CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id caadria2024_477
id caadria2024_477
authors Akbaylar Hayreter, Ipek, Gulec Ozer, Derya and As Cemrek, Handan
year 2024
title Enhancing Cultural Heritage Digitalization and Visitor Engagement Through LiDAR Scanning and Gamification
doi https://doi.org/10.52842/conf.caadria.2024.2.283
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 283–292
summary Cultural heritage assets are valuable, providing important information about humanity's past and conveying it to the future. Unfortunately, conventional documentation is insufficient to preserve them for the next generations. Furthermore, increasing visitor interaction with these assets and raising awareness has been one of the challenges in this field. In this paper, we will examine how mobile LiDAR (Laser Detection and Ranging) technology can be used to precisely scan and document historical sites and how it can be combined with gamification elements to provide visitors with better experiences. It is also important that the texture taken in mobile laser scanning can be used to better visualize 3D mesh models of the scanned objects, so the fastest application that produces 3D models is selected. The study area is Syedra Ancient City in Alanya / Turkey, where the research and excavation process has continued since 2015 and the restoration projects started in 2023. Future work includes the creation of experiences to provide a basis for gamification and revitalizing the story of the heritage for the visitors through digital storytelling and AR (Augmented Reality). Preserving historical sites while providing visitors with a more in-depth, vivid and enjoyable experience are important facts for enhancing cultural heritage and passing it on to future generations.
keywords Cultural Heritage, Digitalization, LiDAR, Mobile Laser Scanning, Digital Storytelling, Augmented Reality, Gamification
series CAADRIA
email
last changed 2024/11/17 22:05

_id sigradi2015_3.209
id sigradi2015_3.209
authors Silva, Neander Furtado; Aviani, Francisco Leite
year 2015
title The Role of Digital Education in Paradigm Shifting in Contemporary Architecture: from standardization to mass customization
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 113-118.
summary Mass customization, which may lead to greater variety of architectural solutions, seems to be a concept mostly unknown and difficult to grasp or hard to believe by many. We argue in this paper that education may have a rule to play in bringing about a better understanding of these among students and professionals. We show here the results of a survey on people’s beliefs about mass standardization and mass customization and a comparative study of students’ design projects produced under a certain pedagogical strategy and how these might be influenced by their education.
keywords Architecture, Digital Fabrication, Mass Customization, Architectural Education Paradigm Shift
series SIGRADI
email
last changed 2016/03/10 10:00

_id ecaade2015_100
id ecaade2015_100
authors Braumann, Johannes and Brell-Cokcan, Sigrid
year 2015
title Adaptive Robot Control - New Parametric Workflows Directly from Design to KUKA Robots
doi https://doi.org/10.52842/conf.ecaade.2015.2.243
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 243-250
summary In the past years the creative industry has made great advancements in the area of robotics. Accessible robot simulation and control environments based on visual programming systems such as Grasshopper and Dynamo now allow even novice users to quickly and intuitively explore the potential of robotic fabrication, while expert users can use their programming knowledge to create complex, parametric robotic programs. The great advantage of using visual programming for robot control lies in the quick iterations that allow the user to change both geometry and toolpaths as well as machinic parameters and then simulate the results within a single environment. However, at the end of such an iterative optimization process the data is condensed into a robot control data file, which is then copied over to the robot and thus loses its parametric relationship with the code that generated it. In this research we present a newly developed system that allows a dynamic link between the robot and the controlling PC for parametrically adjusting robotic toolpaths and collecting feedback data from the robot itself - enabling entirely new approaches towards robotic fabrication by even more closely linking design and fabrication.
wos WOS:000372316000029
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=9d9da7bc-70ef-11e5-b2fd-efbb508168fd
last changed 2022/06/07 07:54

_id ascaad2010_097
id ascaad2010_097
authors Kenzari, Bechir
year 2010
title Generative Design and the Reduction of Presence
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 97-106
summary Digital design/fabrication is slowly emancipating architectural design from its traditional static/representational role and endowing it instead with a new, generative function. In opposition to the classical isomorphism between drawings and buildings, wherein the second stand as translations of the first, the digital design/fabrication scenario does not strictly fall within a semiotic frame as much as within a quasi biological context, reminiscent of the Aristotelian notion of entelechy. For the digital data does not represent the building as much it actively works to become the building itself. Only upon sending a given file to a machine does the building begin to materialize as an empirical reality, And eventually a habitable space as we empirically know it. And until the digital data actualizes itself, the building qua building is no more than one single, potential possibility among many others. This new universe of digital design/fabrication does not only cause buildings to be produced as quick, precise, multiply-generated objects but also reduces their presence as original entities. Like cars and fashion items, built structures will soon be manufactured as routinely-consumed items that would look original only through the subtle mechanisms of flexibility: frequent alteration of prototype design (Style 2010, Style 2015..) and “perpetual profiling” (mine, yours, hers,..). The generic will necessarily take over the circumstantial. But this truth will be veiled since “customized prototypes” will be produced or altered to individual or personal specifications. This implies that certain “myths” have to be generated to speed up consumption, to stimulate excessive use and to lock people into a continuous system which can generate consumption through a vocabulary of interchangeable, layered and repeatable functions. Samples of “next season’s buildings” will be displayed and disseminated to enforce this strategy of stimulating and channeling desire. A degree of manipulation is involved, and the consumer is flattered into believing that his or her own free assessment of and choice between the options on offer will lead him or her to select the product the advertiser is seeking to sell. From the standpoint of the architect as a maker, the rising upsurge of digital design and fabrication could leave us mourning the loss of what has been a personal stomping ground, namely the intensity of the directly lived experiences of design and building. The direct, sensuous contact with drawings, models and materials is now being lost to a (digital) realm whose attributes refer to physical reality only remotely. Unlike (analogue) drawings and buildings, digital manipulations and prototypes do not exercise themselves in a real space, and are not subjected in the most rigorous way to spatial information. They denote in this sense a loss of immediacy and a withering of corporal thought. This flexible production of space and the consequent loss of immediate experience from the part of the designer will be analyzed within a theoretical framework underpinned mainly by the works of Walter Benjamin. Samples of digitally-produced objects will be used to illustrate this argument.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2015_143
id ecaade2015_143
authors Symeonidou, Ioanna
year 2015
title Flexible Matter - A Real-Time Shape Exploration Employing Analogue and Digital Form-Finding of Tensile Structures
doi https://doi.org/10.52842/conf.ecaade.2015.2.135
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 135-142
summary The paper presents a research on real-time shape exploration employing analogue and digital form-finding and concludes with a proposal for a teaching methodology that led to an intensive student workshop which took place at Graz University of Technology during 2014. The aim was to experiment with analogue and digital tools in parallel, counter-informing the design process. The experiments involved physical form-finding following the tradition of Frei Otto at the Institute of Lightweight Structures in Stuttgart as well as computational form-finding employing mainly dynamic relaxation techniques of spring-particle systems. The combination of techniques and methodologies eventually led to a feedback loop across different media that explored both qualitative and quantitative characteristics of the projects at hand. By establishing feedback between digital media and physical prototypes, the creative process is immediately informed by the material characteristics and properties which in turn give rise to a real-time exploration of form.Simulations of physical forces for architectural form generation are increasingly gaining ground in architectural education as there is a broad selection of computational tools readily available that allow quick experiments to be conducted.
wos WOS:000372316000017
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=12e288be-6e8c-11e5-a73c-5fc23ebf2095
last changed 2022/06/07 07:56

_id cf2015_155
id cf2015_155
authors Williams, Mani; Burry, Jane and Rao, Asha
year 2015
title Understanding face to face interactions in a collaborative setting: Methods and Applications
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 155-174.
summary Extensive studies have shown that face-to-face interactions are a critical component in a work environment. It is an effective communication method that builds trust between team members and creates social ties between colleagues to ease future collaboration. In this paper we present our interaction analysis system that utilized an indoor tracking system to provide insights on the spatial usage and interaction dynamics in collaborative spaces. This gives space layout designers and managers quick feedback on the performance of the space and its occupancies and allows interventions and evaluations to be conducted to fine-tune the space layout or organization structure to achieve optimal performance. We demonstrate our system with data collected from a recent international design workshop.
keywords Face-to-face collaboration, indoor tracking, social interaction analysis, team management, workspace design.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id caadria2015_162
id caadria2015_162
authors Amano, Hiroshi
year 2015
title Panelisation With Sheet Metal Cladding On Free-Form Roof
doi https://doi.org/10.52842/conf.caadria.2015.713
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 713-722
summary This document shows a rationalisation method of sheet metal panelling on free-formed surfaces and a case study of it. Ichimonji-buki is a cladding method widely used in Japan for the roofs of traditional temples and shrines. It consists of sheet metal roofing with flat lock seams, allowing for minimal gaps along the joints. By integrating the characteristics of the flat lock joint and a dynamic relaxation analysis via computational modelling, continuous vertical seam lines can be realised while keeping panels almost identical in shape and with a limited number of variations. In the case study of Silver Mountain, the free-formed roof is clad with approximately 8,000 panels, out of which 92% are standardised and can be easily fabricated.
keywords Panelisation, dynamic relaxation, flat lock seams.
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2015_9.347
id sigradi2015_9.347
authors Andrade, Eduardo; Orellana, Nicolas; Mesa, Javiera; Felmer, Patricio
year 2015
title Spatial Configuration and Sociaty. Comparison between the street market Tristan Matta and Tirso de Molina Market
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 481-485.
summary This research aims to clarify how certain visual and accessibility patterns, in buildings and urban environments, are related to social activities that take place in them. The study, based on the theory of space syntax (Hillier & Hanson 1984; Hillier, 1996), seeks to recognize patterns of behavior, both individual and aggregate. The case studies are Tirso de Molina Market and the free street market Tristan Matta, both in Santiago de Chile.
keywords pace Syntax, Visibilidad, Accesibilidad, Conectividad, Comportamiento
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2015_10.177
id sigradi2015_10.177
authors Angelo, Alex Garcia Smith; Manna, Ilaria La; Hernandez, Oscar; Valdiviezo, Marlon; Lastras, Alejandra Díaz de León; Salazar, Oscar Ivan Campo; Montezuma, Vanessa; Zubieta, Marco
year 2015
title Fab Lab and Multiculturalism in Latin America: The Fab Lat Kids case and the project “Emosilla”
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 551-557.
summary This paper expresses a lecture of the experience of an investigation carried by a group of Latin American Fab Labs dedicated to the promotion of the use of modeling, digital fabrication, and network communication as tools of educational and social development of children in latin culture. This study is based on online workshop typologies with a methodological perspective that included local technological adaptations, data gathering, and exchange of knowledge on the fab lab network.
keywords Design, Digital Manufacturing, Society, Technology Learning, Collaborative Network
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_27
id ecaade2015_27
authors Asanowicz, Aleksander
year 2015
title Museum 2.0 - Implementation of 3D Digital Tools
doi https://doi.org/10.52842/conf.ecaade.2015.1.709
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 709-715
summary The aim of this work is to try to set out how new technologies can influence the perception of a museum exposition. The problem which will be analysed is how to adapt an exhibition to the needs of visually impaired people. The problem will be considered on the basis of the case studies which were the part of an agreement between the Army museum in Bialystok and our Faculty. In traditional museums the main principle is the prohibition of touching exhibits.The project goal was to help blind people understand the features of the environment around them through the sense of touch. The novelty of this work is the study of how new digital technologies may improve the perception for the visually impaired.In the paper the method of 3D scanning, modelling and 3D printing will be presented. In conclusion the encountered problems and plans for further action will be discussed.
wos WOS:000372317300077
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=8e079058-702a-11e5-8ac3-d3d5c9e6f5fe
last changed 2022/06/07 07:54

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
doi https://doi.org/10.52842/conf.acadia.2015.357
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia15_123
id acadia15_123
authors Askarinejad, Ali; Chaaraoui, Rizkallah
year 2015
title Spatial Nets: the Computational and Material Study of Reticular Geometries
doi https://doi.org/10.52842/conf.acadia.2015.123
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 123-135
summary Reticular systems are in many aspects a distinct taxonomy of volumetric geometries. In comparison with the conventional embodiment of a ‘volume’ that encapsulates a certain quantity of space with a shell reticular geometries emerge from the accumulation of micro elements to define a gradient of space. Observed in biological systems, such structures result from their material properties and formation processes as well as often ‘simple’ axioms that produce complex results. In micro or macro levels, from forest tree canopies to plant cell walls these porous volumes are not shaped to have a singular ‘solution’ for a purpose; they provide the fundamental geometric characteristics of a ‘line cloud’ that is simultaneously flexible in response to its environment, porous to other systems (light, air, liquids) and less susceptible to critical damage. The porosity of such systems and their volumetric depth also result in kinetic spatial qualities in a 4D architectural space. Built upon a ‘weaving’ organization and the high performance material properties of carbon fiber composite, this research focuses on a formal grammar that initiates the complex system of a reticular volume. A finite ‘lexical’ axiom is consisted of the basic characters of H, M and L responding to the anchor points on the highest, medium and lower levels of the extruding loom. The genome thus produces a string of data that in the second phase of programming are assigned to 624 points on the loom. The code aims to distribute the nodes across the flat line cloud and organize the sequence for the purpose of overlapping the tensioned strings. The virtually infinite results are then assessed through an evolutionary solver for confining an array of favorable results that can be then selected from by the designer. This research focuses on an approximate control over the fundamental geometric characteristics of a reticular system such as node density and directionality. The proposal frames the favorable result of the weave to be three-dimensional and volumetric – avoiding distinctly linear or surface formations.
keywords Reticular Geometries, Weaving, Line Clouds, Three-dimensional Form-finding, Carbon fiber, Prepreg composite, Volumetric loom, Fiberous Materials, Weaving fabrication, Formal Language, Lexical design, Evolutionary solver
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2015_11.34
id sigradi2015_11.34
authors Bacinoglu, Saadet Zeynep
year 2015
title From material to material with new abilities. Performative Skin: an unfinished product derived through the organizational logic as developed through research on ‘movement’
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 631-636.
summary This paper presents the process and products from research on ‘a movement behavior’, transforming the initial surface from one state to other states. The study developed an initial model of material organization inspired by nature: the adaptable exoskeleton of the armadillium vulgare. Through geometric analysis of functional variation in the exoskeleton’s unit shape, and physical model making, the underlying principle is translated into design & production rules. The generative model of ‘an adaptable segmented system’ is constructed through a geometric abstraction of the exoskeleton, achieving diverse functions such as variability in form, volume, porosity, flexibility and strength, through a distribution of ‘material geometry’ with the folding technique. The potentiality of this parametric physical model (based on simple systematicity) is questioned in relation to diverse situations that result in complex surface adaptations. This research shows the formulation of a design intention.
keywords Digital Craft, Folding, Material Computation, Informed Matter
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2015_3.394
id sigradi2015_3.394
authors Bastiani, Jamile De; Pupo, Regiane T.
year 2015
title Materialize to inform and educate
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 161-166.
summary The protection and preservation of historical heritage are important tasks for all walks of life because rebuilding the exclusionary social memory, symbolically representing the nation’s identity. From this reflection, the problem arises of how to make the people appreciate the historic buildings. The Region of Medium High Uruguay, will serve as pilot study on a method of applying to the enhancement of national heritage by the population that is through the materialization of form. It is with the help of computer modeling combined with digital prototyping that seeks to find effective alternatives that use new technologies in the upgrading of historic buildings, a form of knowledge, integration and collaboration. In many areas of knowledge, consciousness makes the human being is connected to the world through all the senses. And touch, as experimentation and understanding of space it inhabits, may be the most overlooked sense in recent informatization times. In this research, the new realization techniques used to attempt to leverage awareness and understanding of a heritage, for a population hitherto alien to the cultural and historical values of a local architecture.
keywords Materialize, Inform, Aware, Appreciation
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2018_1359
id sigradi2018_1359
authors Bertola Duarte, Rovenir; Ziger Dalgallo, Ayla; Consalter Diniz, Maria Luisa; Romão Magoga, Thais
year 2018
title A window to the autism: the political role of the difference of an objectile in the homogeneous school
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 848-853
summary This paper approaches the insertion of an objectile in the homogeneous space of a school, looking to bring flexibility and responsiveness to assist a user with Autism Spectrum Disorder (ASD). The research concerns with photosensitivity, a problem faced by almost 25% of the children with autism (Miller-Horn; Spence; Takeoka, 2011). The study is based on the theories for ASD environments that speak of ‘sensorial perception’ and ‘thinking with imagery’ (Mostafa, 2008), and the coexistence of Sensory Design Theory and Neuro-Typical Method (Pomana, 2015). The result consists of a gadget developed in MIT App Inventor tool and a curtain that interact responsively through an Arduino code, for a new connection between the user and his surroundings.
keywords Objectile; Responsive Architecture; Architecture and autism; ASD; Inclusive school
series SIGRADI
email
last changed 2021/03/28 19:58

_id ijac201715302
id ijac201715302
authors Borges de Vasconselo, Tássias and David Sperling
year 2017
title From representational to parametric and algorithmic interactions: A panorama of Digital Architectural Design teaching in Latin America
source International Journal of Architectural Computing vol. 15 - no. 3, 215-229
summary This study focuses on the context of graphic representation technologies and digital design on Architectural teaching in Latin America. From categories proposed by Oxman and Kotnik and through a mapping study framed by a systematic review in CumInCAD database, it is presented a panorama of the state-of-art of the digital design on Architectural teaching in the region, between 2006 and 2015. The results suggest a context of coexistence of representational interaction and parametric interaction, as well as a transition from one to another and the emergence of the first experiments in algorithmic interaction. As this mapping shows an ongoing movement toward Digital Architectural Design in Latin America in the last decade, and points out its dynamics in space in time, it could contribute to strengthen a crowdthinking network on this issue in the region and with other continents.
keywords Computer-aided architectural design, Digital Architectural Design teaching, interaction with digital media, levels of design computability, Latin America, mapping study
series journal
email
last changed 2019/08/07 14:03

_id sigradi2015_sp_9.38
id sigradi2015_sp_9.38
authors Braga, Profa. Dra. Gisele Pinna; Wilezelek, Alex Franz; Golding, Jahsun Daher; Uszkurat, Oliver
year 2015
title Trees in Curitiba streets: methodology and production of a digital library
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 807-809.
summary Digital representation is an important resource for the architect’s work in all project stages. The use of appropriate representations facilitates proper interpretation of the project, resulting in more accurate design decisions. This article presents the entire process and the results of a n academic research that developed a digital library that contains 25 species of trees, easily found in Curitiba streets. It also describes the methodology that was built throughout the study, which focuses on a production of representations that do not depend on special talent or personal drawing characteristics. Finally, it shows the produced representations and provides a brief analysis of the results.
series SIGRADI
email
last changed 2016/03/10 09:47

_id eaea2015_t3_paper04
id eaea2015_t3_paper04
authors Breen, Jack
year 2015
title Thematic Visualisation Studies: The AA Variations
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.309-318
summary The underlying thesis of the research described in this paper is that imaginative, model-based explorations may help us better understand iconic architectural artefacts, such as cultural heritage projects. In order to systematically consider and study architectural artefacts, it is essential for academics to reach a level of clarity – and potentially even consensus – concerning the domains of architectural design that may be considered relevant and to question - often implicitly – shared conceptions. This paper intends to communicate the results and findings of an in-depth case-based exploration on the basis of ten design artefacts, using a specially developed conceptual framework. Furthermore, the aim was to draw conclusions concerning the benefits and potentials of this approach in the context of heritage-based architectural research in an academic environment.
keywords iconic architecture; 3D modelling; design education
series EAEA
email
last changed 2016/04/22 11:52

_id cf2015_331
id cf2015_331
authors Brodeschi, Michal; Pilosof, Nirit Putievsky and Kalay, Yehuda E.
year 2015
title The definition of semantic of spaces in virtual built environments oriented to BIM implementation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 331-346.
summary The BIM today can be a provider of inputs to performance analysis of different phenomena such as thermal comfort, energy consumption or winds. All these assessments are fundamental to the post occupation of the building. The attainment of approximate information of how the future building would behave under these conditions will reduce the waste of materials and energy resources. The same idea is used for evaluating the users occupation. Through simulation of human behavior is possible to evaluate which design elements can be improved. In complex structures such as hospital buildings or airports is quite complex for architects to determine optimal design solutions based on the tools available nowadays. These due to the fact users are not contemplated in the model. Part of the data used for the simulation can be derived from the BIM model. The three-dimensional model provides parametric information, however are not semantically enriched. They provide parameters to elements but not the connection between them, not the relationship. It means that during a simulation Virtual Users can recognize the elements represented in BIM models, but not what they mean, due to the lack of semantics. At the same time the built environment may assume different functions depending on the physical configuration or activities that are performed on it. The status of the space may reveal differences and these changes occur constantly and are dynamic. In an initial state, a room can be noisy and a moment later, quiet. This can determine what type of activities the space can support according to each change in status. In this study we demonstrate how the spaces can express different semantic information according to the activity performed on it. The aim of this paper is to simulate the activities carried out in the building and how they can generate different semantics to spaces according to the use given to it. Then we analyze the conditions to the implementation of this knowledge in the BIM model.
keywords BIM, Virtual Sensitive Environments, Building Use Simulation, Semantics.
series CAAD Futures
email
last changed 2015/06/29 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_610945 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002