CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id ecaade2015_284
id ecaade2015_284
authors Wit, Andrew and Daas, Mahesh
year 2015
title Memos from an Inconvenient Studio - Unsolicited Projects for Responsive Architectures
doi https://doi.org/10.52842/conf.ecaade.2015.2.177
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 177-184
summary Computation, robotics and intelligent building/fabrication systems are finding themselves ever more prevalent within both practice and education. The assimilation of these new tools and methodologies within the pedagogy of architectural education continues to gain greater importance as we perceive their rapid evolution and integration within surrounding emergent fields. Through the model of an Inconvenient Studio, this paper examines the intersection between interdisciplinary collaboration, architectural robotics and computation as a means of gaining a broader understanding of how the architectural learning environment can be transformed into a self-organizing system for emergent solutions. The pedagogical prototype for an Inconvenient Studio was broadly focused on the topics of architectural robotics and responsive architectures interpreted through a range of robotic technologies and their manifestations such as biomorphic, mechanomorphic, polymorphic and amorphic robotics. Through a set of three “Memos” (Self-Organization, Autonomy, Sentience), this paper will describe how students created innovative technology-driven think tanks that produced design entrepreneurs.
wos WOS:000372316000022
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e2614828-6e8c-11e5-90d3-5363f2e5743b
last changed 2022/06/07 07:57

_id caadria2015_090
id caadria2015_090
authors Altabtabai, Jawad and Wei Yan
year 2015
title A User Interface for Parametric Architectural Design Reviews
doi https://doi.org/10.52842/conf.caadria.2015.065
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 65-74
summary Architectural form and performance are affected by the designer's graphical representation methods. Parametric CAD systems, as design and representation tools, have become ubiquitous in architectural practice and education. Literature in the area of parametric design reviews is scarce and focused within building inspection and construction coordination domains. Additionally, platforms marketed as design review tools lack basic functionality for conducting comprehensive, parametric, and performance-based reviews. We have developed a user interface prototype where geometric and non-geometric information of a Building Information Model were translated into an interactive gaming environment. The interface allows simultaneous occupation and simulation of spatial geometry, enabling the user to engage with object parameters, as well as, performance-based, perspectival, diagrammatic, and orthographic representations for total spatial and performance comprehension.
keywords Design cognition; Virtual/augmented reality and interactive environments; Human-computer interaction.
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia15_47
id acadia15_47
authors Chaaraoui, Rizkallah; Askarinejad, Ali
year 2015
title Anisoptera; Anisopteran Deformation and the Latent Geometric Patterns of Wood Envelopes
doi https://doi.org/10.52842/conf.acadia.2015.047
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 47-56
summary Advancements in technologies provide Architects, today, with the means to expose new expressive forms using traditional materials. It is therefore possible to design dynamic actuating systems, where several different expressions, or differentiations inherent in the same material, are able to modify its topology and enhance its properties. Wood, traditionally used in construction, is given static expression during its life cycle, where an alignment, or assembly detail, helps retain its original shape. This research outlines the integration of specific and individual anatomical information of wood during the design process. It aids in utilizing the analyzed biological variability and natural irregularities of wood within a material-based architecture, in view of developing a lightweight, and light-filtering dynamic skin. Additionally, the research helps to explore an understanding of the differentiated material composition of wood as its major capacity, rather than its deficiency. Moreover, it analyzes form, material, and structure, as complex interrelations that are embedded in, and explored through an integral design process that seeks to employ typically disregarded, highly differentiated flat materials, in view of enhancing their latent dimensional deformation potential. The main focus of this research is to explore that latent geometric deformation of emerging patterns based on an array of heterogeneous wood veneers in relation to their Hygroscopic and Anisotropic properties. These properties are expressed through a set of flat skins and Mobius arrangements, articulating complex geometric ranges that reveal additional properties, such as bendability and flexibility.
keywords Shape-shifting, Geometric patterns, Anisotropic, Hygroscopic, Open systems, Building envelope
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id caadria2016_415
id caadria2016_415
authors Crolla, Kristof and Adam Fingrut
year 2016
title Protocol of Error: The design and construction of a bending-active gridshell from natural bamboo
doi https://doi.org/10.52842/conf.caadria.2016.415
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 415-424
summary This paper advocates alternative methods to overcome the impossibility of realising ‘perfect’ digital designs. It discusses Hong Kong’s 2015 ‘ZCB Bamboo Pavilion’ as a methodological case study for the design and construction of architecture from unprocessed natu- ral bamboo. The paper critically evaluates protocols set up to deal with errors resulting from precise digital design systems merging with inconsistent natural resources and onsite craftsmanship. The paper starts with the geometric and tectonic description of the project, illus- trating a complex and restrictive construction context. Bamboo’s unique growth pattern, structural build-up and suitability as a bending- active material are discussed and Cantonese bamboo scaffolding craftsmanship is addressed as a starting point for the project. The pa- per covers protocols, construction drawings and assembly methods developed to allow for the incorporation and of large building toler- ances and dimensional variation of bamboo. The final as-built 3d scanned structure is compared with the original digital model. The pa- per concludes by discussing the necessity of computational architec- tural design to proactively operate within a field of real-world inde- terminacy, to focus on the development of protocols that deal with imperfections, and to redirect design from the virtual world towards the latent opportunities of the physical.
keywords Bamboo; bending-active gridshells; physics simulation; form-finding; indeterminacy
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2015_384
id cf2015_384
authors Cursi, Stefano; Simeone, Davide and Toldo, Ilaria
year 2015
title A semantic web approach for built heritage representation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 384.
summary In a built heritage process, meant as a structured system of activities aimed at the investigation, preservation, and management of architectural heritage, any task accomplished by the several actors involved in it is deeply influenced by the way the knowledge is represented and shared. In the current heritage practice, knowledge representation and management have shown several limitations due to the difficulty of dealing with large amount of extremely heterogeneous data. On this basis, this research aims at extending semantic web approaches and technologies to architectural heritage knowledge management in order to provide an integrated and multidisciplinary representation of the artifact and of the knowledge necessary to support any decision or any intervention and management activity. To this purpose, an ontology-based system, representing the knowledge related to the artifact and its contexts, has been developed through the formalization of domain-specific entities and relationships between them.
keywords Built Heritage, Knowledge-based model, Ontology-based systems, Building Information Modeling, Semantic web technologies.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id sigradi2015_000
id sigradi2015_000
authors Cybis Perreira, Alice T.; Pupo, Regiane T. (Ed.)
year 2015
title Project Information for Interaction
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0; vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015
summary The chosen theme "Project Information for interaction" reveals one of the most important ways that technology has offered to improve the design process by integrating information into the elements of digital graphic in a parametric way. This integration allows many design professionals to interact on the same model, enabling simulations, materializations, revisions with data more close to the reality, avoiding errors and wastes. Projects with highest social responsibility can be performed by inserting this new way of designing in education and professional practices. So, this conference is dedicated to give time and space for presentations and discussions of researches and experiences in this area applied to the various fields such as Architecture, Urbanism, Design, Animation, Arts, among others. Looking into another perspective, this issue also brings the concept of Smart Cities, where the provision of information integrated with graphics inserted in the towns components (streets, open areas, buildings and objects), allow more responsible interactions, generating sustainable and collaborative actions among citizens.

series SIGRADI
email
last changed 2016/03/10 09:50

_id acadia19_360
id acadia19_360
authors Dackiw, Jean-Nicolas Alois; Foltman, Andrzej; Garivani, Soroush; Kaseman, Keith; Sollazzo, Aldo
year 2019
title Cyber-physical UAV Navigation and Operation
doi https://doi.org/10.52842/conf.acadia.2019.360
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 360-367
summary The purpose of this paper is to present a work in progress pertaining to drone pose estimation and flight calibration. This paper intends to underline the increasing importance of determining alternative path planning instruments through accurate localization for Unmanned Aerial Vehicles (UAVs) with the purpose of achieving complex flight operations for the emerging applications of autonomous robotics in surveying, design, fabrication, and on-site operations. This research is based on the implementation of novel technologies such as Augmented Reality (AR), Robot Operating System (ROS), and computational approaches to define a drone calibration methodology, leveraging existing methods for drone path planning. Drones are equipped with measurement systems to provide geo-location and time information such as onboard Global Positioning System (GPS) sensors, and Inertial Measurement Units (IMU). As stated in previous research, to increase navigation capabilities, measurements and data processing algorithms have a critical role (Daponte et al. 2015). The outcome of this work in progress showcases valuable results in calculating and assessing accurate positioning for UAVs, and developing data exchanges in transmission, reception, and tracking.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia15_173
id acadia15_173
authors Erdine, Elif
year 2015
title Generative Processes in Tower Design: Simultaneous Integration of Tower Subsystems Through Biomimetic Analogies
doi https://doi.org/10.52842/conf.acadia.2015.173
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 173-184
summary The research presented in the paper formulates part of the methodological approach of a recently completed PhD thesis. The principle aim of the thesis is to achieve simultaneous integration of tower subsystems which can coherently adapt to their internal and external context during the initial phases of the design process. In this framework, the tower subsystems are grouped as the structural system, floor system, vertical circulation system, facade system, and environmental system. The paper focuses on the implementation of the specific biomimetic analogies towards the integration of tower subsystems through computationally generated dynamic systems. The biomimetic analogies are the mechanical and organizational properties of branched constructions, the mechanical properties of the bamboo stem, and the micro-structure of the porcupine quill/ hedgehog spine. Each biomimetic analogy is described in relation to the design domain. Methods of employing the mathematical and geometrical principles of the biomimetic analogies during design explorations are elaborated. Outcomes of the design output are outlined and discussed with a concentration on achieving tower subsystem integration, differentiation, and co-adaptation properties.
keywords Tower, integration, biomimetics, minimal detours, bamboo stem, porcupine quill, hedgehog spine, generative
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2015_296
id ecaade2015_296
authors Erdine, Elif
year 2015
title Tower Revisited: Simultaneous Integration of Tower Subsystems During Conceptual Design Phase
doi https://doi.org/10.52842/conf.ecaade.2015.1.179
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 179-188
summary The research presented in this paper formulates the major methodological approach of a recently completed PhD thesis. It is witnessed that the high level of complexity encountered in the initial phase of tower design is not managed in its entirety by establishing connections between multiple design parameters which have the potential to control the performance of all tower subsystems, revealing that presently there is partial integration of tower subsystems during the conceptual design phase. As such, the research focuses on the incorporation of the functional parameters of the tower system with principles of biological models in order to propose computationally generated dynamic systems for the tower typology. The principle aim is to achieve simultaneous integration of tower subsystems which can coherently adapt to their internal and external context during the initial phases of the design process.
wos WOS:000372317300019
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=2e8daee8-702d-11e5-a16f-cf72c54d6d6d
last changed 2022/06/07 07:55

_id sigradi2020_392
id sigradi2020_392
authors Fialho, Beatriz Campos; Codinhoto, Ricardo; Fabricio, Márcio Minto
year 2020
title BIM and IoT for the AEC Industry: A systematic literature mapping
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 392-399
summary The AEC industry has been facing a digital transformation for improving services involved in buildings lifecycle, fostered by two disruptive technologies: Building Information Modelling (BIM) and Internet of Things (IoT). However, the literature lacks discussions regarding applications and challenges of BIM and IoT systems in the AEC. This Systematic Literature Mapping addresses this gap through search, analysis, and classification of 75 journal article abstracts published between 2015 and 2019. An increase of articles over the period is observed, predominantly with technical and processual solutions for Construction and Operation and Maintenance. The interoperability of data is a key challenge to organizations.
keywords Building Information Modelling, Internet of Things, Integration, Network, Smart Cities
series SIGraDi
email
last changed 2021/07/16 11:49

_id caadria2015_033
id caadria2015_033
authors Hadilou, Arman
year 2015
title Phototropism of Tensile Façade System through Material Agency
doi https://doi.org/10.52842/conf.caadria.2015.127
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 127-136
summary This paper researches material agencies, mechanical systems and façade designs that are able to respond to environmental changes through local interactions, inspired by biological systems. These are based on a model of distributed intelligence founded on plants and animal collectives, from which intelligent behavior emerges through simple local associations. Biological collective systems integrate material form and responsiveness and have the potential to inform new architectural and engineering strategies. The design approach of this research is based on a data-driven methodology spanning from design inception to simulation and physical modeling. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. The driving concepts are three types of evolutionary adaptation: flexibility, acclimation, and learning. The proposed façade system is a responsive textile shading structure which uses integrated actuators that moderate their local environments through simple interactions with their immediate neighbors. Computational techniques coupled to material logics create an integral design framework leading to heterogeneous environmental and structural conditions, producing local responses to environmental stimuli and ultimately effective performance of the whole system.
keywords Responsive facade; phototropism; material intelligence.
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2015_307
id ecaade2015_307
authors Kallegias, Alexandros and Erdine, Elif
year 2015
title Design by Nature: Concrete Infiltrations
doi https://doi.org/10.52842/conf.ecaade.2015.2.513
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 513-520
summary The paper aims to address methods of realizing computationally generated self-organizing systems on a one-to-one scale with the employment of a singular material system. The case study described in this paper is the outcome of an investigation which has explored earth scaffolding, fabric form-work, and concrete materiality during an international three-week architecture workshop. Real-time generative form-finding methods based on branching and bundling systems in nature have been developed and simulated in an open-source programming environment. The outcome of the simulation stage has been analyzed structurally via Finite Element Analysis (FEA), results of which have served as inputs for the fine-tuning of the simulation. Final three-dimensional geometry has been fabricated by employing fabric, essentially forming the fabric form-work. Fabric form-work is then laid on top of the earth scaffolding, followed by the process of concrete casting. From a pedagogical point of view, the research focuses on the integration of digital design techniques between various design/architecture/analysis platforms combined with basic and advanced techniques of construction within a limited time frame.abstract here by clicking this paragraph.
wos WOS:000372316000058
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2015_329
id ecaade2015_329
authors Kieferle, Joachim and Woessner, Uwe
year 2015
title BIM Interactive - About combining BIM and Virtual Reality - A Bidirectional Interaction Method for BIM Models in Different Environments
doi https://doi.org/10.52842/conf.ecaade.2015.1.069
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 69-75
summary The basic concept of BIM is a consistent 3D model of buildings containing all main data as base for collaboration for all disciplines. Since BIM-software is normally run on single workstations, the potential for direct collaboration is somehow limited. The focus of our ongoing research is to overcome these restrictions and to provide a platform for development and optimization by combining BIM and Virtual Reality (VR), linking BIM (Revit) with VR (COVISE). Projects as well as data can be visualized in VR and reviewed 1:1 scale even in team meetings. Compared to various existing approaches, our new approach is to have bidirectional data exchange between the systems. Changes in Revit are directly reflected in VR and vice versa, continuously updating the model and its underlying database. We have been able to implement a range of interactions, however it's still a long way to identify further useful interactions and to implement them.
wos WOS:000372317300008
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia15_407
id acadia15_407
authors Kim, Dongil; Lee, Seojoo
year 2015
title A Systemized Aggregation with Generative Growth Mechanism in Solar Environment
doi https://doi.org/10.52842/conf.acadia.2015.407
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 407-415
summary The paper demonstrates a work-in-progress research on an agent-based aggregation model for architectural applications with a system of assembly based on environmental data acted as a driver for a growth mechanism. Even though the generative design and algorithms have been widely employed in the field of art and architecture, such applications tend to stay in morphological explorations. This paper examines an aggregation model based on Diffusion Limited Aggregation system incorporating solar environment analysis for global perspective of aggregation, the geometry research for lattice systems, and morphological principles of unit module in agent scale. The later part of this research paper demonstrates the potential of a design process through the “Constructed Cloud” case study, including site-specific applications and the implementation of the systematized rule set.
keywords Aggregation, Generative Algorithm, Diffusion Limited Aggregation, Responsive Growth Mechanism, Solar Environment, Responsive System / Algorithm, Adaptable Architecture, Data Analysis, Systemized Architecture, Truncated Octahedron, Sun Oriented Aggregation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id caadria2015_004
id caadria2015_004
authors Kotsopoulos, Sotirios D. and Federico Casalegno
year 2015
title Responsive Architectures
doi https://doi.org/10.52842/conf.caadria.2015.335
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 335-344
summary Real-time supply of computational power into built environments enables to re-address questions of user experience, comfort and building performance. This presentation discusses the features of responsive architecture through the example of a ‘programmable window’ that was designed and deployed in a prototype house, in Trento, N. Italy. In the example the parts and functionalities of building skins were revisited, to integrate advances in electroactive materials, information communication technologies and control systems engineering.
keywords Electroactive materials; model-based control; programmable windows.
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2022_109
id ecaade2022_109
authors Kulcke, Matthias and Lorenz, Wolfgang E.
year 2022
title Multilayered Complexity Evaluation within Configurators for Design - Responsible collaborative systems for architectural and product design
doi https://doi.org/10.52842/conf.ecaade.2022.2.009
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 9–18
summary This paper describes the concept of integrating several complexity evaluation methods, previously developed and tested by the authors, into one product configurator through a technical prototype. In this case variations of an online configurator for design products based on a choice of these digital complexity evaluation methods developed between 2015 and 2020 are presented. This research shows that an integration of complexity evaluation for several Gestalt qualities in one product configurator is feasible, though the amount of aspects of each of these qualities and the necessary effort to be invested to achieve an integration that is suitable for customer use may vary. The concept is illustrated using a simple test case, i.e. an online shelf configurator.
keywords Configuration, Mass Customization, Complexity, Gestalt
series eCAADe
email
last changed 2024/04/22 07:10

_id cf2015_463
id cf2015_463
authors Leblanc, François
year 2015
title Super-details: Integrated patterns from 3D printing processes to performance-based design
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 463.
summary Performance-based architecture has predominately been influenced by computational advances in simulating complex organizations. The advent of 3D printing, however, has introduced a new approach to generate complex forms, which is redirecting focus from shape-centric design to material design, namely, innovative structures and properties generated by the process itself. This article investigated the multiscale approach potential to design using extrusion-based 3D printing techniques that offer novel geometric organizations that conform to desired performance. It was found that 3D printed toolpaths adapted to extrusion-based systems render an anisotropic behavior to the architectural object that is best optimized by designing tessellated surfaces as the primary structural shape from which small-scale periodic surfaces can be embedded within a larger geometric system.
keywords 3D printing, multiscale design, extrusion-based systems, porous material, topology, CAD integration.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_484
id cf2015_484
authors Liao, Kai; Vries, Bauke de; Kong, Jun and Zhang, Kang
year 2015
title Pattern, cognition and spatial information processing: Representations of the spatial layout of architectural design with spatial-semantic analytics
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 484.
summary In this paper, we review and extend the idea of Alexander’s “pattern language”, especially from the viewpoints of complexity theories, information systems, and human-computer interaction, to explore spatial cognition-based design representations for “intelligent and adaptive/interactive environment” in architecture and urban planning. We propose a theoretic framework of design patterns “with spatial information processing”, and attempt to incorporate state-of-the-art computational methods of information visualization/visual analytics into the conventional CAAD approaches. Focused on the spatial-semantic analytics, together with abstract syntactic pattern representation, by using “spatial-semantic aware” graph grammar formalization, i.e., Spatial Graph Grammars (SGG), the relevant models, algorithms and tool are proposed. We testify our theoretic framework and computational tool VEGGIE (a Visual Environment of Graph Grammar Induction Engineering) by using actual architectural design works (spatial layout exemplars of a small office building and the three house projects by Frank Lloyd Wright) as study cases, so as to demonstrate our proposed approach for practical applications. The results are discussed and further research is suggested.
keywords Pattern language, complex adaptive systems, spatial cognition, design representations, spatial information processing, Artificial Intelligence, visual language, Spatial Graph Grammars (SGG), spatial-semantic analytics.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id sigradi2015_11.142
id sigradi2015_11.142
authors Lima, Fernando; Paraízo, Rodrigo Cury; Kos, Jose Ripper
year 2015
title Generative approaches in urban planning: optimization experiments for Transit Oriented Development principles
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 649-656.
summary This article focuses on the use of computational tools to provide dynamic assessment and optimized arrangements while planning and discussing interventions in urban areas. The objective is to address the use of algorithmic systems for evaluating and generating urban morphologies guided by Transit Oriented Development (TOD) principles. TOD is an urban development model that considers geometric and measurable parameters for designing sustainable cities. It advocates the creation of compact mixed-use neighborhoods within walking distance to a variety of transportation options and amenities, seeking to result on optimized infrastructure provision and energy efficient low-carbon districts. This paper presents algorithmic experiments for proposing a rapid-transit district, by the optimization of its urban morphology and services’ location, providing an accurate and efficient TOD principles-oriented modelling.
keywords Generative design, Transit Oriented Development, Optimization
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2015_172
id ecaade2015_172
authors Mark, Earl and Zita Ultmann
year 2015
title Environmental Footprint Design Tool - Exchanging GIS and CAD Data in Real Time
doi https://doi.org/10.52842/conf.ecaade.2015.1.217
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 217-223
summary The pairing of CAD and GIS data creates an opportunity to connect an architectural design process more immediately with its environmental constraints. Yet the GIS data may be too overwhelmingly complex to be fully used in CAD without computer-assisted methods of highlighting relevant information. This paper reports on the implementation of an integrated environment for three-dimensional design geometrical modeling and obtaining environmental impact feedback. The project focused on enhancements to the data exchange and on the development of a related set of tools. While the technologies of CAD and GIS may rely on separate representational models,in combination they can provide a more complete view of the built and natural environment. The challenge in integration is that of bridging analytical methods and database formats used in the two technologies. Our approach is rooted in part in constraint based design methods well established in CAD (e.g., Sketchpad, Generative Components, CATIA). Within such CAD systems geometrical transformations may be intentionally constrained to help enforce some previously made design decisions. Although this current implementation modestly relates to geometrical constraints, the use of probabilistic risk values is more central to its methodology.
wos WOS:000372317300023
series eCAADe
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_915100 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002