CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 537

_id ecaade2015_164
id ecaade2015_164
authors Jang, Sun-Young and Sung-AhKim
year 2015
title SMART ALLEY: A Platform for Sharing Experience in a Community Space Augmented by Urban Media
doi https://doi.org/10.52842/conf.ecaade.2015.1.529
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 529-538
wos WOS:000372317300057
summary This research proposed an urban platform designed to facilitate the sharing of community experience in the spatial context of traditional 'alley'. 'Smart Alley' refers to a smart space in which various urban media, supported with IoT technologies, interplays so that the creation and consumption of media content leads to vivid social interactions in this specific urban space. The proposed urban platform is driven by the Content Management System (CMS). An urban ontology works as a logic model of the CMS. This paper focused on the conceptualization and design of both CMS and ontology modules within the smart alley framework. Outcomes from the 'Smart Alley Workshop' are presented, which was conducted to develop smart services to utilize the smart alley platform.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=46747512-70d9-11e5-8c55-3fd06eb60931
last changed 2022/06/07 07:52

_id ecaade2015_176
id ecaade2015_176
authors Moorhouse, Jon and Peter, Herbert
year 2015
title [2+2] Two Architects and Two Galleries
doi https://doi.org/10.52842/conf.ecaade.2015.2.199
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 199-206
wos WOS:000372316000024
summary This paper addresses the needs of exhibition curation with the concept of a virtual gallery (which may or may not be translated into reality). Curation is often an overly linear process - as opposed to an iterative exercise, whereby collaboration between stakeholders is somewhat limited by time, distance and the opportunity for virtual communication. This suggests that the implementation of a system for sharing visual data - especially in the real-time mode that a virtual studio might offer - could facilitate a more dynamic and iterative design process, where the design team remains engaged throughout.Two (architectural) designers - from Vienna, Austria and Liverpool, UK - are collaborating to create a process for exhibition design for existing venue, involving international stakeholders in remote locations. The key outcome for this research is to create a framework for future collaborative workflow that enhances the delivery of exhibition design through improved decision-making, without the need for all of the team to have extensive software knowledge.The paper thence reflects on current experience, reporting changes in curatorial processes and suggesting areas of added value that might benefit future works.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=47ff3c32-6e90-11e5-af39-00190f04dc4c
last changed 2022/06/07 07:58

_id eaea2015_t3_paper15
id eaea2015_t3_paper15
authors Piga, Barbara E.A.; Morello, Eugenio; Salerno, Rossella
year 2015
title A toolkit for Collaborative Design: Envisioning and Sharing the Identity of Place Through Traditional and Emergent Techniques of Simulation
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.418-426
summary The aim of this study is to develop a novel toolkit for co-design with community stakeholders based on the use of digital interactive simulations. The toolkit is composed of a variety of tools, with a specific focus on emergent technologies. We argue that tools, especially interactive and immersive ones, can be efficiently applied for enabling citizen engagement and supporting place-making processes thanks to the natural interaction and intuitive understanding of design schemes. The occasion for testing a co-design process and simulation techniques was the redesign of a shared public space, an initiative promoted by the project Citt? Studi Campus Sostenibile, a sustainable campus program supported by the Politecnico di Milano and the Universit? degli Studi di Milano.
keywords urban simulation; place-making; e-participation; collaborative design
series EAEA
email
last changed 2016/04/22 11:52

_id ecaade2015_83
id ecaade2015_83
authors Fukuda, Tomohiro; Mori, Keisuke and Imaizumi, Jun
year 2015
title Integration of CFD, VR, AR and BIM for Design Feedback in a Design Process - An Experimental Study
doi https://doi.org/10.52842/conf.ecaade.2015.1.665
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 665-672
wos WOS:000372317300072
summary To improve indoor thermal environment, it is necessary to promote a lean design process, so forecasting and consensus building by experiment and numerical calculation from the design stage have become essential. Rapid advances in software and hardware allow feedback to be generated on novel design alternatives, rather than relying on simulation results based on past designs. However, this concept has not been fully verified. Therefore, this study presents an integrated design tool which consists of Computational Fluid Dynamics (CFD), Virtual Reality (VR), Augmented Reality (AR) and Building Information Modeling (BIM). The tool was applied to the problems of an actual housing design project. Both the content of design feedback on design problems revealed through simulations in the project, and the features in the feedback process were discussed.
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2015_297
id ecaade2015_297
authors Park, James and Economou, Athanassios
year 2015
title The Dirksen Variations - Towards a Generative Description of Mies's Courthouse Language
doi https://doi.org/10.52842/conf.ecaade.2015.1.453
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 453-462
wos WOS:000372317300049
summary A generative description of Mies van der Rohe's courthouse language is presented in the form of a shape grammar. The grounding of the work is based on a set of 135 sketches produced by the office of Mies during the design process of the Everett McKinley Dirksen United States Courthouse in Chicago, and documented in the Mies van der Rohe Archive at the Museum of Modern Art. The work here postulates a set of 39 unique courthouse designs all showcasing distinct variations of the courtroom type in the Miesian language and re-casts them in two-dimensional diagrams to make their differences and similarities transparent. A series of spatial relations between five types of spaces are extracted, including courtrooms, circulation networks, vertical cores, office spaces, and support spaces, and are deployed to specify the shape rules of the grammar. A set of conventions to specify how the two-dimensional diagrams represent three-dimensional models is briefly outlined to prepare the ground for the implementation of the grammar in a three-dimensional shape grammar interpreter.
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2015_3.43
id sigradi2015_3.43
authors Passaro, Andrés; Rohde, Clarice
year 2015
title House Magazine: open source architecture
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 70-76.
summary The new digital fabrication technologies are changing the production methods in contemporary society. The sharing of information, within a new logic of production, has the potential to change the current economic system. The present work look after the open source architecture for digital fabrication, through the constructive experience of House Magazine, developed by LAMO3d, Laboratory of 3d Models and Digital Fabrication on FAU-UFRJ. The project, sold in newsstands with the correspondent assembly instructions, aims to popularize the fabrication technologies by its absorption and transfiguration in popular culture. The open source projects and technologies promote the widening of uses of knowledge and technological advances, unlinking them from the big business and generating a dispersion of production. It is up to us to recognize its potential and shape its endless application possibilities.
keywords Open Source, Digital Fabrication, CNC, Social Housing
series SIGRADI
email
last changed 2016/03/10 09:57

_id acadia15_497
id acadia15_497
authors Sandoval Olascoaga, Carlos; Victor-Faichney, John
year 2015
title Flows, Bits, Relationships: Construction of Deep Spatial Understanding
doi https://doi.org/10.52842/conf.acadia.2015.497
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 497-512
summary The number of variables acting upon urban landscapes is numerous and interconnected, closely resembling complex systems in constant dynamic transformation. Current analytical methods and descriptions of the city are domain specific, limited in scope, and discretize the city into quantifiable individual representations, resulting in an equally limited urban policy and design. If we are to produce urban systems capable of contributing to the robustness and resiliency of cities, we ought to understand and represent the comprehensive network of actors that construct contemporary urban landscapes. On one hand, the natural sciences approach the analysis of complex systems by primarily focusing on the development of models capable of describing their stochastic formation, remaining agnostic to the contextual properties of their individual components and oftentimes discretizing the otherwise continuous relationships among parts. signers work in groups. They need to share information either synchronously or asynchronously as they work with parametric modeling software, as with all computer-aided design tools. Receiving information from collaborators while working may intrude on their work and thought processes. Little research exists on how the reception of design updates influences designers in their work. Nor do we know much about designer preferences for collaboration. In this paper, we examine how sharing and receiving design updates affects designers’ performances and preferences. We present a system prototype to share changes on demand or in continuous mode while performing design tasks. A pilot study measuring the preferences of nine pairs of designers for different combinations of control modes and design tasks shows statistically significant differences between the task types and control modes. The types of tasks affect the preferences of users to the types of control modes. In an apparent contradiction, user preference of control modes contradicts task performance time.
keywords Networks, graphs, web-mapping, GIS, urban mapping, spatial analysis, urban databases, visual representation, spatial cognition
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia23_v3_71
id acadia23_v3_71
authors Vassigh, Shahin; Bogosian, Biayna
year 2023
title Envisioning an Open Knowledge Network (OKN) for AEC Roboticists
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The construction industry faces numerous challenges related to productivity, sustainability, and meeting global demands (Hatoum and Nassereddine 2020; Carra et al. 2018; Barbosa, Woetzel, and Mischke 2017; Bock 2015; Linner 2013). In response, the automation of design and construction has emerged as a promising solution. In the past three decades, researchers and innovators in the Architecture, Engineering, and Construction (AEC) fields have made significant strides in automating various aspects of building construction, utilizing computational design and robotic fabrication processes (Dubor et al. 2019). However, synthesizing innovation in automation encounters several obstacles. First, there is a lack of an established venue for information sharing, making it difficult to build upon the knowledge of peers. First, the absence of a well-established platform for information sharing hinders the ability to effectively capitalize on the knowledge of peers. Consequently, much of the research remains isolated, impeding the rapid dissemination of knowledge within the field (Mahbub 2015). Second, the absence of a standardized and unified process for automating design and construction leads to the individual development of standards, workflows, and terminologies. This lack of standardization presents a significant obstacle to research and learning within the field. Lastly, insufficient training materials hinder the acquisition of skills necessary to effectively utilize automation. Traditional in-person robotics training is resource-intensive, expensive, and designed for specific platforms (Peterson et al. 2021; Thomas 2013).
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id ecaade2015_324
id ecaade2015_324
authors Abdelmohsen, Sherif and Massoud, Passaint
year 2015
title Integrating Responsive and Kinetic Systems in the Design Studio: A Pedagogical Framework
doi https://doi.org/10.52842/conf.ecaade.2015.2.071
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 71-80
wos WOS:000372316000010
summary Responsive architecture is one of the growing areas of computational design that is not getting adequate attention in CAAD curricula. A pedagogical approach to designing responsive systems requires more than the typical knowledge, tools or skill sets in architectural design studios. This paper presents a framework for integrating responsive and kinetic systems in the architectural design studio. The framework builds on findings of two design studios conducted at The American University in Cairo, Egypt. In both studios, students were asked to design elements of responsive architecture that work towards the development of their projects. The paper demonstrates the process and outcomes of both studios. It then demonstrates how concepts of integrated project delivery are incorporated to propose a framework that engages students in designing, fabricating and operating responsive systems in different phases of the design process. A discussion follows regarding dynamics of design studio in light of the proposed framework.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7e59e026-6e8f-11e5-9e59-876225eebea0
last changed 2022/06/07 07:54

_id ecaade2015_138
id ecaade2015_138
authors Achten, Henri
year 2015
title Closing the Loop for Interactive Architecture - Internet of Things, Cloud Computing, and Wearables
doi https://doi.org/10.52842/conf.ecaade.2015.2.623
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 623-632
wos WOS:000372316000069
summary Interactive architecture occurs in buildings when part of the building engages in exchange of information with the user, in such a way that the interactive system adjusts it's assumptions about the user's needs and desires. Acquiring the user's needs and desires is no trivial task. Currently there are no techniques that will reliably make such assertions. Building a system that unobtrusively monitors the inhabitant seems to be a tall order, and making the system ask the user all the time is very distracting for the user. An alternative option has become available however: personal wearables are increasingly monitoring the user. Therefore it suffices that the interactive system of the building gets in touch with those wearables, rather than duplicating the sensing function of the wearables. The enabling technology for wearables is Internet of Things, which connects physical objects (smart objects) on a virtual level, and Cloud Computing, which provides a scalable storage environment for wearables and smart objects. In this paper we outline the implications of the convergence of these three technologies in the light of interactive architecture.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=fdd9e706-6e8f-11e5-b1d4-00190f04dc4c
last changed 2022/06/07 07:54

_id ecaade2015_280
id ecaade2015_280
authors Adilenidou, Yota
year 2015
title Error as Optimization - Using Cellular Automata Systems to Introduce Bias in Aggregation Models through Multigrids
doi https://doi.org/10.52842/conf.ecaade.2015.2.601
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 601-610
wos WOS:000372316000067
summary This paper is focusing on the idea of error as the origin of difference in form but also as the path and the necessity for optimization. It describes the use of Cellular Automata (CA) for a series of structural and formal elements, whose proliferation is guided through sets of differential grids (multigrids) and leads to the buildup of big span structures and edifices as, for example, a cathedral. Starting from the error as the main idea/tool for optimization, taxonomies of morphological errors occur and at a next step, they are informed with contextual elements to produce an architectural system. A toolbox is composed that can be implemented in different scales and environmental parameters, providing variation, optimization, complexity and detail density. Different sets of experiments were created starting from linear structural elements and continuing to space dividers and larger surface components.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=5cf73be0-6e8f-11e5-b7a4-1b188b87ef84
last changed 2022/06/07 07:54

_id ecaade2015_122
id ecaade2015_122
authors Agirbas, Asli
year 2015
title The Use of Digital Fabrication as a Sketching Tool in the Architectural Design Process - A Case Study
doi https://doi.org/10.52842/conf.ecaade.2015.2.319
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 319-324
wos WOS:000372316000037
summary Computer-aided manufacturing (CAM) technologies including computer numerically controlled (CNC) milling, laser cutting and 3D printing are becoming cheaper and globally more accessible. Accordingly, many design professionals, academics and students have been able to experience the benefits and challenges of using digital fabrication in their designs. The use of digital fabrication in the education of architecture students has become normal in many schools of architecture, and there is a growing demand for computer-aided manufacturing (CAM) logic and fabrication knowledge in student learning. Clearly, architecture students are acquiring material base-thinking, time management, production methods and various software skills through this digital fabrication. However, it appears to be the case that architecture students use digital fabrication mainly in the final stage of their design or in their finishing work. In this study, computer-aided manufacturing (CAM) technologies have been used as a sketch tool rather than simply for fabricating a final product in the architectural design process and the advantages of this educational practice are demonstrated.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=79005d78-6fe6-11e5-b555-13a7f78815dc
last changed 2022/06/07 07:54

_id ecaade2024_35
id ecaade2024_35
authors Agkathidis, Asterios; Song, Yang; Symeonidou, Ioanna
year 2024
title AI-Assisted Design: Utilising artificial intelligence as a generative form-finding tool in architectural design studio teaching
doi https://doi.org/10.52842/conf.ecaade.2024.2.619
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 619–628
summary Artificial Intelligence (AI) tools are currently making a dynamic appearance in the architectural realm. Social media are being bombarded by word-to-image/image-to-image generated illustrations of fictive buildings generated by tools such as ‘Midjourney’, ‘DALL-E’, ‘Stable Diffusion’ and others. Architects appear to be fascinated by the rapidly generated and inspiring ‘designs’ while others criticise them as superficial and formalistic. In continuation to previous research on Generative Design, (Agkathidis, 2015), this paper aims to investigate whether there is an appropriate way to integrate these new technologies as a generative tool in the educational architectural design process. To answer this question, we developed a design workflow consisting of four phases and tested it for two semesters in an architectural design studio in parallel to other studio units using conventional design methods but working on the same site. The studio outputs were evaluated by guest critics, moderators and external examiners. Furthermore, the design framework was evaluated by the students through an anonymous survey. Our findings highlight the advantages and challenges of the utilisation of AI image synthesis tools in the educational design process of an architectural design approach.
keywords AI, GAI, Generative Design, Design Education
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2015_278
id ecaade2015_278
authors Aguiar, Rita and Gonçalves, Afonso
year 2015
title Programming for Architecture: The Students’ Point of View
doi https://doi.org/10.52842/conf.ecaade.2015.2.159
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 159-168
wos WOS:000372316000020
summary The following paper presents a reflection on computational design education in Architecture schools. For approaching this subject, the specific case of the Programming for Architecture course taught at Instituto Superior Técnico - Universty of Lisbon is presented and analyzed through the students' point of view. The aim of the course is to focus on representation methods through programming, introducing the fundamentals of computational approach to architectural design. We will explain and discuss the subject teaching methods, the structure of the course and the school environment. Also we will express the students' opinion regarding the class organization, the contents of the program and the usefulness of programming, as well as suggestions for an improved strategy for teaching computational methods to Architecture students.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=833a3bb0-6f78-11e5-9635-174d5ee09923
last changed 2022/06/07 07:54

_id ecaade2015_235
id ecaade2015_235
authors Ahmar, Salma El and Fioravanti, Antonio
year 2015
title Biomimetic-Computational Design for Double Facades in Hot Climates - A Porous Folded Façade for Office Buildings
doi https://doi.org/10.52842/conf.ecaade.2015.2.687
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 687-696
wos WOS:000372316000076
summary Biomimetic design is an approach that is gaining momentum among architects and designers. Computational design and performance simulation software represent powerful tools that help in applying biomimetic ideas in architectural design and in understanding how such proposals would behave. This paper addresses the challenge of reducing cooling loads while trying to maintain daylight needs of office buildings in hot climatic regions. Specifically, it focuses on double skin facades whose application in hot climates is somewhat controversial. Ideas from nature serve as inspiration in designing a porous, folded double façade for an existing building, aiming at increasing heat lost by convection in the façade cavity as well as reducing heat gained by radiation. The cooling loads and daylight autonomy of an office room are compared before and after the proposed design to evaluate its performance.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=f87306fc-6e90-11e5-845a-00190f04dc4c
last changed 2022/06/07 07:54

_id caadria2024_477
id caadria2024_477
authors Akbaylar Hayreter, Ipek, Gulec Ozer, Derya and As Cemrek, Handan
year 2024
title Enhancing Cultural Heritage Digitalization and Visitor Engagement Through LiDAR Scanning and Gamification
doi https://doi.org/10.52842/conf.caadria.2024.2.283
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 283–292
summary Cultural heritage assets are valuable, providing important information about humanity's past and conveying it to the future. Unfortunately, conventional documentation is insufficient to preserve them for the next generations. Furthermore, increasing visitor interaction with these assets and raising awareness has been one of the challenges in this field. In this paper, we will examine how mobile LiDAR (Laser Detection and Ranging) technology can be used to precisely scan and document historical sites and how it can be combined with gamification elements to provide visitors with better experiences. It is also important that the texture taken in mobile laser scanning can be used to better visualize 3D mesh models of the scanned objects, so the fastest application that produces 3D models is selected. The study area is Syedra Ancient City in Alanya / Turkey, where the research and excavation process has continued since 2015 and the restoration projects started in 2023. Future work includes the creation of experiences to provide a basis for gamification and revitalizing the story of the heritage for the visitors through digital storytelling and AR (Augmented Reality). Preserving historical sites while providing visitors with a more in-depth, vivid and enjoyable experience are important facts for enhancing cultural heritage and passing it on to future generations.
keywords Cultural Heritage, Digitalization, LiDAR, Mobile Laser Scanning, Digital Storytelling, Augmented Reality, Gamification
series CAADRIA
email
last changed 2024/11/17 22:05

_id sigradi2015_10.31
id sigradi2015_10.31
authors Amen, Fernando García; Álvarez, Marcelo Payssé; Portillo, Juan Pablo; Buzó, Raúl Felipe
year 2015
title Plexo. A multi sensory journey
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 493-496.
summary This paper intends to reflect, from an educational point, on the concepts and technology that supports the traditonal “architecture trip” of the University of the Republic. It is necessary to clarify that at the time of this presentation this work is still in progress, and its final results may not be defined yet, but can be estimated based on the feedback received. Definitive conclusions could only be determined in the upcoming months.
keywords Accessibility, Geoposition, Ubiquitous Computing, Teaching, Travel
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2015_10.177
id sigradi2015_10.177
authors Angelo, Alex Garcia Smith; Manna, Ilaria La; Hernandez, Oscar; Valdiviezo, Marlon; Lastras, Alejandra Díaz de León; Salazar, Oscar Ivan Campo; Montezuma, Vanessa; Zubieta, Marco
year 2015
title Fab Lab and Multiculturalism in Latin America: The Fab Lat Kids case and the project “Emosilla”
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 551-557.
summary This paper expresses a lecture of the experience of an investigation carried by a group of Latin American Fab Labs dedicated to the promotion of the use of modeling, digital fabrication, and network communication as tools of educational and social development of children in latin culture. This study is based on online workshop typologies with a methodological perspective that included local technological adaptations, data gathering, and exchange of knowledge on the fab lab network.
keywords Design, Digital Manufacturing, Society, Technology Learning, Collaborative Network
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_87
id ecaade2015_87
authors Angelova, Desislava; Dierichs, Karola and Menges, Achim
year 2015
title Graded Light in Aggregate Structures - Modulating the daylight in designed granular systems using online controlled robotic processes
doi https://doi.org/10.52842/conf.ecaade.2015.2.399
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 399-406
wos WOS:000372316000046
summary The research project proposes an online-controlled robotic process that allows for grading light in aggregate structures using photometric analysis. It investigates the potential of designing specific daylight qualities through the behaviour-based robotic fabrication of the aggregate system. Two key methods are developed: the digital fabrication of the structure and a photometric analysis technique which is used as a sensor input for the robotic sensory interface. In its first part, the paper presents a series of photometric experiments on aggregate wall- and dome-structures. In its second part, the focus is laid on robotic manufacturing of these aggregate structures and the interactive fabrication of specific light conditions. To conclude further areas of research into emergent design processes with aggregates are outlined.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4161e07e-6fe8-11e5-baaf-1fc96b3e1b94
last changed 2022/06/07 07:54

_id ecaade2015_27
id ecaade2015_27
authors Asanowicz, Aleksander
year 2015
title Museum 2.0 - Implementation of 3D Digital Tools
doi https://doi.org/10.52842/conf.ecaade.2015.1.709
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 709-715
wos WOS:000372317300077
summary The aim of this work is to try to set out how new technologies can influence the perception of a museum exposition. The problem which will be analysed is how to adapt an exhibition to the needs of visually impaired people. The problem will be considered on the basis of the case studies which were the part of an agreement between the Army museum in Bialystok and our Faculty. In traditional museums the main principle is the prohibition of touching exhibits.The project goal was to help blind people understand the features of the environment around them through the sense of touch. The novelty of this work is the study of how new digital technologies may improve the perception for the visually impaired.In the paper the method of 3D scanning, modelling and 3D printing will be presented. In conclusion the encountered problems and plans for further action will be discussed.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=8e079058-702a-11e5-8ac3-d3d5c9e6f5fe
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_93437 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002