CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 424

_id ecaade2015_119
id ecaade2015_119
authors Dokonal, Wolfgang; Knight, Michael W. and Dengg, Ernst Alexander
year 2015
title New Interfaces - Old Models
doi https://doi.org/10.52842/conf.ecaade.2015.1.101
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 101-106
summary The rapid development of new Virtual Reality (VR) devices such as the Oculus Rift and Google Cardboard together with Augmented Reality (AR) applications such as 3Dplus (by the Finnish company advice) or gaming software such as Unity3D and Unreal Engine 4 raises the question of how we can use these new interfaces and applications to access our increasingly data-rich models. In this paper we will summarise the results of a joint international workshop where students explored the use of these new interfaces on existing models. During the course of the workshop, the students built their own VR environments to test spatial perception and then used different types of housing models with these interfaces to find out what kind of information inside those data rich models is best suited to be accessed using these new interfaces. The question will be if there is any added value - besides the novelty factor - in using these new devices in combination with old models. To give an extra dimension to the virtual nature of the workshop, students collaborated with some of the tutors primarily digitally using the virtual models and other online tools (Skype/Twitter/discussion boards). By having collaboration through the medium of the virtual interactive model as the core communication method, the amount, type and methods of presenting the information is tested and evaluated. This is work in progress and we had to experience several problems that we could not overcome in the available time.
wos WOS:000372317300011
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=54a3a8e0-702c-11e5-9592-c7c2b292a6cf
last changed 2022/06/07 07:55

_id sigradi2015_sp_10.179
id sigradi2015_sp_10.179
authors Espinoza, Verónica Paola Rossado; Torres, Daniel Antonio Serrano
year 2015
title Scientific Approach to the Project in a Computational Perspective of Architecture: The Hochschule für Gestaltung-Ulm and its Diaspora
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 818-822.
summary BIM methodology is a process that make possible to integrate the construction project on a 3D model. It contains the necessary information, optimizing stages, allowing early analysis and product virtualization. This methodology, reduces the time of implementation, anticipates the decisions making and improves productivity. The project requires the coordination of various professionals such as architects, civil, electrical, structural engineers, contractors and administrators, who needs specialized teaching by experts in BIM methodology. There are few professionals who are truly qualified to lead or carry out an entirely project whit this methodology.
series SIGRADI
email
last changed 2016/03/10 09:51

_id ecaade2015_140
id ecaade2015_140
authors Kowal, Slawomir; Koszewski, Krzysztof, Slyk, Jan and Wrona, Stefan
year 2015
title Parametric Methods in Reconstruction of the Medieval Proto-Town in Pultusk, Poland
doi https://doi.org/10.52842/conf.ecaade.2015.1.695
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 695-700
summary This paper describes methods, processes and the outcome of the reconstruction in the medieval wooden settlement complex in Pultusk, Poland. It is the result of the interdisciplinary cooperation between architects from Warsaw University of Technology and archaeologists from Regional Museum of Pultusk. They have undertaken the research issues of information exchange and knowledge-building processes in the digital environment. Main issues were related to the methods of computer reconstruction in architectural and urban scale, which enable alternative narrative threads. To achieve this, parametric techniques were adopted and the 'Pultusk Recontructor' application was developed in Grasshopper. The interaction between architects and archaeologists over hypotheses and alternatives was supported in urban scale by 'Rapid Reconstruction Modular Model'. This 3D printed urban model, consist of segments which can be simultaneously exchanged. It became not only a substrate for scientific debate, but also may serve an education role for the permanent Museum exhibition.
wos WOS:000372317300075
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=21013e32-702a-11e5-99b6-d34246563b4e
last changed 2022/06/07 07:51

_id caadria2015_069
id caadria2015_069
authors Lin, Chieh-Jen
year 2015
title Design Criteria Modeling
doi https://doi.org/10.52842/conf.caadria.2015.479
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 479-488
summary This paper proposed an ontology-based parametric modeling tool, “Design Criteria Modeling (DCM),” which applies a graphic predicative tool and semantic ontologies of architectural topology. DCM was intended to help architects in representing, exploring, and validating design criteria with parametric 3D model at the early design stage. By applying a reasoner of semantic ontology, architects could use DCM to determine whether conceptual models meet the semantic ontology of proposed design criteria.
keywords Architectural information modeling; architectural design criteria; semantic ontology; parametric design.
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2015_181
id ecaade2015_181
authors Mateus, Daniel; Sousa, Maurício, Klerk, Ruide, Gama, Sandra, Jorge, Joaquim and Duarte, José Pinto
year 2015
title From ______ to _____: Going Back to the Classical Roots of Architecture using Virtual Reality
doi https://doi.org/10.52842/conf.ecaade.2015.1.107
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 107-116
summary In Classical Greece the design and construction of buildings were interconnected, forming a single activity. With the development of knowledge and technology, this process has fragmented, giving rise to different activities, performed by various professionals, such as the architect, the engineer and the builder, leading to problems related with information exchange between them. With the research projects Tecton and Technos, we intend to reunite these activities again, seeking to simplify the building production process. In Tecton, we propose an Immersive Virtual Reality Environment to sketch and model objects in an interactive way, using hand gestures and body postures, enabling architects to change between the viewpoint of the creator and that of the user, thereby designing buildings while experiencing them at full-scale at the same time. In the future Technos project, our vision is develop detailed 3D virtual models to serve both as supporting elements for the digital fabrication of building parts and as communications elements for the assembly and construction of buildings.
wos WOS:000372317300012
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=6aac3ae4-702c-11e5-8c5e-c358c81571a7
last changed 2022/06/07 07:58

_id ecaade2015_169
id ecaade2015_169
authors Nakama, Yuki; Onishi, Yasunobu and Iki, Kazuhisa
year 2015
title Development of Building Information Management System with Data Collecting Functions based on IoT Technology
doi https://doi.org/10.52842/conf.ecaade.2015.1.647
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 647-655
summary Facility management is aimed at energy saving, increasing the lifespan of buildings, enhancing the satisfaction of facility users and reducing running costs. To that end, it is important to grasp the conditions of the building in detail, and to analyze them one by one in order to execute building operation and maintenance strategically. However, conventional CAFM is insufficient. Therefore, we developed a system (called Building Information Management System) to utilize BIM data made on a Web site. We used groupware to support the system and an information platform that enables continuous management of a great variety of maintenance information. In addition, we developed a system to input information of building operation and maintenance using a mobile device on the site of checking and patrolling so as to reduce the burden of inputting information. A sensor network is used to acquire building operation and maintenance information to enhance building operation and maintenance. We also developed a system to automatically input sensing information into the building information for Building Information Management System, and to connect it with a 3D model. It has therefore become easier to collect the large amount of information necessary for strategic building operation and maintenance.
wos WOS:000372317300070
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=0d63b958-7021-11e5-a1ec-00190f04dc4c
last changed 2022/06/07 07:59

_id caadria2015_090
id caadria2015_090
authors Altabtabai, Jawad and Wei Yan
year 2015
title A User Interface for Parametric Architectural Design Reviews
doi https://doi.org/10.52842/conf.caadria.2015.065
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 65-74
summary Architectural form and performance are affected by the designer's graphical representation methods. Parametric CAD systems, as design and representation tools, have become ubiquitous in architectural practice and education. Literature in the area of parametric design reviews is scarce and focused within building inspection and construction coordination domains. Additionally, platforms marketed as design review tools lack basic functionality for conducting comprehensive, parametric, and performance-based reviews. We have developed a user interface prototype where geometric and non-geometric information of a Building Information Model were translated into an interactive gaming environment. The interface allows simultaneous occupation and simulation of spatial geometry, enabling the user to engage with object parameters, as well as, performance-based, perspectival, diagrammatic, and orthographic representations for total spatial and performance comprehension.
keywords Design cognition; Virtual/augmented reality and interactive environments; Human-computer interaction.
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2015_202
id caadria2015_202
authors Amtsberg, Felix; Felix Raspall and Andreas Trummer
year 2015
title Digital-Material Feedback in Architectural Design
doi https://doi.org/10.52842/conf.caadria.2015.631
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 631-640
summary This paper studies the architectural potential of the implementation of material feedback using computer vision before and during an automated fabrication process. The combination of an industrial robot and a 3D camera is used expand the typical one-way design and fabrication process (from a digital design to a physical output), to a feedback loop, where specific material information becomes the main trigger of design decisions and fabrication processes. Several projects developed by the authors and tested during a robotic workshop aim to unveil different aspects of material feedback in architectural design, opening a discussion for the benefit and challenges of this new approach to design and fabrication.
keywords Material feedback; robotic fabrication; computer vision; digital workflow; robotic workshop;
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2015_084
id caadria2015_084
authors Asl, Mohammad Rahmani; Chengde Wu, Gil Rosen-Thal and Wei Yan
year 2015
title A New Implementation of Head-Coupled Perspective for Virtual Architecture
doi https://doi.org/10.52842/conf.caadria.2015.251
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 251-260
summary The process of projecting 3D scenes onto a two-dimensional (2D) surface results in the loss of depth cues, which are essential for immersive experience in the scenes. Various solutions are provided to address this problem, but there are still fundamental issues need to be addressed in the existing approaches for compensating the change in the 2D image due to the change in observer’s position. Existing studies use head-coupled perspective, stereoscopy, and motion parallax methods to achieve a realistic image representation but a true natural image could not be perceived because of the inaccuracy in the calculations. This paper describes in detail an implementation method of the technique to correctly project a 3D virtual environment model onto a 2D surface to yield a more natural interaction with the virtual world. The proposed method overcomes the inaccuracies in the existing head-coupled perspective viewing and can be used with common stereoscopic displays to naturally represent virtual architecture.
keywords Virtual reality; virtual architecture; head-coupled perspective; depth perception.
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2015_130
id ecaade2015_130
authors Asl, Mohammad Rahmani; Stoupine, Alexander, Zarrinmehr, Saied and Yan, Wei
year 2015
title Optimo: A BIM-based Multi-Objective Optimization Tool Utilizing Visual Programming for High Performance Building Design
doi https://doi.org/10.52842/conf.ecaade.2015.1.673
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 673-682
summary Within the architecture, engineering, and construction (AEC) industry, the application of multidisciplinary optimization methods has been shown to reach significant improvements in building performance compared to conventional design methods. As a result, the use of multidisciplinary optimization in the process of design is growing and becoming a common method that provides desired performance feedback for decision making. However, there is a lack of BIM-based multidisciplinary optimization tools that use the rich information stored in Building Information Models (BIM) to help designers explore design alternatives across multiple competing design criteria. In this paper we introduce Optimo, an open-source visual programming-based Multi-Objective Optimization (MOO) tool, which is developed to parametrically interact with Autodesk Revit for BIM-based optimization. The paper details the development process of Optimo and also provides the initial validation of its results using optimization test functions. Finally, strengths, limitations, current adoption by academia and industry, and future improvements of Optimo for building performance optimization are discussed.
wos WOS:000372317300073
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2017_337
id cf2017_337
authors Barber, Gabriela; Lafluf, Marcos; Amen, Fernando Garcia; Accuosto, Pablo
year 2017
title Interactive Projection Mapping in Heritage: The Anglo Case
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 337-348.
summary This work is the outcome of a multidisciplinary collaboration in the context of the VidiaLab (Laboratorio de Visualización Digital Avanzada). It proposes an application of interactive video mapping techniques as a form of experiencing the Fray Bentos industrial landscape, declared as a World Heritage Site by UNESCO in 2015. An immersive environment was created by enriching a physical scale model of the site with projected digital images and information, providing new and attractive ways of interaction with the cultural heritage. Proposals for future work and educational applications of the developed tools are also discussed.
keywords Video Mapping, New Media Art, Heritage, Museum, Human-Computer Interaction
series CAAD Futures
email
last changed 2017/12/01 14:38

_id cf2015_380
id cf2015_380
authors Barekati, Ehsan; Clayton, Mark J. and Yan, Wei
year 2015
title A BIM-compatible schema for architectural programming information
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 380.
summary Architectural programming, although a key part of AECFM processes, has not been well integrated into Building Information Modeling (BIM). Having access to architectural programming information throughout the lifecycle of a building can add value to design evaluation, facility management, renovation and extension. There is not currently a comprehensive and standard data model to store architectural programming information. Our research is producing a universal format for an architectural program of requirements (UFPOR) that can connect the architectural programming information to the IFC BIM schema. The result is a data model for architectural programming that is inherently interoperable with BIM standard schema. A graphical user interface facilitates data creation and manipulation. The schema and effectiveness of the bridging fields has been tested by entering the content of three two different architectural programming documents into the UFPOR database.
keywords BIM, Architectural Programming, Data Modelling, Interoperability, IFC.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_268
id cf2015_268
authors Benedetto, Henrique; Kipper, Fabrício A.;Marques, Vinícius and Bruscato, Underléa M.
year 2015
title Development of Parklets by using parametric modeling
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 268-278.
summary The lack of urban planning has made the recreation areas increasingly smaller in the cities. Parks and squares gradually gave way to streets and avenues to try to accommodate the growing number of cars and motorcycles. An alternative that tries to balance recreation areas and urban roads was found in the city of San Francisco (USA). Parklets are temporary extensions of urban sidewalks that occupy a few parking spaces. This article aims to demonstrate the potential of parametric modeling in the development of parklets. Thus, anthropometric studies, amount of parking spaces and types of benches were used as input parameters. Rhinoceros and grasshopper programs were used for modeling, while 3D Studio Max was used for rendering. With this study it was possible to verify that when the project is parameterized the processes of creation and modification became faster, reducing design and implementation time.
keywords Grasshopper algorithm editor, Parametric model, Parklets.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_116
id ecaade2015_116
authors Bieg, Kory
year 2015
title SUPRAFICIAL: Building (an) Information Network
doi https://doi.org/10.52842/conf.ecaade.2015.1.277
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 277-284
summary This paper explores the potential of using multiple software programs to generate an adaptable, cross-platform Building Information Network to unlock new territories of form-making and design. By using multiple software packages to overcome the limitations imposed by current BIM (Building Information Model) programs and mono-scalar design approaches, we can design a buildings form, envelope, and materiality through an adaptable, parametric design process that uses the best features of each software program, allows non-computational input to inform form, and takes advantage of a designer's unique self-expression.
wos WOS:000372317300030
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=40efae5a-702e-11e5-83aa-771f3575946f
last changed 2022/06/07 07:52

_id sigradi2015_3.9
id sigradi2015_3.9
authors Bola?os-Mora, Adriana; Colpes, Karen Mello; Filho, Aderson. A. Passos; Bruscato, Underléa; Silva, Tânia Luisa Koltermann da; Silva, Régio Pierre da
year 2015
title Parametric Modeling applied to an Assistive Technology Product Design
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 60-64.
summary The article presents an Assistive Technology product design, which aims to overcome the medical product idea, considering its aesthetic configuration, and aims to change the concept of mass production into custom manufacturing. The methodological process was to obtain the user’s body 3D model, for subsequent parameterization by using the Grasshopper’s Rhinoceros Plugin software. It is believed that the digital manufacturing process provides a more flexible production, especially in the prototyping and testing stages, which seems a competitive advantage over companies that do not use them.
series SIGRADI
email
last changed 2016/03/10 09:47

_id eaea2015_t3_paper04
id eaea2015_t3_paper04
authors Breen, Jack
year 2015
title Thematic Visualisation Studies: The AA Variations
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.309-318
summary The underlying thesis of the research described in this paper is that imaginative, model-based explorations may help us better understand iconic architectural artefacts, such as cultural heritage projects. In order to systematically consider and study architectural artefacts, it is essential for academics to reach a level of clarity – and potentially even consensus – concerning the domains of architectural design that may be considered relevant and to question - often implicitly – shared conceptions. This paper intends to communicate the results and findings of an in-depth case-based exploration on the basis of ten design artefacts, using a specially developed conceptual framework. Furthermore, the aim was to draw conclusions concerning the benefits and potentials of this approach in the context of heritage-based architectural research in an academic environment.
keywords iconic architecture; 3D modelling; design education
series EAEA
email
last changed 2016/04/22 11:52

_id cf2015_331
id cf2015_331
authors Brodeschi, Michal; Pilosof, Nirit Putievsky and Kalay, Yehuda E.
year 2015
title The definition of semantic of spaces in virtual built environments oriented to BIM implementation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 331-346.
summary The BIM today can be a provider of inputs to performance analysis of different phenomena such as thermal comfort, energy consumption or winds. All these assessments are fundamental to the post occupation of the building. The attainment of approximate information of how the future building would behave under these conditions will reduce the waste of materials and energy resources. The same idea is used for evaluating the users occupation. Through simulation of human behavior is possible to evaluate which design elements can be improved. In complex structures such as hospital buildings or airports is quite complex for architects to determine optimal design solutions based on the tools available nowadays. These due to the fact users are not contemplated in the model. Part of the data used for the simulation can be derived from the BIM model. The three-dimensional model provides parametric information, however are not semantically enriched. They provide parameters to elements but not the connection between them, not the relationship. It means that during a simulation Virtual Users can recognize the elements represented in BIM models, but not what they mean, due to the lack of semantics. At the same time the built environment may assume different functions depending on the physical configuration or activities that are performed on it. The status of the space may reveal differences and these changes occur constantly and are dynamic. In an initial state, a room can be noisy and a moment later, quiet. This can determine what type of activities the space can support according to each change in status. In this study we demonstrate how the spaces can express different semantic information according to the activity performed on it. The aim of this paper is to simulate the activities carried out in the building and how they can generate different semantics to spaces according to the use given to it. Then we analyze the conditions to the implementation of this knowledge in the BIM model.
keywords BIM, Virtual Sensitive Environments, Building Use Simulation, Semantics.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_91
id ecaade2015_91
authors Correia, Hugo and Leitão, António
year 2015
title Extending Processing to CAD applications
doi https://doi.org/10.52842/conf.ecaade.2015.1.159
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 159-167
summary The Processing language was created to teach programming to the design, architecture, and electronic arts communities. Despite its success, Processing has limited applicability in the architectural realm, as no CAD (Computer-Aided Design) or BIM (Building Information Modeling) application supports Processing. As a result, architects that have learnt Processing are unable to use the language in the context of modern, script-based, architectural work. This work joins Processing with the world of CAD or BIM applications, creating a solution that allows architects to prototype new designs using Processing and generate results in a CAD or BIM application. To achieve this, we developed an implementation of Processing for the Rosetta programming environment, allowing Processing scripts to generate 2D and 3D models in a variety of CAD or BIM applications, such as AutoCAD, Rhinoceros3D, SketchUp, and Revit.
wos WOS:000372317300017
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=1c251750-70c8-11e5-9996-33e39ead7b04
last changed 2022/06/07 07:56

_id cf2015_384
id cf2015_384
authors Cursi, Stefano; Simeone, Davide and Toldo, Ilaria
year 2015
title A semantic web approach for built heritage representation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 384.
summary In a built heritage process, meant as a structured system of activities aimed at the investigation, preservation, and management of architectural heritage, any task accomplished by the several actors involved in it is deeply influenced by the way the knowledge is represented and shared. In the current heritage practice, knowledge representation and management have shown several limitations due to the difficulty of dealing with large amount of extremely heterogeneous data. On this basis, this research aims at extending semantic web approaches and technologies to architectural heritage knowledge management in order to provide an integrated and multidisciplinary representation of the artifact and of the knowledge necessary to support any decision or any intervention and management activity. To this purpose, an ontology-based system, representing the knowledge related to the artifact and its contexts, has been developed through the formalization of domain-specific entities and relationships between them.
keywords Built Heritage, Knowledge-based model, Ontology-based systems, Building Information Modeling, Semantic web technologies.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_209
id caadria2015_209
authors de S. Moreira, Lorena C. and Regina C. Ruschel
year 2015
title Augmented Reality Promoting Time Tunnel
doi https://doi.org/10.52842/conf.caadria.2015.261
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 261-270
summary This paper presents an Augmented Reality application intended to establish a link to site history, approaching cultural heritage issues simulating the metaphor of time tunnel. It presents an initiative to bring technology to the end user, in order to rescue the past through AR of a plaza with cultural importance that suffered intervention with time. The work was developed as an exercise of a Virtual Reality class in a Graduate Program. The class exercise involved understanding uses of AR, development of AR applications and user perception of the built environment through the augmented lenses provided by AR applications. The method proposed for the exercise was the field study developed in seven steps: AR scope definition, preliminary exploration, AR application formulation, data collection and user perception evaluation. Four AR applications were developed and evaluated: 360 panorama and an overlap image, 3D object, and video with historic information. On site, users demonstrated surprise with the experiment and no difficulty of use, however transposition to the significant record of a past time varied with AR application and simplification of implementation.
keywords Augmented Reality; Heritage visualization; Cultural Heritage.
series CAADRIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 21HOMELOGIN (you are user _anon_558974 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002