CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 356

_id caadria2015_033
id caadria2015_033
authors Hadilou, Arman
year 2015
title Phototropism of Tensile Façade System through Material Agency
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 127-136
doi https://doi.org/10.52842/conf.caadria.2015.127
summary This paper researches material agencies, mechanical systems and façade designs that are able to respond to environmental changes through local interactions, inspired by biological systems. These are based on a model of distributed intelligence founded on plants and animal collectives, from which intelligent behavior emerges through simple local associations. Biological collective systems integrate material form and responsiveness and have the potential to inform new architectural and engineering strategies. The design approach of this research is based on a data-driven methodology spanning from design inception to simulation and physical modeling. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. The driving concepts are three types of evolutionary adaptation: flexibility, acclimation, and learning. The proposed façade system is a responsive textile shading structure which uses integrated actuators that moderate their local environments through simple interactions with their immediate neighbors. Computational techniques coupled to material logics create an integral design framework leading to heterogeneous environmental and structural conditions, producing local responses to environmental stimuli and ultimately effective performance of the whole system.
keywords Responsive facade; phototropism; material intelligence.
series CAADRIA
email
last changed 2022/06/07 07:49

_id acadia15_137
id acadia15_137
authors Ireland, Tim
year 2015
title A Cell-Inspired Model of Configuration
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 137-148
doi https://doi.org/10.52842/conf.acadia.2015.137
summary This paper presents a bottom-up approach to organising architectural-space, which offers a fresh outlook on the automatic generation of architectural layouts. Artificial creatures, modelled on Eukaryotic cells, are used as components with which to generate configurations articulating patterns of habitation. These components represent discrete activities. Activity is perceived to be the basic building block of spatial configuration in architecture. Attributes, pertaining to input and outputs, establish activities as occurring in chains of action; affected by that which has preceded and affecting that which is to transpire. Being artificial creatures these activity-components have the capacity to interact with their environment and each other, and self-organise to form aggregations. The model demonstrates an ecological approach to designing in a manner that unites computational design with biological and semiotic theory. The theoretical basis of the model is first outlined, and then the computer model is presented and described.
keywords Agents, Artificial Life, Configuration, Spatial Organisation, Behaviour of Organisms, Activity Diagrams
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id ecaade2015_205
id ecaade2015_205
authors Patt, Trevor
year 2015
title Generative Masterplanning Inspired by Cellular Automata with Context-specific Tessellation
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 461-466
doi https://doi.org/10.52842/conf.ecaade.2015.2.461
wos WOS:000372316000052
summary Cellular automata offer a compelling model for complex generative design. However, the abstraction of classical cellular automata models hinders their application in the design process, particularly at small scales where regular grid matrices do not provide an adequate approximation. This paper presents some tests in appling these generative properties to a real site using irrregular tesselation adapted to the terrain and an spreadsheet interface that translate design concerns into set of neighborhood and state behaviors with the goal of generating massing diagrams for an urban masterplan. The development of the model over time is also presented as a visual reference that aids in comparing different parameter sets and informing the design process.
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2015_002
id caadria2015_002
authors Tomasowa, Riva
year 2015
title BIM Design Collaboration Report
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 387-395
doi https://doi.org/10.52842/conf.caadria.2015.387
summary The discourse to mould Building Information Modelling (BIM) into the early architecture education has been escalated in many scholar papers and discussions. Scenarios are made to obtain optimum educational deliverance. However, the response from students’ perspective to the outlined subject has not been reviewed in terms of their competences, especially in Indonesian higher education where architectural computing education is relatively new. After BIM is delivered in two semesters span in the early stage at Bina Nusantara University, Faculty of Engineering, Architecture Department, survey is conducted to depict their understanding. This article is the feedback report, which shows that the students were self-convinced to the potential of BIM and its future. In achieving that particular level, the combination of various delivery methods is the utmost strategy to accompany the design studio with BIM.
keywords BIM; collaboration; role-play; education
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2015_11.34
id sigradi2015_11.34
authors Bacinoglu, Saadet Zeynep
year 2015
title From material to material with new abilities. Performative Skin: an unfinished product derived through the organizational logic as developed through research on ‘movement’
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 631-636.
summary This paper presents the process and products from research on ‘a movement behavior’, transforming the initial surface from one state to other states. The study developed an initial model of material organization inspired by nature: the adaptable exoskeleton of the armadillium vulgare. Through geometric analysis of functional variation in the exoskeleton’s unit shape, and physical model making, the underlying principle is translated into design & production rules. The generative model of ‘an adaptable segmented system’ is constructed through a geometric abstraction of the exoskeleton, achieving diverse functions such as variability in form, volume, porosity, flexibility and strength, through a distribution of ‘material geometry’ with the folding technique. The potentiality of this parametric physical model (based on simple systematicity) is questioned in relation to diverse situations that result in complex surface adaptations. This research shows the formulation of a design intention.
keywords Digital Craft, Folding, Material Computation, Informed Matter
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_81
id ecaade2015_81
authors Hudson, Roland; Schaefer, Gavin, Kroeker, Richard, Forest, Neil and Burnay, Diogo
year 2015
title Subdivision Surface Modeling to Foster Responsive Design Solutions in an Integrated Multi-disciplinary Team
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 403-413
doi https://doi.org/10.52842/conf.ecaade.2015.1.403
wos WOS:000372317300044
summary This paper documents an architectural project developed using subdivision surface modelling. Subdivision surfaces are not new, and the tools are readily available in many 3d modelling applications. Despite their age and availability and recognised benefits they are rarely applied in architectural projects furthermore there is paucity of published case studies that demonstrate these tools in action. The second contribution to the field that this paper offers is in recognising the way in which subdivision surfaces can provide a new form of collaboration. Our core team consisted of architect, artist and 3d modeller and the project was inspired by a ceramic sculpture with unusual geometry. Subdivision surface modelling enabled a unique form of design exploration, feedback and communication between people with diverse skills. This case study therefore offers both insight into applied use of subdivision modelling and further depth into the way it enables interdisciplinary collaboration.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=d57fa2ac-7022-11e5-b34f-83875df41ff7
last changed 2022/06/07 07:50

_id ecaade2015_256
id ecaade2015_256
authors Sachs, Hans
year 2015
title Design=Production - Material and Process Driven Design and Production
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 269-276
doi https://doi.org/10.52842/conf.ecaade.2015.2.269
wos WOS:000372316000032
summary With the comprehensive integration of software-based tools in actual processes of design development and fabrication, the boundaries between design and production become increasingly blurred. The methodology of the process of creation changes: the design development phase reaches up to the last produced model in a product series, in the same time the serial production cycle already starts with the first prototype.The aim of this research project is to explore and show the re-strengthening link between form, function, material and fabrication particularly driven by raising prominence of digital tools for design and production. Hereby the focus is on two points: the implementation of user data/input in the light of 'Open Innovation' as driver of form and function on one hand and the crafing inspired aproach of a comprehensive integration of material properties, behaviour tradional techniques of processing into the the design process.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=417116d4-6fe3-11e5-a9c3-f324760e4be6
last changed 2022/06/07 07:56

_id ecaade2015_185
id ecaade2015_185
authors Vamvakidis, Simos
year 2015
title Gradient Transparency: Marine Animals As a Source of Inspiration. - Exploring Material Bio-Mimicry through the Latest 3D Printing Technology in Architectural surfaces
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 325-330
doi https://doi.org/10.52842/conf.ecaade.2015.2.325
wos WOS:000372316000038
summary Digital fabrication technologies are changing rapidly the way we design, as any other tool would affect the way we produce space. Multi layered 3D printing is already allowing architects, designers and engineers to experiment with new design processes and new ways of production. At the same time, little research has being done in the way gradient transparency (through multiple layered surfaces) can affect the design process through computation; a field that deserves further investigation. The focus of this paper is to explore bio-inspired material finding design processes while combining biology, architecture and material science. We explore performance driven design possibilities through a study of marine animals -and specifically cephalopods- where opacity between skin layers is controlled through color pigments - while black pigments are called melanophores - which is often used as a type of camouflage. We propose a computation model that follows the logic of gradient transparency through pigments to fit complex “host surfaces”. We define a “host” surface as a basic geometry on which the pigments are computed. This study provides the methodology for the design of biomimetic surfaces with gradient transparency, using controlled and computated sub geometries analogous to the melanophores pigments. We finally propose Pigment Skin, a computational design model as an example to materialize this study.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c9365fd6-6fe6-11e5-9146-eff39522c429
last changed 2022/06/07 07:57

_id cf2015_411
id cf2015_411
authors Wang, Shih-Yuan; Sheng, Yu-Ting, Barchiesi, Alex and Huang, Jeffrey
year 2015
title Transient Materialization: Ephemeral, Material-Oriented Digital Fabrication
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 411-420.
summary This paper introduces the notion of transient materialization through an exploration of the relationship between digital and material-based digital fabrication. The research was inspired by direct observations of nature’s beauty in the form of thin films. The building block of the experiment is an n-hedron structure composed mainly of soap foam, which is blown into a foam structure. The paper questions this structure’s materiality, examines its physical performance and ephemeral characteristics, and expands on its meaning through an experiment in digital fabrication. Specifically, this experiment demonstrates various configurations of dynamic and programmable foam structures on a large scale of fabrication. The fabrication interacts with the algorithm, which involves a mixture of air and helium (controlled by pneumatic valves), as well as additive chemical substances and thickening agents, all of which exist in a certain space and time.
keywords digital fabrication; Ephemeral; foam structure; dynamic and transformable; algorithm; chemical substances
series CAAD Futures
email
last changed 2015/06/29 07:55

_id acadia15_431
id acadia15_431
authors Winn; Kelly
year 2015
title Transient Thermal Exchange and Developmental Form for Tactile Surfaces
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 431-441
doi https://doi.org/10.52842/conf.acadia.2015.431
summary The idea of an emergent or generative form based on repeating rules of development borrowed from the field of developmental biology has provided fertile ground for inspiration for architectural theory and computational design. With simple constraints developed iteratively, complex geometry and form generation can be distilled down to a list of developmental rules or functions in order to deterministically generate form. The ideas and illustrations of naturalists on organic form and developmental biology leading back to the turn of the 20th c., such as the work of D'arcy Wentworth Thompson and Ernst Haeckel, have inspired architects from Louis Sullivan all the way to contemporary generative design. This study revisits this design tradition of biomimetic geometries based on deterministic rules for the iterative development of forms based on biological analogs and models for growth. A series of semi-regular compound patterns were developed using parametric modeling and iterative rules. These geometries were then applied to surface topologies as a decorative tactile embellishment resulting in complex thermodynamic conditions. A series of physical prototypes where then developed with different high-relief patterns and pattern densities. Positive prototype geometries were then produced using stereolithography for casting plaster molds for the production molding of finished ceramic pieces for thermal analysis using digital thermography. By studying the performance of these complex geometries as physical prototypes under controlled experimentation, high-relief surfaces and the resulting thermodynamic conditions can be understood not just qualitative experience, but also quantitatively through measured performance metrics and innovative tools for analytical analysis.
keywords Tactile surfaces, developmental biology, biomimicry, l-systems, ceramic materials, heat transfer, thermography, ergonomics
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id acadia15_263
id acadia15_263
authors Ahlquist, Sean
year 2015
title Social Sensory Architectures: Articulating Textile Hybrid Structures for Multi-Sensory Responsiveness and Collaborative Play
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 263-273
doi https://doi.org/10.52842/conf.acadia.2015.263
summary This paper describes the development of the StretchPLAY prototype as a part of the Social Sensory Surfaces research project, focusing on the design of tactile and responsive environments for children with Autism Spectrum Disorder (ASD). The project is directed specifically at issues with sensory processing, the inability of the nervous system to filter sensory input in order to indicate an appropriate response. This can be referred to as a “traffic jam” of sensory data where the intensity of such unfiltered information leads to an over-intensified sensory experience, and ultimately a dis-regulated state. To create a sensory regulating environments, a tactile structure is developed integrating physical, visual and auditory feedback. The structure is defined as a textile hybrid system integrating a seamless knitted textile to form a continuous topologically complex surface. Advancements in the fabrication of the boundary structure, of glass-fiber reinforced rods, enable the form to be more robustly structured than previous examples of textile hybrid or tent-like structures. The tensioned textile is activated as a tangible interface where sensing of touch and pressure on the surface triggers ranges of visual and auditory response. A specific child, a five-year old girl with ASD, is studied in order to tailor the technologies as a response to her sensory challenges. This project is a collaboration with students, researchers and faculty in the fields of architecture, computer science, information (human-computer interaction), music and civil engineering, along with practitioners in the field of ASD-based therapies.
keywords Textile Hybrid, Knitting, Sensory Environment, Tangible Interface, Responsive systems and environments
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2015_380
id cf2015_380
authors Barekati, Ehsan; Clayton, Mark J. and Yan, Wei
year 2015
title A BIM-compatible schema for architectural programming information
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 380.
summary Architectural programming, although a key part of AECFM processes, has not been well integrated into Building Information Modeling (BIM). Having access to architectural programming information throughout the lifecycle of a building can add value to design evaluation, facility management, renovation and extension. There is not currently a comprehensive and standard data model to store architectural programming information. Our research is producing a universal format for an architectural program of requirements (UFPOR) that can connect the architectural programming information to the IFC BIM schema. The result is a data model for architectural programming that is inherently interoperable with BIM standard schema. A graphical user interface facilitates data creation and manipulation. The schema and effectiveness of the bridging fields has been tested by entering the content of three two different architectural programming documents into the UFPOR database.
keywords BIM, Architectural Programming, Data Modelling, Interoperability, IFC.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id sigradi2015_3.370
id sigradi2015_3.370
authors Bem, Gabriel Moraes de; Pupo, Regiane Trevisan
year 2015
title Printing the environment for visually impaired users: a systematic review
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 148-152.
summary This paper presents the results of a systematic review of 13 databases that aimed to identify which rapid prototyping techniques (RP) have been applied to development of tactile maps and tactile models. For this purpose were adopted the key words tactile map; tactile model; tactile scale model; additive manufacturing; digital fabrication; and rapid prototyping. Only 11 results deal with the PR in the manufacture of the devices. As a result of four cases reviewed, there are benefits from psychological and learning fields and also technical such as the resolution of the elements, its legibility and quality control in manufacturing.
keywords Visually Impaired User, Mobility, Way finding, Digital Prototyping
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2015_000
id sigradi2015_000
authors Cybis Perreira, Alice T.; Pupo, Regiane T. (Ed.)
year 2015
title Project Information for Interaction
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0; vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015
summary The chosen theme "Project Information for interaction" reveals one of the most important ways that technology has offered to improve the design process by integrating information into the elements of digital graphic in a parametric way. This integration allows many design professionals to interact on the same model, enabling simulations, materializations, revisions with data more close to the reality, avoiding errors and wastes. Projects with highest social responsibility can be performed by inserting this new way of designing in education and professional practices. So, this conference is dedicated to give time and space for presentations and discussions of researches and experiences in this area applied to the various fields such as Architecture, Urbanism, Design, Animation, Arts, among others. Looking into another perspective, this issue also brings the concept of Smart Cities, where the provision of information integrated with graphics inserted in the towns components (streets, open areas, buildings and objects), allow more responsible interactions, generating sustainable and collaborative actions among citizens.

series SIGRADI
email
last changed 2016/03/10 09:50

_id eaea2015_t3_paper08
id eaea2015_t3_paper08
authors Fiorino, Donatella Rita; Loddo, Marzia
year 2015
title Innovative Tools for Knowledge and Management of the Italian Cultural Heritage: SICaR/web and SIGeC/web
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.348-359
summary The first step in a valorisation project as well as in a management plan is developing a knowledge scheme. A great amount of data usually remains fragmentary: historical, technical, legal data and diagnostics do not contribute to an integrated and multidisciplinary approach. These sets of problems are particularly pronounced in architectural assets. In order to cope with these needs, the paper illustrates the results of a research dedicated to the identification of strengths and weakness of two important information systems: SIGeC/web and SICaR/web. Both are provided by the Italian Ministry for Cultural Heritage and Tourism (MIBACT). These databases are particularly useful and active tools, to encourage not only the knowledge of Italian heritage, but also their management. Furthermore, it will incline experts from a different background towards unexplored fields and people, who are not expert, in a deeper understanding of the cultural heritage.
keywords information systems; valorisation; interoperability; defence heritage
series EAEA
email
last changed 2016/04/22 11:52

_id acadia15_149
id acadia15_149
authors Lagemann, Dennis
year 2015
title A Model to Space
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 149-159
doi https://doi.org/10.52842/conf.acadia.2015.149
summary Architects are used to work with models since the early beginnings of Renaissance. These models were made to conceive spatial objects before they become realized. Nowadays space seems to be outdated: There are information topologies, virtuality, and globalization. Our models are logistical rather than spatial and they become increasingly complicated. They put an emphasis on energy- or cost-efficiency rather than the vividness of a localized place. But as Architects we are supposed to be ‚masters of space’. And somehow it feels like we have lost our domain and degraded ourselves to attaching nice skins on increasingly optimized concrete- or steel-skeletons. In this sense it might be necessary to reconsider our mastership upon the articulation of space. One way to achieve this might be that computation could do more than just deliver increasingly intriguing geometries, instead it might offer us a look at the spaces conceivable but not yet imaginable: computed as information topologies and then rendered back into the geometrical framework of physical space. New media have entered our perception to a degree never imagined by future sciences of the past. So the question arises if space-time can still be considered as a single layer in actuality. As individualization takes command, being special becomes normality. In a quantized society, where many cultures coexist at the same places simultaneously, a new model to space must deal with the superposition of territories.
keywords Models, Computation, Digitization, Architectural History/Theory, Topology <=> Geometry, Active Space, Inversion, Interlaced Fields, Paradigm Shift
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id cf2015_239
id cf2015_239
authors Maia, Sara Costa and Meyboom, AnnaLisa
year 2015
title Interrogating interactive and responsive architecture: The quest of a technological solution looking for an architectural problem
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 239.
summary Interactive Architecture and Responsive Architecture are provocative fields of investigation and have potentially disruptive and far reaching effects for architecture. However it can be argued that these fields haven’t been developed as a direct response to previously identified architectural demands. Instead, they have risen as consequence of new technology availability, with ad hoc discussions in the context of the built environment. In order to test this hypothesis, 229 publications were examined and narrowed down to 77 papers and 41 design projects, which were systematically analyzed. The primary objective of this investigation is to understand Interactive Architecture’s development with regard to justification. This understanding provides us with the basis to speculate on the possibly expanding introduction of extraneous technological solutions to the discipline of architecture. The research findings indicate a mismatch between theoretical discourse and projects being developed in those fields. They also describe the current state of Interactive Architecture research.
keywords Interactive Architecture, Responsive Architecture, Literature Analysis, Design Projects Analysis.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_485
id cf2015_485
authors Anaf, Márcia and Harris, Ana Lúcia Nogueira de Camargo
year 2015
title The geometry of Chuck Hoberman as the basis for the development of dynamic experimental structures
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 485.
summary The cognitive-theoretical foundation referring to teach drawing as a way of thinking, as well as the construction of the environment by means of drawing using transforming geometries and the formal and para-formal computational process, creating unusual geometries through generative design processes and methodologies, can be seen as some of the main possibilities in exploring dynamic experimental structures for an Adaptive Architecture. This article presents the development of a model for articulated facades, inspired by Hoberman´s Tessellates, and his Adaptive Building Initiative (ABI) project to develop facades models that respond in real time to environmental changes. In addition, we describe an experiment based on the retractable structures, inspired by Hoberman´s work and experimentations. Solutions for responsive facades can offer more flexible architectural solutions providing better use of natural light and contributing to saving energy. Using Rhinoceros and the Grasshopper for modeling and test the responsiveness, the parametric model was created to simulate geometric panels of hexagonal grids that would open and close in reaction to translational motion effects, regulating the amount of light that reaches the building.
keywords Parametric architecture, Hoberman´s Tessellates, Adaptive Building Initiative (ABI), Articulated Facades, Complex Geometries, Retractable structures, Retractable polyhedra.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id acadia15_095
id acadia15_095
authors Tam, Kam-Ming Mark; Mueller, Caitlin T.
year 2015
title Stress Line Generation for Structurally Performative Architectural Design
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 95-109
doi https://doi.org/10.52842/conf.acadia.2015.095
summary Principal stress lines, which are pairs of orthogonal curves that indicate trajectories of internal forces and therefore idealized paths of material continuity, naturally encode the optimal topology for any structure for a given set of boundary conditions. Although stress line analysis has the potential to offer a direct, and geometrically-provocative approach to optimization that can synthesize both design and structural objectives, its application in design has generally been limited due to the lack of standardization and parameterization of the process for generating and interpreting stress lines. Addressing these barriers that limit the application of the stress line methods, this paper proposes a new implementation framework that will enable designers to take advantage of stress line analysis to inform conceptual structural design. Central to the premise of the research proposal is a new conception of structurally-inspired design exploration that does not impose a singular solution, but instead allows for the exploration of a diverse high-performance design space in order to balance the combination of structural and architectural design objectives.
keywords Topological Optimization, Structural Optimization, Conceptual Structural Design, Principal Stress Lines, Principal Stress Directions, Optimal Structures, Interdisciplinary Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id caadria2015_065
id caadria2015_065
authors Matsubayashi, Michio; and Shun Watanabe
year 2015
title Generating Schematic Diagrams of MEP Systems from 3D Building Information Models for Use in Conservation
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 293-302
doi https://doi.org/10.52842/conf.caadria.2015.293
summary In this paper, we propose a method of generating schematic diagrams from 3D models of mechanical, electrical and plumbing (MEP) systems in order to represent this information in a more traditional, user-friendly format. It can be difficult to grasp the relationships between various MEP elements in building information models (BIM) because they are represented in a visually complex, three-dimensional manner. On the other hand, the relationships between building elements can be easily understood when using traditional schematic diagrams. First, sets of connected elements are extracted from a 3D model of MEP elements using their connection properties. Next, various elements of these systems are identified as nodes and their connections are represented as edges. Finally, these systems are displayed as a schematic diagram using element attribute information.
keywords BIM; Schematic Diagram; Attribute Information; Graph; Existing Buildings.
series CAADRIA
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_445228 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002