CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 589

_id sigradi2015_sp_8.78
id sigradi2015_sp_8.78
authors Bernal, Alberto Nope; Alvarado, Rodrigo García; Flores, Javier Guarachi; Carvajal, Ricardo Arellano
year 2015
title Analysis of active solar parameters in health
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 792-796.
summary This work was developed based on the register of health servicesin the municipality of Concepción Chile, selecting three establishments as models of concentrated consume. Technical morphological and location characteristics of each facility were analyzed in order to identify the volumetric relation, the influence of shadows and solar potential roofs and facades, linking with the future implementation of materials and technologies that present thermal and /or photovoltaic properties. The computer implementation of parameterization and simulation applied to the morphology of each facility analyzed the active parameters that affecting solar gain, stating a relationship between volume, solar collection, and the percentage of energy demand covered.
keywords Solar Energy, Parametric Design, Active Parameters, Health Facilities, Chile
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2015_sp_8.284
id sigradi2015_sp_8.284
authors Queiroz, Natália; Dantas, Ney; Nome, Carlos; Vaz, Carlos
year 2015
title Designing a Building envelope using parametric and algorithmic processes
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 797-801.
summary This article presents a case study on a vertical building envelope design considering Recife ?s climatic conditions. It consists of the utilization of parametric and algorithmic processes to distribute sun shading devices. The study uses computational tools such as Grasshopper and the DIVA for Grasshopper. The latter is a thermal energy simulation tool that uses the Energy Plus 7.0 and Daysim for calculations. The model uses incident solar radiation simulation on the envelope as basis for distribution of shading devices. The result is a parametric model that automatically responds to urban and climatic characteristics, through simulations integrated to the 3D model.
keywords Shading Devices, Parameterization, Grasshopper, DIVA
series SIGRADI
email
last changed 2016/03/10 09:58

_id caadria2015_077
id caadria2015_077
authors Shiff, Galit; Yael Gilad and Amos Ophir
year 2015
title Adaptive Polymer Based BIPV Skin
doi https://doi.org/10.52842/conf.caadria.2015.345
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 345-354
summary This study focuses on developing three-dimensional solar panels, as an alternative to traditional flat Photovoltaic (PV) surfaces in Building Integrated Photovoltaic (BIPV). We propose to increase the energy efficiency of buildings by using the entire envelope for energy production as well as by increasing the efficiency of solar energy output in orientations which were traditionally considered as non-ideal. The panels are constructed from Polycarbonate with integrated flexible photovoltaic film, solar paint or dye. The methodology included digital algorithm-based tools for achieving optimized variable three-dimensional surfaces according to local orientation and location, computational climatic simulations and comparative field tests. In addition, the structural, mechanical and thermal properties of the integration between flexible PV sheets and hard plastic curved panels were studied. Interim results demonstrate a potential improvement of 50-80% in energy production per building unit resulting from geometric variations per-se. The dependence of energy production by surface geometry was revealed and an optimized method for solar material distribution on the surface was proposed. A parametric digital tool for automatic generation of optimized three-dimensional panels was developed together with a database and material models of the optimized panels system.
keywords Building Integrated Photovoltaics; digital algorithm; climatic simulations; building envelope
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_298
id ecaade2015_298
authors Vannini, Virgínia Czarnobay and Turcienicz, Benamy
year 2015
title Thermal Performance Associated with Materials in Early Stages of the Design Process
doi https://doi.org/10.52842/conf.ecaade.2015.1.325
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 325-331
summary This work is part of a research on decision-making processes in architecture involving computer programs in the early stages of designing the building envelope. The research involves two steps: (1) intuitive processes analysis during the handling of the building envelope components - floor, roof, walls, windows, solar protection elements - and (2) generative processes analysis of building envelopes supported by performance models. This article is the first step, analyzing four housing prototypes, designed and built for the Solar Decathlon competition. First, the building envelope elements and thermal characteristics of these prototypes were modeled; then different materials that make up the envelope were tested, aimed at assessing thermal performance against the modifications proposed in six different scenarios. The results showed that it is possible to obtain intuitive solutions that equalize temperature changes in the early stages of design with computing environments even without the use of detailed data on the characteristics of buildings, features of the later stages of the project.
wos WOS:000372317300035
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=a47c739a-702e-11e5-923c-bfb1b0817050
last changed 2022/06/07 07:58

_id sigradi2015_8.81
id sigradi2015_8.81
authors Alvarado, Rodrigo García; Lobos, Danny; Nope, Alberto; Tinapp, Frank
year 2015
title BIM + UAV Assessment of Roofs’ Solar Potential
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 336-340.
summary This paper describes a novel method for determining the capacity to generate solar energy integrated into the roofs of buildings by aerial survey using UAVs and BIM models for sizing the covering surfaces and integration of solar panels. Various digital procedures are enchained like planning of trajectories, image processing, geometric reconstitution, simulation of solar radiation and calculation of energy generation to promote on-site installation of clean energy sources in existing buildings, to ensure a more sustainable habitat.
keywords BIM, UAV, Solar Energy, Sustainable Building
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2015_220
id caadria2015_220
authors Cheng, Nancy Y.; Mehrnoush Latifi Khorasgani, Nicholas Williams, Daniel Prohasky and Jane Burry
year 2015
title Understanding Light in Building Skin Design
doi https://doi.org/10.52842/conf.caadria.2015.323
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 323-332
summary This paper describes a design approach for discerning solar gain and assigning appropriate external shading devices. The approach includes a macro analysis locating where and when the building receives direct sunlight and locating desired interior daylighting; along with a micro analysis of how folded sun-shading motifs filter or block direct sunlight. The approach uses a collaborative analytical workflow with feedback from virtual and physical simulations informing design explorations. This iterative, reciprocating process is illustrated by student efforts to design shading structures for a building based on incident solar radiation. Designers begin with cutting and folding paper study models, then lasercut 2D tessellation patterns to create sculptural shading screens to be examined with a heliodon. Physical daylighting modeling reveals aesthetic opportunities to develop with parametric design. Motifs are then digitally modeled and analysed for shading effectiveness. Analysing the solar radiation of simple motifs helps beginners learn the software for subsequent urban situations. The efficacy of these simulations is discussed along with ways that the results could be interpreted to initiate design decisions for a building skin.
keywords Solar simulation; collaborative design; folding surfaces; physical and digital simulation.
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2015_185
id caadria2015_185
authors De Oliveira, Maria João and Vasco Moreira Rato
year 2015
title From Morphogenetic Data to Performative Behaviour
doi https://doi.org/10.52842/conf.caadria.2015.765
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 765-774
summary This paper presents part of CORK’EWS, a research work developed within the framework of the Digital Architecture Advanced Program 2012/13 at ISCTE-IUL. The main goal of this investigation was to develop a parametric, customizable and adaptive wall system designed for environmental performance. Moreover, the system is based on standard industrial products: expanded cork blocks produced by Amorim Insulation industries. CAD/CAM resources were the essential tools of the research process, where fundamental and practical knowledge is integrated to understand the microstructure morphological properties of the raw material – cork – and its derivate – natural expanded cork. These properties were upscale and adapted to create a wall with an optimized solar control environmental performance. The result is a digitally fabricated prototype of a new customizable industrial product, adaptable to specific environmental conditions and installation setups being therefore easily commercialized. From microstructural morphology to macroscale construction, the research explores new application possibilities through morphogenesis and opens new possible markets for these customizable products.
keywords Morphogenesis; performance; shading systems; cork.
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2015_37
id ecaade2015_37
authors Forster, Julia; Fritz, Sara, Schleicher, Johannes and Rab, Nikolaus
year 2015
title Developer Tools for Smart Approaches to Responsible-Minded Planning Strategies
doi https://doi.org/10.52842/conf.ecaade.2015.1.545
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 545-551
summary The city of Vienna follows a long-term initiative to become a Smart City. Within 2050 it aims to reduce 80% of the CO2 emissions (in comparison to 1990) and looks forward to generate ways for a sustainable energy production. (Smart City Framework Strategy 2014) Reaching this targets requires a complex planning process which involves interdisciplinary stakeholders and decision makers. An interactive multi-dimensional environment, comprising spatial objects and data models, is a helpful tool during these planning processes. This paper proposes a suitable path for the development of a structural framework for such an environment. The benefits of such an environment are shown in detail, based on an application of the economic solar heat potential in Vienna.
wos WOS:000372317300059
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia15_407
id acadia15_407
authors Kim, Dongil; Lee, Seojoo
year 2015
title A Systemized Aggregation with Generative Growth Mechanism in Solar Environment
doi https://doi.org/10.52842/conf.acadia.2015.407
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 407-415
summary The paper demonstrates a work-in-progress research on an agent-based aggregation model for architectural applications with a system of assembly based on environmental data acted as a driver for a growth mechanism. Even though the generative design and algorithms have been widely employed in the field of art and architecture, such applications tend to stay in morphological explorations. This paper examines an aggregation model based on Diffusion Limited Aggregation system incorporating solar environment analysis for global perspective of aggregation, the geometry research for lattice systems, and morphological principles of unit module in agent scale. The later part of this research paper demonstrates the potential of a design process through the “Constructed Cloud” case study, including site-specific applications and the implementation of the systematized rule set.
keywords Aggregation, Generative Algorithm, Diffusion Limited Aggregation, Responsive Growth Mechanism, Solar Environment, Responsive System / Algorithm, Adaptable Architecture, Data Analysis, Systemized Architecture, Truncated Octahedron, Sun Oriented Aggregation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id cf2015_241
id cf2015_241
authors Popescu, Florin C.
year 2015
title Algorithmic design tool for integrating renewable energy infrastructures in buildings
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 241.
summary We present a tool which empowers 'green' design freedom for architects by presenting ever expanding choices in components and materials and automatizing their configuration and placement. Several time- and resource- consuming initial design iterations are eliminated by optimizing the energetic efficiency of the building in the original draft phase. The smart, efficient, energy producing building of the future can thereby offer increased cost and energy efficiency, security and comfort, without any compromise in style and form - on the contrary, the proposed tool stands to open up a novel palette of creative 'green' architectural design elements, which would effectively be co-designed by architects. The proposed algorithmic CAD design tool allows direct integration of renewable sources in the architectural design phase, taking into account local meteorological and solar radiation conditions. Furthermore locally optimized evolution and modification of renewable components integrated into the building's structure is possible, leveraging an increasingly wide range of possibilities in form, finish and renewable energy generation.
keywords Algorithmic and parametric design, data analytics, performance-based design, smart buildings and smarts cities.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_072
id caadria2015_072
authors Si, Fei and Tsung-Hsien Wang
year 2015
title Building Massing Optimisation in Early Design Stage
doi https://doi.org/10.52842/conf.caadria.2015.583
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 583-592
summary This paper proposes a performance-driven design workflow based on Total Sunlight Hours evaluation. The objective is to investigate an optimal solution of a building massing design meeting solar radiation criteria as early as in the conceptual design stage. In our paper, such a process is demonstrated through a case study on an Experimental Social Housing project. We illustrate how design constraints are encoded with the evaluation criterion, Total Sunlight Hours (TSH), through an integrated computational workflow. Alongside with such a computation-intensive process, we also experimented with the same design project using a conventional design approach. The advantages and disadvantages of using a performance-driven computational workflow over a conventional design process are discussed and presented. In particular, we examine how a performance-driven design workflow can be integrated within the iterative design process and how human designers interact with computation to investigate optimal design solutions.
keywords Performance-driven design; environmentally-conscious; parametric modelling; building massing optimisation; daylight performance evaluation
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_28
id ecaade2015_28
authors Sommer, Bernhard; Moncayo, Galo, Sommer-Nawara, Malgorzata and Pont, Ulrich
year 2015
title SolSeduction - A Phyto-Solar Dance-Floor
doi https://doi.org/10.52842/conf.ecaade.2015.2.697
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 697-705
summary As climate and society change, customizing buildings towards specific usage patterns and local weather conditions that might be obsolete within a few years, does not seem to be the smartest approach to building design. Facing the end of readily available highly efficient energy sources, such as oil and gas, we want to re-think the architectural environment towards a symbiotic habitat. The role of energy thus is not seen as a question of supply, but as one parameter among others that shapes the environment. A habitat relies on the physical, chemical and social interaction of different elements and organisms.The authors together with their students pursued a design research re-thinking the architectural environment towards a symbiotic habitat.Full-scale spatial prototypes as elements of such a habitat have been developed focussing on the interfaces between climate, people and other organisms, such as plankton, algae and flowers.
wos WOS:000372316000077
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=21b8b11a-6e91-11e5-b691-00190f04dc4c
last changed 2022/06/07 07:56

_id sigradi2015_8.41
id sigradi2015_8.41
authors Valencia, Lorena Troncoso; Alvarado, Rodrigo García; Bernal, Alberto Nope; Arellano, Ricardo
year 2015
title Solar attic by parametric optimization and digital fabrication for NZE dwellings
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 317-321.
summary In order to support the usual enlargement of houses in developing countries and proper integration of renewable sources, this paper exposes a parametric design of attic with insulated timber boards and integrated solar panels. The proposal is based on urban map of solar potential available on-line (www.msc.ubiobio.cl), that for single houses suggest a solar attic customized to each dwelling shape and orientation, with industrialized timber construction elements. The calculation of optimal volume by house is developed with a multi-objective genetic algorithm (NSGA-II) and dynamic simulation, which provides different buildings alternatives with digital manufacturing.
keywords Solar Energy, Timber Building, Housing, Genetic Algorithm, Building Integrated Solar Energy
series SIGRADI
email
last changed 2016/03/10 10:02

_id caadria2015_013
id caadria2015_013
authors Wu, Chengde and Mark J. Clayton
year 2015
title Visualizing Climate Data as a 3D Climate Torus
doi https://doi.org/10.52842/conf.caadria.2015.273
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 273-281
summary In this research, a system is developed to visualize climate data as a 3D geometry, a climate torus. The system extracts time, dry bulb temperature, relative humidity, and wind speed information. Four points are created on a psychrometric chart using maximum temperature, minimum temperature, maximum humidity, and minimum humidity of a day. A closed curve passing these four points is drawn as a profile curve. 365 profile curves are generated for each day of the year. These curves are rotated along the vertical axis of the psychrometric chart, each at the incremental angle of 365/360, so that these curves rotate full 360 degrees to represent one year period. The system then generates a climate torus by lofting all the curves. Wind speed information is coded on the climate torus as holes. The diameter of the holes denotes wind speed. The climate torus is 3D printed after giving a minimum thickness to the surface. This process was assigned to sophomore architecture students. They showed great interest and gained better understanding of climate responsive design through the task. The climate torus has the future potential of coding more climate elements into it, e.g. solar radiation as colour, precipitation as texture, etc.
keywords Climate data visualization; Climate torus; 3D printing
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia15_311
id acadia15_311
authors Ahrens, Chandler
year 2015
title Klimasymmetry, Locating Thermal Tactility
doi https://doi.org/10.52842/conf.acadia.2015.311
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 311-322
summary The Klimasymmetry research project is part of ongoing investigations that ask how the design of a surface emanating radiant heating and cooling can influence the non-visual spatial boundaries created by asymmetrical thermal conditions. This research investigates the nature of the surface as an initiator of a thermal environment in an attempt to locate thermal tactility and the spatial perception according to radiant heat transfer. Surface qualities such as the quantity of area and thermal capacity of the material affects the ability of the panel to emit or absorb electromagnetic radiation, informing the geometry, topography, and location of each panel relative to the human body.
keywords Thermal behavior, Radiant panel system, Material computation, Digital Fabrication, Fabric forming, Glass Fiber Reinforced Gypsum
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
doi https://doi.org/10.52842/conf.acadia.2015.357
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2015_331
id cf2015_331
authors Brodeschi, Michal; Pilosof, Nirit Putievsky and Kalay, Yehuda E.
year 2015
title The definition of semantic of spaces in virtual built environments oriented to BIM implementation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 331-346.
summary The BIM today can be a provider of inputs to performance analysis of different phenomena such as thermal comfort, energy consumption or winds. All these assessments are fundamental to the post occupation of the building. The attainment of approximate information of how the future building would behave under these conditions will reduce the waste of materials and energy resources. The same idea is used for evaluating the users occupation. Through simulation of human behavior is possible to evaluate which design elements can be improved. In complex structures such as hospital buildings or airports is quite complex for architects to determine optimal design solutions based on the tools available nowadays. These due to the fact users are not contemplated in the model. Part of the data used for the simulation can be derived from the BIM model. The three-dimensional model provides parametric information, however are not semantically enriched. They provide parameters to elements but not the connection between them, not the relationship. It means that during a simulation Virtual Users can recognize the elements represented in BIM models, but not what they mean, due to the lack of semantics. At the same time the built environment may assume different functions depending on the physical configuration or activities that are performed on it. The status of the space may reveal differences and these changes occur constantly and are dynamic. In an initial state, a room can be noisy and a moment later, quiet. This can determine what type of activities the space can support according to each change in status. In this study we demonstrate how the spaces can express different semantic information according to the activity performed on it. The aim of this paper is to simulate the activities carried out in the building and how they can generate different semantics to spaces according to the use given to it. Then we analyze the conditions to the implementation of this knowledge in the BIM model.
keywords BIM, Virtual Sensitive Environments, Building Use Simulation, Semantics.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ijac201513204
id ijac201513204
authors Cupkova, Dana and Nicolas Azel
year 2015
title Mass Regimes: Geometric Actuation of Thermal Behavior
source International Journal of Architectural Computing vol. 13 - no. 2, 169-194
summary The Mass Regimes is a research project that investigates the effect of complex geometry on processes of passive heat distribution in thermal mass systems. In the context of systems thinking, this research intends to instrumentalize design principles that engage a wider range of design tactics for choreographing thermal gradients between buildings and their environment. Research for this project has brought about a deeper understanding of how specific geometric manipulations of surface area over the same mass (Figure 1) affect the rate of thermal transfer. Leveraging physical simulations of geometric populations, along with current computational and design tools, the project sheds light on performative trends that may enhance creative design explorations in the use of passive systems. Preliminary analysis of varied geometric populations suggest an exciting trend and the possibility for a more synthetic incorporation of morphology, one in which surface geometry can be passively utilized to generate effects with more fidelity over the pace of thermal absorption and the release of sensible heat.
series journal
last changed 2019/05/24 09:55

_id acadia17_202
id acadia17_202
authors Cupkova, Dana; Promoppatum, Patcharapit
year 2017
title Modulating Thermal Mass Behavior Through Surface Figuration
doi https://doi.org/10.52842/conf.acadia.2017.202
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 202-211
summary This research builds upon a previous body of work focused on the relationship between surface geometry and heat transfer coefficients in thermal mass passive systems. It argues for the design of passive systems with higher fidelity to multivariable space between performance and perception. Rooted in the combination of form and matter, the intention is to instrumentalize design principles for the choreography of thermal gradients between buildings and their environment from experiential, spatial and topological perspectives (Figure 1). Our work is built upon the premise that complex geometries can be used to improve both the aesthetic and thermodynamic performance of passive building systems (Cupkova and Azel 2015) by actuating thermal performance through geometric parameters primarily due to convection. Currently, the engineering-oriented approach to the design of thermal mass relies on averaged thermal calculations (Holman 2002), which do not adequately describe the nuanced differences that can be produced by complex three-dimensional geometries of passive thermal mass systems. Using a combination of computational fluid dynamic simulations with physically measured data, we investigate the relationship of heat transfer coefficients related to parameters of surface geometry. Our measured results suggest that we can deliberately and significantly delay heat absorption re-radiation purely by changing the geometric surface pattern over the same thermal mass. The goal of this work is to offer designers a more robust rule set for understanding approximate thermal lag behaviors of complex geometric systems, with a focus on the design of geometric properties rather than complex thermal calculations.
keywords design methods; information processing; physics; smart materials
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2015_61
id ecaade2015_61
authors Foged, Isak Worre and Pasold, Anke
year 2015
title Development of a Method and Model for Programming Material Behaviour in a Responsive Envelope
doi https://doi.org/10.52842/conf.ecaade.2015.2.449
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 449-458
summary The research presents an architectural method and model that organise material composites into weather-powered response building envelopes. The work is done through a set of simulation strategies including simulation of thermal sensation, simulation of material behaviours of a developed dynamic architectural envelope based on bi-material deflection and simulation of a design process based on evolutionary computation. The work finds that the proposed method and model can create dynamic expressive and environment-oriented functional building envelopes. The approach allow time-based articulation and making of architectures that respond to the thermal environment, thereby creating a basis for developing buildings that are intimately linked to dynamic environmental and human occupancy patterns.
wos WOS:000372316000051
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e70e19e4-70d7-11e5-9c6a-d7a061db2d21
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_345761 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002