered together. In this paper, a model which aims to produce site layout alternatives according to sustainability criteria for cooperative apartment house complexes, will be mentioned.
keywords Sustainable Site Layout Design, Multi Objective Genetic Algorithm, LEED-BREEAM.
series CAAD Futures
type normal paper
email
last changed 2015/06/29 09:30

_id caadria2015_090
id caadria2015_090
authors Altabtabai, Jawad and Wei Yan
year 2015
title A User Interface for Parametric Architectural Design Reviews
doi https://doi.org/10.52842/conf.caadria.2015.065
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 65-74
summary Architectural form and performance are affected by the designer's graphical representation methods. Parametric CAD systems, as design and representation tools, have become ubiquitous in architectural practice and education. Literature in the area of parametric design reviews is scarce and focused within building inspection and construction coordination domains. Additionally, platforms marketed as design review tools lack basic functionality for conducting comprehensive, parametric, and performance-based reviews. We have developed a user interface prototype where geometric and non-geometric information of a Building Information Model were translated into an interactive gaming environment. The interface allows simultaneous occupation and simulation of spatial geometry, enabling the user to engage with object parameters, as well as, performance-based, perspectival, diagrammatic, and orthographic representations for total spatial and performance comprehension.
keywords Design cognition; Virtual/augmented reality and interactive environments; Human-computer interaction.
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2015_10.7
id sigradi2015_10.7
authors Alves, Gilfranco; Trujillo, Juliana
year 2015
title Cybersemiotic Design: a methodological purpose for digital design teaching
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 488-492.
summary The paper aims to relate a specific aspect of the proposed methodology for digital design, presented on the PhD research called Cibersemiótica e Processos de Projeto: Metodologia em Revis?o, developed at the University of S?o Paulo (USP), with the didactic experience conducted at the subject Representaç?o e Criaç?o Digital 2, developed at the Architecture and Urbanism Course of the Federal University of Campo Grande (UFMS), Brazil. The paper’s theoretical foundation is based on the cybersemiotic work produced by the Danish philosopher S?ren Brier, which unifies two important conceptual frameworks: the Charles Sanders Peirce’s Semiotics, and the Second Order Cybernetics proposed by Heinz von Foerster.
keywords Education, Design Processes, Parametric Design, Cybersemiotics
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2015_162
id caadria2015_162
authors Amano, Hiroshi
year 2015
title Panelisation With Sheet Metal Cladding On Free-Form Roof
doi https://doi.org/10.52842/conf.caadria.2015.713
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 713-722
summary This document shows a rationalisation method of sheet metal panelling on free-formed surfaces and a case study of it. Ichimonji-buki is a cladding method widely used in Japan for the roofs of traditional temples and shrines. It consists of sheet metal roofing with flat lock seams, allowing for minimal gaps along the joints. By integrating the characteristics of the flat lock joint and a dynamic relaxation analysis via computational modelling, continuous vertical seam lines can be realised while keeping panels almost identical in shape and with a limited number of variations. In the case study of Silver Mountain, the free-formed roof is clad with approximately 8,000 panels, out of which 92% are standardised and can be easily fabricated.
keywords Panelisation, dynamic relaxation, flat lock seams.
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2015_246
id ecaade2015_246
authors Andraos, Sebastian
year 2015
title DMR: A Semantic Robotic Control Language
doi https://doi.org/10.52842/conf.ecaade.2015.2.261
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 261-268
wos WOS:000372316000031
summary DMR is a semantic robot-control language that attempts to change our relationship with machines and create true human-robot collaboration through intuitive interfacing. To this end, DMR is demonstrated in the DMR Interface, an Android app, which accepts semantic vocal commands as well as containing a GUI for feedback and verification. This app is combined with a robot-mounted 3D camera to enable robotic interaction with the surroundings or compensate for unpredictable environments. This combination of tools gives users access to adaptive automation whereby a robot is no longer given explicit instructions but instead is given a job to do and will adapt its movements to execute this regardless of any slight changes to the goal or environment. The major advantages of this system come in the vagueness of the instructions given and a constant feedback of task accomplishment, approaching the manner in which we subconsciously control our bodies or would guide another person to achieve a goal.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=1d9c3f50-6fe2-11e5-8742-0b2879594625
last changed 2022/06/07 07:54

_id sigradi2015_10.177
id sigradi2015_10.177
authors Angelo, Alex Garcia Smith; Manna, Ilaria La; Hernandez, Oscar; Valdiviezo, Marlon; Lastras, Alejandra Díaz de León; Salazar, Oscar Ivan Campo; Montezuma, Vanessa; Zubieta, Marco
year 2015
title Fab Lab and Multiculturalism in Latin America: The Fab Lat Kids case and the project “Emosilla”
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 551-557.
summary This paper expresses a lecture of the experience of an investigation carried by a group of Latin American Fab Labs dedicated to the promotion of the use of modeling, digital fabrication, and network communication as tools of educational and social development of children in latin culture. This study is based on online workshop typologies with a methodological perspective that included local technological adaptations, data gathering, and exchange of knowledge on the fab lab network.
keywords Design, Digital Manufacturing, Society, Technology Learning, Collaborative Network
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_87
id ecaade2015_87
authors Angelova, Desislava; Dierichs, Karola and Menges, Achim
year 2015
title Graded Light in Aggregate Structures - Modulating the daylight in designed granular systems using online controlled robotic processes
doi https://doi.org/10.52842/conf.ecaade.2015.2.399
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 399-406
wos WOS:000372316000046
summary The research project proposes an online-controlled robotic process that allows for grading light in aggregate structures using photometric analysis. It investigates the potential of designing specific daylight qualities through the behaviour-based robotic fabrication of the aggregate system. Two key methods are developed: the digital fabrication of the structure and a photometric analysis technique which is used as a sensor input for the robotic sensory interface. In its first part, the paper presents a series of photometric experiments on aggregate wall- and dome-structures. In its second part, the focus is laid on robotic manufacturing of these aggregate structures and the interactive fabrication of specific light conditions. To conclude further areas of research into emergent design processes with aggregates are outlined.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4161e07e-6fe8-11e5-baaf-1fc96b3e1b94
last changed 2022/06/07 07:54

_id sigradi2015_10.74
id sigradi2015_10.74
authors Angulo, Antonieta; Velasco, Guillermo Vásquez de
year 2015
title Virtual Sketching: Instructional Low Resolution Virtual Reality Simulations
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 506-513.
summary This research paper describes the implementation of virtual reality immersive simulation studios in academia, facilitated by the use of the “Virtual Sketching Method” (VSM). The VSM allows the basic expression of architectural forms and the perceptual experience of interior and exterior spaces. It fosters simulations based on render-less (low resolution) visualization in contrast to other simulation workflows based on render-more (high resolution) visualization techniques. It bridges between different types of media and supports iterative cycles of formulation, prototyping, and assessment. The paper reports on students’ learning outcomes and their qualitative correlation with the VSM usability and effectiveness in design learning.
keywords Virtual Reality, Immersive Simulation, Spatial Design, Virtual Sketching, Design Instruction
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2015_8.143
id sigradi2015_8.143
authors Arcari, Etiene do Amaral; Pereira, Alice Theresinha Cybis; Junior, Roque Costacurta; Mansano, Isadora
year 2015
title Interoperability: A challenge for the Parameterized Modeling Process of Architectural details and its materialization
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 341-349.
summary This article describes and analyzes experiments conducted during the development of the master’s work entitled “Parameterized Modeling of Accessibility Design Details: Work Flow In order to have reusability, interoperability and materialization”. Such experiments intended to investigate and verify the potential of interoperability between different architecture software. It was verified the possibility of materialization and reuse of models, where the details worked with a new guise through the context of developing and creating a project in which it was inserted. The difficulties of accessing, sharing and editing data and information were evaluated. The results obtained allowed to identify features and limitations related to the models and their formats.
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia15_123
id acadia15_123
authors Askarinejad, Ali; Chaaraoui, Rizkallah
year 2015
title Spatial Nets: the Computational and Material Study of Reticular Geometries
doi https://doi.org/10.52842/conf.acadia.2015.123
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 123-135
summary Reticular systems are in many aspects a distinct taxonomy of volumetric geometries. In comparison with the conventional embodiment of a ‘volume’ that encapsulates a certain quantity of space with a shell reticular geometries emerge from the accumulation of micro elements to define a gradient of space. Observed in biological systems, such structures result from their material properties and formation processes as well as often ‘simple’ axioms that produce complex results. In micro or macro levels, from forest tree canopies to plant cell walls these porous volumes are not shaped to have a singular ‘solution’ for a purpose; they provide the fundamental geometric characteristics of a ‘line cloud’ that is simultaneously flexible in response to its environment, porous to other systems (light, air, liquids) and less susceptible to critical damage. The porosity of such systems and their volumetric depth also result in kinetic spatial qualities in a 4D architectural space. Built upon a ‘weaving’ organization and the high performance material properties of carbon fiber composite, this research focuses on a formal grammar that initiates the complex system of a reticular volume. A finite ‘lexical’ axiom is consisted of the basic characters of H, M and L responding to the anchor points on the highest, medium and lower levels of the extruding loom. The genome thus produces a string of data that in the second phase of programming are assigned to 624 points on the loom. The code aims to distribute the nodes across the flat line cloud and organize the sequence for the purpose of overlapping the tensioned strings. The virtually infinite results are then assessed through an evolutionary solver for confining an array of favorable results that can be then selected from by the designer. This research focuses on an approximate control over the fundamental geometric characteristics of a reticular system such as node density and directionality. The proposal frames the favorable result of the weave to be three-dimensional and volumetric – avoiding distinctly linear or surface formations.
keywords Reticular Geometries, Weaving, Line Clouds, Three-dimensional Form-finding, Carbon fiber, Prepreg composite, Volumetric loom, Fiberous Materials, Weaving fabrication, Formal Language, Lexical design, Evolutionary solver
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_084
id caadria2015_084
authors Asl, Mohammad Rahmani; Chengde Wu, Gil Rosen-Thal and Wei Yan
year 2015
title A New Implementation of Head-Coupled Perspective for Virtual Architecture
doi https://doi.org/10.52842/conf.caadria.2015.251
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 251-260
summary The process of projecting 3D scenes onto a two-dimensional (2D) surface results in the loss of depth cues, which are essential for immersive experience in the scenes. Various solutions are provided to address this problem, but there are still fundamental issues need to be addressed in the existing approaches for compensating the change in the 2D image due to the change in observer’s position. Existing studies use head-coupled perspective, stereoscopy, and motion parallax methods to achieve a realistic image representation but a true natural image could not be perceived because of the inaccuracy in the calculations. This paper describes in detail an implementation method of the technique to correctly project a 3D virtual environment model onto a 2D surface to yield a more natural interaction with the virtual world. The proposed method overcomes the inaccuracies in the existing head-coupled perspective viewing and can be used with common stereoscopic displays to naturally represent virtual architecture.
keywords Virtual reality; virtual architecture; head-coupled perspective; depth perception.
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_543358 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002