CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 39

_id cf2015_241
id cf2015_241
authors Popescu, Florin C.
year 2015
title Algorithmic design tool for integrating renewable energy infrastructures in buildings
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 241.
summary We present a tool which empowers 'green' design freedom for architects by presenting ever expanding choices in components and materials and automatizing their configuration and placement. Several time- and resource- consuming initial design iterations are eliminated by optimizing the energetic efficiency of the building in the original draft phase. The smart, efficient, energy producing building of the future can thereby offer increased cost and energy efficiency, security and comfort, without any compromise in style and form - on the contrary, the proposed tool stands to open up a novel palette of creative 'green' architectural design elements, which would effectively be co-designed by architects. The proposed algorithmic CAD design tool allows direct integration of renewable sources in the architectural design phase, taking into account local meteorological and solar radiation conditions. Furthermore locally optimized evolution and modification of renewable components integrated into the building's structure is possible, leveraging an increasingly wide range of possibilities in form, finish and renewable energy generation.
keywords Algorithmic and parametric design, data analytics, performance-based design, smart buildings and smarts cities.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id sigradi2015_8.41
id sigradi2015_8.41
authors Valencia, Lorena Troncoso; Alvarado, Rodrigo García; Bernal, Alberto Nope; Arellano, Ricardo
year 2015
title Solar attic by parametric optimization and digital fabrication for NZE dwellings
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 317-321.
summary In order to support the usual enlargement of houses in developing countries and proper integration of renewable sources, this paper exposes a parametric design of attic with insulated timber boards and integrated solar panels. The proposal is based on urban map of solar potential available on-line (www.msc.ubiobio.cl), that for single houses suggest a solar attic customized to each dwelling shape and orientation, with industrialized timber construction elements. The calculation of optimal volume by house is developed with a multi-objective genetic algorithm (NSGA-II) and dynamic simulation, which provides different buildings alternatives with digital manufacturing.
keywords Solar Energy, Timber Building, Housing, Genetic Algorithm, Building Integrated Solar Energy
series SIGRADI
email
last changed 2016/03/10 10:02

_id sigradi2015_3.111
id sigradi2015_3.111
authors Brand?o, Filipe; Paio, Alexandra; Sousa, José Pedro; Rato, Vasco
year 2015
title Cork Re-Wall. Computational Methods of Automatic Generation and Digital Fabrication of Cork Partition Walls for Building Renovation
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 86-93.
summary Developments in computational design methods and their integration with digital fabrication processes are ushering a customized fabrication paradigm. This paradigm is particularly suited to renovation of old buildings built with traditional construction techniques, a diversified corpus in which interventions are surgical and unique, and where partition walls play the central role. Insulation Cork Board and OSB, natural and renewable materials, can have an important role in a material system that responds to this context. Cork re-Wall is a parametrically modelled construction system and a file-to-factory digital process to generate high quality custom solutions to respond to diverse renovation design challenges.
keywords Cork, Wood Frame, Digital Fabrication, Renovation, Parametric Design
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_273
id ecaade2015_273
authors Hunter, Jessica; Cheng, Alexandra, Tannert, Thomas, Neumann, Oliver and Meyboom, AnnaLisa
year 2015
title Extending the Perception of Wood - Research in Large Scale Surface Structures in Wood
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 427-437
doi https://doi.org/10.52842/conf.ecaade.2015.2.427
wos WOS:000372316000049
summary Architects have a renewed interest in surface structures and the renewable resource of wood, along with advanced digital design, analysis and machining techniques, offers a way of manifesting these forms. Wood is easily machined and has bending properties that lead to the ability to form curves. This paper looks at the properties of wood, informing design through its material characteristics. The research presented here contributes to this discourse through the development of large scale timber shell structures. We propose hyper efficient structures made out of laminated wood products to provide a new solution to long span construction while satisfying the demand for agency in form generation.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7609b276-70d7-11e5-a36d-a71a6f180fc2
last changed 2022/06/07 07:50

_id sigradi2015_8.81
id sigradi2015_8.81
authors Alvarado, Rodrigo García; Lobos, Danny; Nope, Alberto; Tinapp, Frank
year 2015
title BIM + UAV Assessment of Roofs’ Solar Potential
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 336-340.
summary This paper describes a novel method for determining the capacity to generate solar energy integrated into the roofs of buildings by aerial survey using UAVs and BIM models for sizing the covering surfaces and integration of solar panels. Various digital procedures are enchained like planning of trajectories, image processing, geometric reconstitution, simulation of solar radiation and calculation of energy generation to promote on-site installation of clean energy sources in existing buildings, to ensure a more sustainable habitat.
keywords BIM, UAV, Solar Energy, Sustainable Building
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2015_485
id cf2015_485
authors Anaf, Márcia and Harris, Ana Lúcia Nogueira de Camargo
year 2015
title The geometry of Chuck Hoberman as the basis for the development of dynamic experimental structures
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 485.
summary The cognitive-theoretical foundation referring to teach drawing as a way of thinking, as well as the construction of the environment by means of drawing using transforming geometries and the formal and para-formal computational process, creating unusual geometries through generative design processes and methodologies, can be seen as some of the main possibilities in exploring dynamic experimental structures for an Adaptive Architecture. This article presents the development of a model for articulated facades, inspired by Hoberman´s Tessellates, and his Adaptive Building Initiative (ABI) project to develop facades models that respond in real time to environmental changes. In addition, we describe an experiment based on the retractable structures, inspired by Hoberman´s work and experimentations. Solutions for responsive facades can offer more flexible architectural solutions providing better use of natural light and contributing to saving energy. Using Rhinoceros and the Grasshopper for modeling and test the responsiveness, the parametric model was created to simulate geometric panels of hexagonal grids that would open and close in reaction to translational motion effects, regulating the amount of light that reaches the building.
keywords Parametric architecture, Hoberman´s Tessellates, Adaptive Building Initiative (ABI), Articulated Facades, Complex Geometries, Retractable structures, Retractable polyhedra.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
doi https://doi.org/10.52842/conf.acadia.2015.357
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2015_sp_8.78
id sigradi2015_sp_8.78
authors Bernal, Alberto Nope; Alvarado, Rodrigo García; Flores, Javier Guarachi; Carvajal, Ricardo Arellano
year 2015
title Analysis of active solar parameters in health
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 792-796.
summary This work was developed based on the register of health servicesin the municipality of Concepción Chile, selecting three establishments as models of concentrated consume. Technical morphological and location characteristics of each facility were analyzed in order to identify the volumetric relation, the influence of shadows and solar potential roofs and facades, linking with the future implementation of materials and technologies that present thermal and /or photovoltaic properties. The computer implementation of parameterization and simulation applied to the morphology of each facility analyzed the active parameters that affecting solar gain, stating a relationship between volume, solar collection, and the percentage of energy demand covered.
keywords Solar Energy, Parametric Design, Active Parameters, Health Facilities, Chile
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2015_331
id cf2015_331
authors Brodeschi, Michal; Pilosof, Nirit Putievsky and Kalay, Yehuda E.
year 2015
title The definition of semantic of spaces in virtual built environments oriented to BIM implementation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 331-346.
summary The BIM today can be a provider of inputs to performance analysis of different phenomena such as thermal comfort, energy consumption or winds. All these assessments are fundamental to the post occupation of the building. The attainment of approximate information of how the future building would behave under these conditions will reduce the waste of materials and energy resources. The same idea is used for evaluating the users occupation. Through simulation of human behavior is possible to evaluate which design elements can be improved. In complex structures such as hospital buildings or airports is quite complex for architects to determine optimal design solutions based on the tools available nowadays. These due to the fact users are not contemplated in the model. Part of the data used for the simulation can be derived from the BIM model. The three-dimensional model provides parametric information, however are not semantically enriched. They provide parameters to elements but not the connection between them, not the relationship. It means that during a simulation Virtual Users can recognize the elements represented in BIM models, but not what they mean, due to the lack of semantics. At the same time the built environment may assume different functions depending on the physical configuration or activities that are performed on it. The status of the space may reveal differences and these changes occur constantly and are dynamic. In an initial state, a room can be noisy and a moment later, quiet. This can determine what type of activities the space can support according to each change in status. In this study we demonstrate how the spaces can express different semantic information according to the activity performed on it. The aim of this paper is to simulate the activities carried out in the building and how they can generate different semantics to spaces according to the use given to it. Then we analyze the conditions to the implementation of this knowledge in the BIM model.
keywords BIM, Virtual Sensitive Environments, Building Use Simulation, Semantics.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_170
id ecaade2015_170
authors Cavusoglu, Ömer Halil
year 2015
title The Position of BIM Tools in Conceptual Design Phase: Parametric Design and Energy Modeling Capabilities
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 607-612
doi https://doi.org/10.52842/conf.ecaade.2015.1.607
wos WOS:000372317300065
summary Numerous researchers point out that, in the early stages of architectural design, many significant decisions are taken to directly affect functional qualities, the performance of the building, aesthetics, and the relationship of the building with the natural environment and climate, even if there is no certain and valid information to create and obtain adequate design.In this paper, I particularly focus on the early stages of architectural design and search for the opportunities provided by Building Information Modeling (BIM) tools, towards the concept of performance analysis and parametric form seeking. Study also includes case study implementations which visualize the early processes of architectural design with benefits of BIM under different conditions to evaluate its opportunities during these design processes.
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2015_067
id caadria2015_067
authors Choi, Jungsik; Minchan Kim and Inhan Kim
year 2015
title A Methodology of Mapping Interface for Energy Performance Assessment Based on Open BIM
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 417-426
doi https://doi.org/10.52842/conf.caadria.2015.417
summary Early design phase energy modelling is used to provide the design team with feedback about the impact of various building configurations. For better energy-conscious and sustainable building design and operation, the construction of BIM data interoperability for energy performance assessment in the early design phase is important. The purpose of this study is to suggest a development of BIM data interoperability for energy performance assessment based on BIM. To archive this, the authors have investigated advantages of BIM-based energy performance assessment through comparison with traditional energy performance assessment; and suggest requirements for development of Open BIM environment such as BIM data creation and BIM data application. In addition, the authors also suggested on BIM data interoperability system and developed mapping interface.
keywords Building Information Modelling (BIM); Energy Performance Assessment (EPA); Data Interoperability; Energy Property; Industry Foundation Classes (IFC).
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_17
id ecaade2015_17
authors Conti, Zack Xuereb; Shepherd, Paul and Richens, Paul
year 2015
title Multi-objective Optimisation of Building Geometry for Energy Consumption and View Quality
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 287-294
doi https://doi.org/10.52842/conf.ecaade.2015.1.287
wos WOS:000372317300031
summary In property development, the view quality contributes significantly to the property value. In many cases, the architect is constrained by the property developer to take full advantage of the view by designing large glazed facades ignoring the consequence on the energy consumption of the building caused by the conflicting orientation of the view. This paper presents a design tool to help the architect interactively explore different building and window geometries that trade-off energy consumption (kWh) and view quality (€). This design tool allows interaction with parametric building geometry, simulation of energy consumption and view quality, and an optimisation search engine. The simulation of the view quality quantifies a view according to the visibility and quality of its contents by using a novel view-scoring method. The design tool is tested with both north-oriented and south-oriented views and produces a Pareto front from which resulting geometries are visualised.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=5681d860-702e-11e5-b00a-0bb98a953a02
last changed 2022/06/07 07:56

_id ecaade2015_178
id ecaade2015_178
authors Decker, Martina
year 2015
title Soft Robotics and Emergent Materials in Architecture
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 409-416
doi https://doi.org/10.52842/conf.ecaade.2015.2.409
wos WOS:000372316000047
summary This paper investigates the potential of soft robotics that are enabled by emergent materials in architecture. Distributed, adaptive soft robotics holds the promise to address many issues in architectural environments such as energy efficiency as well as user comfort and safety.Two examples out of a series of experiments conducted in the Material Dynamics Lab at the New Jersey Institute of Technology are being introduced and serve as a vehicle to explore distributed soft robotics in architectural environments. The design process and project development methods of the soft robotic systems integrated the fabrication of working proof of concept prototypes as well as their testing.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=0a4cda54-70d7-11e5-8283-c31aaf067374
last changed 2022/06/07 07:55

_id sigradi2015_8.289
id sigradi2015_8.289
authors Felippe, Alexandre Reis; Fonseca, Raphaela Walger da; Moraes, Letícia Niero; Pereira, Fernando O. Ruttkay
year 2015
title Parametric modeling for the simulation of daylight and thermo-energetic performance of buildings
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 398-404.
summary This study comprises the developing process of a parameterization algorithm in grasshopper forbuilding daylight and energy integrated simulation considering the main daylighting key-variables. DIVA for Grasshopper plugin was used to carry out the simulations in Radiance/Daysim and Energyplus. The algorithm enables several sample simulationswhile improvingprocess agility, providing a graphical output of the models andminimizing the possibility of human errors. Acase study considering three different samples simulation was proposed aiming to test the algorithm. Its resultswere used to evaluatethe sample size required to train an artificial neural network for modeling daylighting harvesting potential.
keywords Parametric Modeling, Daylight, Thermo-energetic, Grasshopper, DIVA
series SIGRADI
email
last changed 2016/03/10 09:51

_id ecaade2015_37
id ecaade2015_37
authors Forster, Julia; Fritz, Sara, Schleicher, Johannes and Rab, Nikolaus
year 2015
title Developer Tools for Smart Approaches to Responsible-Minded Planning Strategies
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 545-551
doi https://doi.org/10.52842/conf.ecaade.2015.1.545
wos WOS:000372317300059
summary The city of Vienna follows a long-term initiative to become a Smart City. Within 2050 it aims to reduce 80% of the CO2 emissions (in comparison to 1990) and looks forward to generate ways for a sustainable energy production. (Smart City Framework Strategy 2014) Reaching this targets requires a complex planning process which involves interdisciplinary stakeholders and decision makers. An interactive multi-dimensional environment, comprising spatial objects and data models, is a helpful tool during these planning processes. This paper proposes a suitable path for the development of a structural framework for such an environment. The benefits of such an environment are shown in detail, based on an application of the economic solar heat potential in Vienna.
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2015_265
id ecaade2015_265
authors Hosey, Shannon; Beorkrem, Christopher, Damiano, Ashley, Lopez, Rafael and McCall, Marlena
year 2015
title Digital Design for Disassembly
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 371-382
doi https://doi.org/10.52842/conf.ecaade.2015.2.371
wos WOS:000372316000043
summary The construction and building sector is now widely known to be one of the biggest energy consumers, carbon emitters, and creators of waste. Some architectural agendas for sustainability focus on energy efficiency of buildings that minimize their energy intake during their lifetime - through the use of more efficient mechanical systems or more insulative wall systems. One issue with these sustainability models is that they often ignore the hierarchy of energy within architectural design. The focus on the efficiency is but one aspect or system of the building assembly, when compared to the effectiveness of the whole, which often leads to ad-hoc ecology and results in the all too familiar “law of unintended consequences” (Merton, 1936). As soon as adhesive is used to connect two materials, a piece of trash is created. If designers treat material as energy, and want to use energy responsibly, they can prolong the lifetime of building material by designing for disassembly. By changing the nature of the physical relationship between materials, buildings can be reconfigured and repurposed all the while keeping materials out of a landfill. The use of smart joinery to create building assemblies which can be disassembled, has a milieu of new possibilities created through the use of digital manufacturing equipment. These tools afford designers and manufacturers the ability to create individual joints of a variety of types, which perform as well or better than conventional systems. The concept of design for disassembly is a recognizable goal of industrial design and manufacturing, but for Architecture it remains a novel approach. A classic example is Kieran Timberlake's Loblolly House, which employed material assemblies “that are detailed for on-site assembly as well as future disassembly and redeployment” (Flat, Inc, 2008). The use of nearly ubiquitous digital manufacturing tools helps designers create highly functional, precise and effective methods of connection which afford a building to be taken apart and reused or reassembled into alternative configurations or for alternative uses. This paper will survey alternative energy strategies made available through joinery using digital manufacturing and design methods, and will evaluate these strategies in their ability to create diassemblable materials which therefore use less energy - or minimize the entropy of energy over the life-cycle of the material.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4075520a-6fe7-11e5-bcc8-f7d564ea25ed
last changed 2022/06/07 07:50

_id acadia15_381
id acadia15_381
authors Jabi, Wassim
year 2015
title The Potential of Non-Manifold Topology in the Early Design Stages
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 381-493
doi https://doi.org/10.52842/conf.acadia.2015.381
summary The importance of decisions made during the early design stages has prompted researchers to advocate the use of building performance simulation (BPS) during that stage. This paper investigates non-manifold topology (NTM) as a novel approach to 3D modelling that has the potential to be highly compatible with the early design stages and with the input requirements for BPS. The proposed approach avoids the process of simplifying polyhedral models produced by Building Information Modelling (BIM) software to conduct BPS. In particular, NTM allows for a clear segmentation of a building, unambiguous space boundaries, and perfectly matched surfaces and glazing subsurfaces. The NTM approach was tested through a software prototype that integrates 3D modelling software and an energy simulation engine.
keywords Early design stage, Non-manifold topology, Building performance simulation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id ecaade2015_202
id ecaade2015_202
authors Kim, Hyoungsub; Asl, Mohammad Rahmani and Yan, Wei
year 2015
title Parametric BIM-based Energy Simulation for Buildings with Complex Kinetic Façades
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 657-664
doi https://doi.org/10.52842/conf.ecaade.2015.1.657
wos WOS:000372317300071
summary This paper aims to investigate a new methodology for analysing energy performance of buildings with complex kinetic façades. In this research, the flexible movements of individual kinetic façades in a building is determined by the façades' opening ratios and the sun path. The platform development is conducted through a visual programing environment in BIM, and the process is presented with a case study. Finally, the building's energy performance is compared with a building having static façades using whole building energy analysis tool.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=2e70ba2e-7021-11e5-9015-00190f04dc4c
last changed 2022/06/07 07:52

_id ecaade2015_139
id ecaade2015_139
authors Krietemeyer, Bess and Rogler, Kurt
year 2015
title Real-Time Multi-Zone Building Performance Impacts of Occupant Interaction with Dynamic Façade Systems
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 669-678
doi https://doi.org/10.52842/conf.ecaade.2015.2.669
wos WOS:000372316000074
summary Recent developments in responsive electroactive materials are increasing the rate at which next-generation façade technologies can respond to environmental conditions, building energy demands, and the actions of building occupants. Simulating the real-time performance of dynamic façade systems is critical for understanding the impacts that occupant response will have on whole-building energy performance and architectural design. This paper describes a method for real-time analysis of the multi-zone building performance impacts of occupant interaction with a dynamic façade system, the Electroactive Dynamic Display System (EDDS). The objective is to optimize EDDS implementation and define system limitations, incorporate EDDS as a dynamic factor in multi-zone building energy analyses, and provide real-time feedback of building performance data based on environmental conditions and occupant interactions. Preliminary results of parametric simulation methods demonstrate the ability of dynamic façade systems to consider real-time occupant interaction in the analysis of daylighting and thermal performance of buildings.
series eCAADe
email
last changed 2022/06/07 07:51

_id ijac201513101
id ijac201513101
authors Krietemeyer, Bess; Brandon Andow, Anna Dyson
year 2015
title A Computational Design Framework Supporting Human Interaction with Environmentally-Responsive Building Envelopes
source International Journal of Architectural Computing vol. 13 - no. 1, 1–24
summary Emerging materials present opportunities to fundamentally shift current expectations of dynamic building envelope functionality towards systems that can respond to occupant needs while meeting the energy demands of buildings. In order to assess the environmental, social, and architectural opportunities that are increasing with responsive building envelopes, new tools are needed to simulate their multi-performance capabilities. This paper describes a computational design framework to support human interaction with environmentally-responsive electroactive dynamic daylighting systems. The objective is to develop algorithms for variable solar control and visible transmittance that simultaneously address occupant preferences for visual effects and interaction. Results demonstrate that energy performance and user satisfaction are not mutually exclusive and can be co-optimized. The effectiveness and limitations of the computational framework in assessing strategies to balance environmental performance and human interaction are discussed. Conclusions present areas of ongoing work that integrate multi-user interactions and immersive visualization techniques with multiscalar energy modeling tools.
series journal
last changed 2019/05/24 09:55

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_791557 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002