CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 589

_id acadia15_161
id acadia15_161
authors Baharlou, Ehsan; Menges, Achim
year 2015
title Toward a Behavioral Design System: An Agent-Based Approach for Polygonal Surfaces Structures
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 161-172
doi https://doi.org/10.52842/conf.acadia.2015.161
summary The following research investigates the development of an agent-based design method as an integrative design tool for polygonal surface structures. The aim of this research is to develop a computational tool that self-organizes the emergence of polygonal surface structures from interaction between its constitutive lattices. This research focuses on the ethological level of morphogenesis that is relevant to the animal or insect societies, whereby agents mediate the material organizations with environmental aspects. Meanwhile, behavior-based approaches are investigated as a bottom-up system to develop a computational framework in which the lower-level features constantly interact. The lower-level features such as material properties (e.g., geometric descriptions) are abstracted into building blocks or agents to construct the agent’s morphology. The abstracted principles, which define the agent’s morphology, are aggregated into a generative tool to explore the emergent complexities. This exploration coupled with the generative constraint mechanisms steers the collective agents system toward the cloud of solutions; hence, the collective behaviors of agents constitute the polygonal surface structures. This polygonal system is a bottom up approach of developing the complex surface that emerges through topological and topographical interaction between cells and their surrounding environment. Subsequently, the integrative system is developed through agent-based parametric modelling, in which the knowledge-based system as a top-down approach is substituted with the agent system together with its morphological features and significant behaviors.
keywords Agent-Based System, Behavioral-Based System, Polygonal Surface Structures, Self-Organization and Emergence
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_172
id caadria2015_172
authors Choo, Thian-Siong and Patrick Janssen
year 2015
title Performance-Based Parametric Design : A Framework for Building Envelope Design
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 603-612
doi https://doi.org/10.52842/conf.caadria.2015.603
summary Existing performance-based design exploration methods typically suffer from a lack of real-time feedback and a lack of actionable feedback. This paper proposes a hybrid design exploration method that overcomes these issues by combining parametric modelling, surrogate modelling, and evolutionary algorithms. The proposed method is structured as a mixed-initiative approach, in which parametric modelling is the key to creating a synergistic relationship between the architect and the computational system. Surrogate-based techniques will address the issue of real-time feedback, the evolutionary exploration techniques will address the issue of actionable feedback. As a first stage in developing the PEX method, this paper reports on two experiments conducted to identify an appropriate surrogate modelling technique that is efficient and robust.
keywords Performance-based design, parametric modelling, surrogate modelling, evolutionary algorithms
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia17_202
id acadia17_202
authors Cupkova, Dana; Promoppatum, Patcharapit
year 2017
title Modulating Thermal Mass Behavior Through Surface Figuration
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 202-211
doi https://doi.org/10.52842/conf.acadia.2017.202
summary This research builds upon a previous body of work focused on the relationship between surface geometry and heat transfer coefficients in thermal mass passive systems. It argues for the design of passive systems with higher fidelity to multivariable space between performance and perception. Rooted in the combination of form and matter, the intention is to instrumentalize design principles for the choreography of thermal gradients between buildings and their environment from experiential, spatial and topological perspectives (Figure 1). Our work is built upon the premise that complex geometries can be used to improve both the aesthetic and thermodynamic performance of passive building systems (Cupkova and Azel 2015) by actuating thermal performance through geometric parameters primarily due to convection. Currently, the engineering-oriented approach to the design of thermal mass relies on averaged thermal calculations (Holman 2002), which do not adequately describe the nuanced differences that can be produced by complex three-dimensional geometries of passive thermal mass systems. Using a combination of computational fluid dynamic simulations with physically measured data, we investigate the relationship of heat transfer coefficients related to parameters of surface geometry. Our measured results suggest that we can deliberately and significantly delay heat absorption re-radiation purely by changing the geometric surface pattern over the same thermal mass. The goal of this work is to offer designers a more robust rule set for understanding approximate thermal lag behaviors of complex geometric systems, with a focus on the design of geometric properties rather than complex thermal calculations.
keywords design methods; information processing; physics; smart materials
series ACADIA
email
last changed 2022/06/07 07:56

_id cf2015_190
id cf2015_190
authors Datta, Sambit
year 2015
title Accuracy and Ambiguity: Geometric reconstruction of a seventh century stone temple in Hanchey, Cambodia
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 190-202.
summary Modeling the fragmented and heavily eroded remains of early temple architecture poses several challenges in accurate reconstruction of shape and form from digitally acquired datasets. This paper describes a collection of stepwise ad-hoc modeling methods that can re-assemble ambiguous and fragmentary evidence to provide a robust and empirical platform for the reconstruction of ruined temples. The paper presents the results of the method and the degree of accuracy and ambiguity in the acquisition, processing and reconstruction phases. A key aspect of the method is the maintenance of multiple “ground truths” from plural sources of partial evidence. Key findings of the paper demonstrate early results from the manipulation of geometric modeling primitives based on point collections, an advance in extending the classical tools of architectural analysis and comparison. The problem of accuracy and ambiguity in these methods and their algorithmic implementation is the subject of further investigation.
keywords Digital data acquisition, flexible modeling, heritage reconstruction and visualization
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2018_243
id ecaade2018_243
authors Gardner, Nicole
year 2018
title Architecture-Human-Machine (re)configurations - Examining computational design in practice
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 139-148
doi https://doi.org/10.52842/conf.ecaade.2018.2.139
summary This paper outlines a research project that explores the participation in, and perception of, advanced technologies in architectural professional practice through a sociotechnical lens and presents empirical research findings from an online survey distributed to employees in five large-scale architectural practices in Sydney, Australia. This argues that while the computational design paradigm might be well accepted, understood, and documented in academic research contexts, the extent and ways that computational design thinking and methods are put-into-practice has to date been less explored. In engineering and construction, technology adoption studies since the mid 1990s have measured information technology (IT) use (Howard et al. 1998; Samuelson and Björk 2013). In architecture, research has also focused on quantifying IT use (Cichocka 2017), as well as the examination of specific practices such as building information modelling (BIM) (Cardoso Llach 2017; Herr and Fischer 2017; Son et al. 2015). With the notable exceptions of Daniel Cardoso Llach (2015; 2017) and Yanni Loukissas (2012), few scholars have explored advanced technologies in architectural practice from a sociotechnical perspective. This paper argues that a sociotechnical lens can net valuable insights into advanced technology engagement to inform pedagogical approaches in architectural education as well as strategies for continuing professional development.
keywords Computational design; Sociotechnical system; Technology adoption
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2015_11.142
id sigradi2015_11.142
authors Lima, Fernando; Paraízo, Rodrigo Cury; Kos, Jose Ripper
year 2015
title Generative approaches in urban planning: optimization experiments for Transit Oriented Development principles
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 649-656.
summary This article focuses on the use of computational tools to provide dynamic assessment and optimized arrangements while planning and discussing interventions in urban areas. The objective is to address the use of algorithmic systems for evaluating and generating urban morphologies guided by Transit Oriented Development (TOD) principles. TOD is an urban development model that considers geometric and measurable parameters for designing sustainable cities. It advocates the creation of compact mixed-use neighborhoods within walking distance to a variety of transportation options and amenities, seeking to result on optimized infrastructure provision and energy efficient low-carbon districts. This paper presents algorithmic experiments for proposing a rapid-transit district, by the optimization of its urban morphology and services’ location, providing an accurate and efficient TOD principles-oriented modelling.
keywords Generative design, Transit Oriented Development, Optimization
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2015_201
id ecaade2015_201
authors Marin, Philippe; Blanchi, Yann and Janda, Marian
year 2015
title Cost Analysis and Data Based Design for Supporting Programmatic Phase
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 613-618
doi https://doi.org/10.52842/conf.ecaade.2015.1.613
wos WOS:000372317300066
summary Our paper presents research on the development of technologies and methodologies to support preliminary design phases through data based modelling. A digital parametric model informs costs evaluations and supports iterative and visual space exploration solutions. Thanks to associative modelling, the architectural conception is renewed and digital tools support design decision-making in a creative way. We propose to make project cost a design parameter through an interactive handling of a 3D geometric model that is relevant to strategic architectural intentions. In our experimentation, cost calculation spreadsheets are linked to a parametric models. An initial substructure of the building cost is defined based on the architectural concepts. The parametric tool directly informs the evaluation spreadsheet and a real time cost analysis is afforded to the designer. The tool supports the design process by displaying immediate feed back to the designer who can consider and control the financial implications of his hypothesis.
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2015_3.11
id sigradi2015_3.11
authors Neto, Waldo Luiz Costa; Gallardo, Vanessa Baldin; Barros, Alexandre Monteiro; Bruscato, Underléa Miotto
year 2015
title Digital Manufacturing technologies for Responsive Artifacts Development
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 65-69.
summary This paper presents the development of a responsive object that addresses issues concerning to digital manufacturing processes as dynamic geometric modelling, where you can check formal and functional aspects of the product; the use of mechanisms for interaction between user and product, through sensors, controllers and their respective programming; and manufacturing using CAD / CAM resources. The aim is to develop a system for responsive objects development through digital manufacturing technologies in order to contribute for concepts implementation in new products design.
keywords Parametric Design, Responsive Artefact, Digital Manufacturing, Design Product
series SIGRADI
email
last changed 2016/03/10 09:56

_id caadria2015_073
id caadria2015_073
authors Yu, Rongrong and John Gero
year 2015
title An Empirical Foundation for Design Patterns in Parametric Design
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 551-560
doi https://doi.org/10.52842/conf.caadria.2015.551
summary This paper presents the results from exploring the impact of using a parametric design tool on designers’ behaviour in terms of using design patterns in the early conceptual development stage. It is based on an empirical cognitive study in which eight architectural designers were asked to complete two architectural design tasks with similar complexity respectively in a parametric design environment (PDE) and a Geometric modelling environment (GME). Protocol analysis was employed to study the designers’ behaviour. To explore the development of design patterns during the design process, we utilise the technique of Markov model analysis. Through Markov models analysis of the PDE and GME results, we found that there are significantly more Function to Structure transitions in PDE than in GME. During this transition process, designers select an existing structure/solution for the particular function/design problem based on their experience or knowledge, which is a process of applying an existing design pattern to the problem. From this result we can infer that when architects apply programming and scripting in their design, such as in a PDE, they exhibit the characteristic of using design patterns.
keywords Design pattern; parametric modelling; protocol studies.
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2015_111
id caadria2015_111
authors Alani, Mostafa W. and Carlos R. Barrios
year 2015
title A Parametric Description for Metamorphosis of Islamic Geometric Patterns
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 593-602
doi https://doi.org/10.52842/conf.caadria.2015.593
summary This paper presents a parametric approach toward studying the characteristics of the Islamic geometric patterns (IGP). The presented computational system utilizes a parametric description of the geometry to initiate the process of metamorphosis exploration and to document the generated variations. The study found that changing the parameters in the description produces new variations that have a wide range of qualitative and quantitative properties; some match exactly the properties of traditionally existed geometries.
keywords Parametric Design; Metamorphosis; shape-code; key-shape; Islamic Geometric Pattern.
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2015_090
id caadria2015_090
authors Altabtabai, Jawad and Wei Yan
year 2015
title A User Interface for Parametric Architectural Design Reviews
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 65-74
doi https://doi.org/10.52842/conf.caadria.2015.065
summary Architectural form and performance are affected by the designer's graphical representation methods. Parametric CAD systems, as design and representation tools, have become ubiquitous in architectural practice and education. Literature in the area of parametric design reviews is scarce and focused within building inspection and construction coordination domains. Additionally, platforms marketed as design review tools lack basic functionality for conducting comprehensive, parametric, and performance-based reviews. We have developed a user interface prototype where geometric and non-geometric information of a Building Information Model were translated into an interactive gaming environment. The interface allows simultaneous occupation and simulation of spatial geometry, enabling the user to engage with object parameters, as well as, performance-based, perspectival, diagrammatic, and orthographic representations for total spatial and performance comprehension.
keywords Design cognition; Virtual/augmented reality and interactive environments; Human-computer interaction.
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2015_8.81
id sigradi2015_8.81
authors Alvarado, Rodrigo García; Lobos, Danny; Nope, Alberto; Tinapp, Frank
year 2015
title BIM + UAV Assessment of Roofs’ Solar Potential
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 336-340.
summary This paper describes a novel method for determining the capacity to generate solar energy integrated into the roofs of buildings by aerial survey using UAVs and BIM models for sizing the covering surfaces and integration of solar panels. Various digital procedures are enchained like planning of trajectories, image processing, geometric reconstitution, simulation of solar radiation and calculation of energy generation to promote on-site installation of clean energy sources in existing buildings, to ensure a more sustainable habitat.
keywords BIM, UAV, Solar Energy, Sustainable Building
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2015_162
id caadria2015_162
authors Amano, Hiroshi
year 2015
title Panelisation With Sheet Metal Cladding On Free-Form Roof
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 713-722
doi https://doi.org/10.52842/conf.caadria.2015.713
summary This document shows a rationalisation method of sheet metal panelling on free-formed surfaces and a case study of it. Ichimonji-buki is a cladding method widely used in Japan for the roofs of traditional temples and shrines. It consists of sheet metal roofing with flat lock seams, allowing for minimal gaps along the joints. By integrating the characteristics of the flat lock joint and a dynamic relaxation analysis via computational modelling, continuous vertical seam lines can be realised while keeping panels almost identical in shape and with a limited number of variations. In the case study of Silver Mountain, the free-formed roof is clad with approximately 8,000 panels, out of which 92% are standardised and can be easily fabricated.
keywords Panelisation, dynamic relaxation, flat lock seams.
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2015_485
id cf2015_485
authors Anaf, Márcia and Harris, Ana Lúcia Nogueira de Camargo
year 2015
title The geometry of Chuck Hoberman as the basis for the development of dynamic experimental structures
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 485.
summary The cognitive-theoretical foundation referring to teach drawing as a way of thinking, as well as the construction of the environment by means of drawing using transforming geometries and the formal and para-formal computational process, creating unusual geometries through generative design processes and methodologies, can be seen as some of the main possibilities in exploring dynamic experimental structures for an Adaptive Architecture. This article presents the development of a model for articulated facades, inspired by Hoberman´s Tessellates, and his Adaptive Building Initiative (ABI) project to develop facades models that respond in real time to environmental changes. In addition, we describe an experiment based on the retractable structures, inspired by Hoberman´s work and experimentations. Solutions for responsive facades can offer more flexible architectural solutions providing better use of natural light and contributing to saving energy. Using Rhinoceros and the Grasshopper for modeling and test the responsiveness, the parametric model was created to simulate geometric panels of hexagonal grids that would open and close in reaction to translational motion effects, regulating the amount of light that reaches the building.
keywords Parametric architecture, Hoberman´s Tessellates, Adaptive Building Initiative (ABI), Articulated Facades, Complex Geometries, Retractable structures, Retractable polyhedra.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id sigradi2015_13.316
id sigradi2015_13.316
authors Ariza, Inés; Gazit, Merav
year 2015
title On-site Robotic Assembly of Double-curved Self-supporting Structures
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 746-753.
summary Robotic assembly of architectural structures has been an area of research for a few decades. Yet, current methods impose a large number of constraints on the geometry of those structures. In this paper we introduce a method for robotic assembly that enables the construction of double curved self-supporting structures. Latest research challenges have focused on the assembly of sophisticated brick structures and on sensor feedback systems for handling accuracy. We propose an alternative strategy to tackle tolerance handling in complex structures that rely on geometry. The intelligence of the system lies in two main aspects: a subdivision technique that incorporates the robot’s constraints as well as the structural equilibrium of the structure during each step of assembly, in order to omit the use of scaffolding; and a match between geometric information and the robot’s movements in a robot programming environment. As a proof of concept, we fabricated a portion of a full-scale double-curved structure. The structure was assembled without scaffolding by a portable KUKA KR10 on a randomly picked site. This project aims to demonstrate an easy and simple method for robotic assembly that enables the realization of digitally generated complex geometries as concrete complex structures.
keywords Robotic Assembly, Self-supporting Structure, On-site Assembly, Double Curvature, Construction Tolerances
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_27
id ecaade2015_27
authors Asanowicz, Aleksander
year 2015
title Museum 2.0 - Implementation of 3D Digital Tools
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 709-715
doi https://doi.org/10.52842/conf.ecaade.2015.1.709
wos WOS:000372317300077
summary The aim of this work is to try to set out how new technologies can influence the perception of a museum exposition. The problem which will be analysed is how to adapt an exhibition to the needs of visually impaired people. The problem will be considered on the basis of the case studies which were the part of an agreement between the Army museum in Bialystok and our Faculty. In traditional museums the main principle is the prohibition of touching exhibits.The project goal was to help blind people understand the features of the environment around them through the sense of touch. The novelty of this work is the study of how new digital technologies may improve the perception for the visually impaired.In the paper the method of 3D scanning, modelling and 3D printing will be presented. In conclusion the encountered problems and plans for further action will be discussed.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=8e079058-702a-11e5-8ac3-d3d5c9e6f5fe
last changed 2022/06/07 07:54

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
doi https://doi.org/10.52842/conf.acadia.2015.357
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia15_123
id acadia15_123
authors Askarinejad, Ali; Chaaraoui, Rizkallah
year 2015
title Spatial Nets: the Computational and Material Study of Reticular Geometries
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 123-135
doi https://doi.org/10.52842/conf.acadia.2015.123
summary Reticular systems are in many aspects a distinct taxonomy of volumetric geometries. In comparison with the conventional embodiment of a ‘volume’ that encapsulates a certain quantity of space with a shell reticular geometries emerge from the accumulation of micro elements to define a gradient of space. Observed in biological systems, such structures result from their material properties and formation processes as well as often ‘simple’ axioms that produce complex results. In micro or macro levels, from forest tree canopies to plant cell walls these porous volumes are not shaped to have a singular ‘solution’ for a purpose; they provide the fundamental geometric characteristics of a ‘line cloud’ that is simultaneously flexible in response to its environment, porous to other systems (light, air, liquids) and less susceptible to critical damage. The porosity of such systems and their volumetric depth also result in kinetic spatial qualities in a 4D architectural space. Built upon a ‘weaving’ organization and the high performance material properties of carbon fiber composite, this research focuses on a formal grammar that initiates the complex system of a reticular volume. A finite ‘lexical’ axiom is consisted of the basic characters of H, M and L responding to the anchor points on the highest, medium and lower levels of the extruding loom. The genome thus produces a string of data that in the second phase of programming are assigned to 624 points on the loom. The code aims to distribute the nodes across the flat line cloud and organize the sequence for the purpose of overlapping the tensioned strings. The virtually infinite results are then assessed through an evolutionary solver for confining an array of favorable results that can be then selected from by the designer. This research focuses on an approximate control over the fundamental geometric characteristics of a reticular system such as node density and directionality. The proposal frames the favorable result of the weave to be three-dimensional and volumetric – avoiding distinctly linear or surface formations.
keywords Reticular Geometries, Weaving, Line Clouds, Three-dimensional Form-finding, Carbon fiber, Prepreg composite, Volumetric loom, Fiberous Materials, Weaving fabrication, Formal Language, Lexical design, Evolutionary solver
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2015_11.34
id sigradi2015_11.34
authors Bacinoglu, Saadet Zeynep
year 2015
title From material to material with new abilities. Performative Skin: an unfinished product derived through the organizational logic as developed through research on ‘movement’
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 631-636.
summary This paper presents the process and products from research on ‘a movement behavior’, transforming the initial surface from one state to other states. The study developed an initial model of material organization inspired by nature: the adaptable exoskeleton of the armadillium vulgare. Through geometric analysis of functional variation in the exoskeleton’s unit shape, and physical model making, the underlying principle is translated into design & production rules. The generative model of ‘an adaptable segmented system’ is constructed through a geometric abstraction of the exoskeleton, achieving diverse functions such as variability in form, volume, porosity, flexibility and strength, through a distribution of ‘material geometry’ with the folding technique. The potentiality of this parametric physical model (based on simple systematicity) is questioned in relation to diverse situations that result in complex surface adaptations. This research shows the formulation of a design intention.
keywords Digital Craft, Folding, Material Computation, Informed Matter
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_333
id ecaade2015_333
authors Baerlecken, Daniel and Gokmen, Sabri
year 2015
title Osteotectonics - Trabecular Bone Structures and Their Adaptation for Customized Structural Nodes Using Additive Manufacturing Techniques
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 439-448
doi https://doi.org/10.52842/conf.ecaade.2015.2.439
wos WOS:000372316000050
summary This paper discusses an approach to adapting trabecular bone structures for the design of complex architectural components exemplified through structural nodes. Based on the paradigm shift in additive fabrication, namely the ability to print structural metals, this paper identifies new methods for architectural and structural design that allow to create porous, intricate architectural components. Those components are designed in analogy to bone structures. The paper presents a metaball-based application, programmed in Processing, which allows creating n-legged nodes using parametric gradient maps. The approach aims at reduction of weight and waste, while exploring the novel aesthetic properties of such bio-constructed networks.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=b1066644-70d7-11e5-b019-7f01fe8cb7bc
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_513295 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002