CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 447

_id sigradi2015_3.394
id sigradi2015_3.394
authors Bastiani, Jamile De; Pupo, Regiane T.
year 2015
title Materialize to inform and educate
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 161-166.
summary The protection and preservation of historical heritage are important tasks for all walks of life because rebuilding the exclusionary social memory, symbolically representing the nation’s identity. From this reflection, the problem arises of how to make the people appreciate the historic buildings. The Region of Medium High Uruguay, will serve as pilot study on a method of applying to the enhancement of national heritage by the population that is through the materialization of form. It is with the help of computer modeling combined with digital prototyping that seeks to find effective alternatives that use new technologies in the upgrading of historic buildings, a form of knowledge, integration and collaboration. In many areas of knowledge, consciousness makes the human being is connected to the world through all the senses. And touch, as experimentation and understanding of space it inhabits, may be the most overlooked sense in recent informatization times. In this research, the new realization techniques used to attempt to leverage awareness and understanding of a heritage, for a population hitherto alien to the cultural and historical values of a local architecture.
keywords Materialize, Inform, Aware, Appreciation
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2015_331
id cf2015_331
authors Brodeschi, Michal; Pilosof, Nirit Putievsky and Kalay, Yehuda E.
year 2015
title The definition of semantic of spaces in virtual built environments oriented to BIM implementation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 331-346.
summary The BIM today can be a provider of inputs to performance analysis of different phenomena such as thermal comfort, energy consumption or winds. All these assessments are fundamental to the post occupation of the building. The attainment of approximate information of how the future building would behave under these conditions will reduce the waste of materials and energy resources. The same idea is used for evaluating the users occupation. Through simulation of human behavior is possible to evaluate which design elements can be improved. In complex structures such as hospital buildings or airports is quite complex for architects to determine optimal design solutions based on the tools available nowadays. These due to the fact users are not contemplated in the model. Part of the data used for the simulation can be derived from the BIM model. The three-dimensional model provides parametric information, however are not semantically enriched. They provide parameters to elements but not the connection between them, not the relationship. It means that during a simulation Virtual Users can recognize the elements represented in BIM models, but not what they mean, due to the lack of semantics. At the same time the built environment may assume different functions depending on the physical configuration or activities that are performed on it. The status of the space may reveal differences and these changes occur constantly and are dynamic. In an initial state, a room can be noisy and a moment later, quiet. This can determine what type of activities the space can support according to each change in status. In this study we demonstrate how the spaces can express different semantic information according to the activity performed on it. The aim of this paper is to simulate the activities carried out in the building and how they can generate different semantics to spaces according to the use given to it. Then we analyze the conditions to the implementation of this knowledge in the BIM model.
keywords BIM, Virtual Sensitive Environments, Building Use Simulation, Semantics.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id phd_MariadaPiedade_Ferreira
id phd_MariadaPiedade_Ferreira
authors Ferreira, Maria da Piedade
year 2015
title Embodied Emotions: Observations and Experiments in Architecture and Corporeality
source University of Lisbon
summary This thesis is dedicated to the topic of the relationship between the Body and Architecture, in particular regarding the contemporary “embodied mind” theory. It includes a theoretical review on the topic based on the study of the different ways Architecture has followed the transformations that the views on the Body have endured throughout Western history, under the evolution and influence of different disciplines such as philosophy, technology, science, religion and art. Within this context, the thesis proposes a methodology based on performance arts, which explores the use of embodied practices in design education. Such a methodology aimed at testing how it is possible to influence users’ emotions using architectural space. The thesis argues that this can be achieved through a process of empathy between the users’ body and architectural space. To support this claim, the thesis presents a set of experiments undertaken in the context of architectural teaching. The results of such experiments were evaluated through the analysis of video and photo documentation, as well as through quantitative and qualitative data collected using emotion measurement tools and questionnaires, respectively.
keywords Embodied Mind; Empathy; Performance Art
series thesis:PhD
email
last changed 2017/10/17 11:33

_id ecaade2015_247
id ecaade2015_247
authors Garcia, Manuel Jimenez and Retsin, Gilles
year 2015
title Design Methods for Large Scale Printing
doi https://doi.org/10.52842/conf.ecaade.2015.2.331
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 331-339
summary With an exponential increase in the possibilities of computation and computer-controlled fabrication, high density information is becoming a reality in digital design and architecture. However, construction methods and industrial fabrication processes have not yet been reshaped to accommodate the recent changes in those disciplines. Although it is possible to build up complex simulations with millions of particles, the simulation is often disconnected from the actual fabrication process. Our research proposes a bridge between both stages, where one drives the other, producing a smooth transition from design to production. A particle in the digital domain becomes a drop of material in the construction method.The architect's medium of expression has become much more than a representational tool in the last century, and more recently it has evolved even beyond a series of rules to drive from design to production. The design system is the instruction itself; embedding structure, material and tectonics and gets delivered to the very end of the construction chain, where it gets materialised. The research showcased in this paper investigates tectonic systems associated with large scale 3D printing and additive manufacturing methods, inheriting both material properties and fabrication constraints at all stages from design to production. Computational models and custom design software packages are designed and developed as strategies to organise material in space in response to specific structural and logistical input.Although the research has developed a wide spectrum of 3D printing methods, this paper focuses only on two of the most recent projects, where different material and computational logics were investigated. The first, titled Filamentrics, intends to develop free-form space frames, overcoming their homogeneity by introducing robotic plastic extrusion. Through the use of custom made extruders a vast range of high resolution prototypes were developed, evolving the design process towards the fabrication of precise structures that can be materialised using additive manufacturing but without the use of a layered 3D printing method. Instead, material limitations were studied and embedded in custom algorithms that allow depositing material in the air for internal connectivity. The final result is a 3x2x2.5m structure that demonstrates the viability of this construction method for being implemented in more industrial scenarios.While Filamentrics is reshaping the way we could design and build light weight structures, the second project Microstrata aims to establish new construction methods for compression based materials. A layering 3D printing method combines both the deposition of the binder and the distribution of an interconnected network of capillaries. These capillaries are organised following structural principles, configuring a series of channels which are left empty within the mass. In a second stage aluminium is cast in this hollow space to build a continuous tension reinforcement.
wos WOS:000372316000039
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=07a6d8e0-6fe7-11e5-9994-cb14cd908012
last changed 2022/06/07 07:51

_id eaea2015_t1_paper02
id eaea2015_t1_paper02
authors Gruszczynska, Joanna
year 2015
title The ‘Old Brewery’ in Poznan – Adaptation or Creation?
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.27-38
summary It is beyond the question that protection of monuments of architecture and its unique beauty, through ‘re-use’ of values, emphasizing the qualities for new, modern function, but with the maximum respect for the original feature and preserving historic substance in the adaptation process is one of the requirements of the twenty first century. The analysis of the example of adapting historical objects - Hugger’s Brewery to a new function, may lead to conclusion whether that adapted object can still be named a historic building. Is it an industrial heritage or is it nothing more than a creation – an artificial space? How far can we go in the ‘re-using’? Where is the boundary?
keywords industrial heritage; values; Old Brewery in Poznan
series EAEA
email
last changed 2016/04/22 11:52

_id acadia15_371
id acadia15_371
authors Hatefnia, Navid; Ghobad, Marjan
year 2015
title Computing Outdoor Comfort Based on CBE Thermal Comfort Calculation for Ashrae-55
doi https://doi.org/10.52842/conf.acadia.2015.371
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 371-480
summary Environmental analysis as part of the initial design process, affords precise consideration of the bioclimatic human conditions within the environmental local context. The daily growth in inter alia knowledge of effective parameters in environmental conditions, quality weather data, human thermo-physiology studies – all contribute to improving the potential for achieving a relatively accurate analyses of environmental conditions by overlaying and computing all the climatic and thermo-physiological data. This paper describes a digital method for examining different points in the same context by computing all the input data available to understand the corresponding human comfort condition levels, thus leading to better decision-making at early design stages. Information about the site, climate, human thermo-physiology and behavioral aspects among others are collected where each data parameter is matched and analyzed to the context of every node on the model through a series of specific computational algorithms. Thereafter, the data from the nodes are statistically cleaned, classified and integrated based on the CBE thermal comfort calculation for ASHRAE-55. The results obtained using this method, can be tailored according to the desired outcomes. The proposed method identifies effective factors for human comfort condition improvement for different points on the context. It also provides a means to priorities specific parameters so that they can be manipulated for optimal digital design solutions, ie. Aligned to the desired conditions in the specific parts of the site with the aim of optimize outdoor space usage.
keywords Micro-Climate, Outdoor Comfort, Urban Design, Environmental Aspects, Bio-Climatic Conditions
series ACADIA
type normal paper
email
last changed 2022/06/07 07:49

_id acadia15_381
id acadia15_381
authors Jabi, Wassim
year 2015
title The Potential of Non-Manifold Topology in the Early Design Stages
doi https://doi.org/10.52842/conf.acadia.2015.381
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 381-493
summary The importance of decisions made during the early design stages has prompted researchers to advocate the use of building performance simulation (BPS) during that stage. This paper investigates non-manifold topology (NTM) as a novel approach to 3D modelling that has the potential to be highly compatible with the early design stages and with the input requirements for BPS. The proposed approach avoids the process of simplifying polyhedral models produced by Building Information Modelling (BIM) software to conduct BPS. In particular, NTM allows for a clear segmentation of a building, unambiguous space boundaries, and perfectly matched surfaces and glazing subsurfaces. The NTM approach was tested through a software prototype that integrates 3D modelling software and an energy simulation engine.
keywords Early design stage, Non-manifold topology, Building performance simulation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id ascaad2010_097
id ascaad2010_097
authors Kenzari, Bechir
year 2010
title Generative Design and the Reduction of Presence
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 97-106
summary Digital design/fabrication is slowly emancipating architectural design from its traditional static/representational role and endowing it instead with a new, generative function. In opposition to the classical isomorphism between drawings and buildings, wherein the second stand as translations of the first, the digital design/fabrication scenario does not strictly fall within a semiotic frame as much as within a quasi biological context, reminiscent of the Aristotelian notion of entelechy. For the digital data does not represent the building as much it actively works to become the building itself. Only upon sending a given file to a machine does the building begin to materialize as an empirical reality, And eventually a habitable space as we empirically know it. And until the digital data actualizes itself, the building qua building is no more than one single, potential possibility among many others. This new universe of digital design/fabrication does not only cause buildings to be produced as quick, precise, multiply-generated objects but also reduces their presence as original entities. Like cars and fashion items, built structures will soon be manufactured as routinely-consumed items that would look original only through the subtle mechanisms of flexibility: frequent alteration of prototype design (Style 2010, Style 2015..) and “perpetual profiling” (mine, yours, hers,..). The generic will necessarily take over the circumstantial. But this truth will be veiled since “customized prototypes” will be produced or altered to individual or personal specifications. This implies that certain “myths” have to be generated to speed up consumption, to stimulate excessive use and to lock people into a continuous system which can generate consumption through a vocabulary of interchangeable, layered and repeatable functions. Samples of “next season’s buildings” will be displayed and disseminated to enforce this strategy of stimulating and channeling desire. A degree of manipulation is involved, and the consumer is flattered into believing that his or her own free assessment of and choice between the options on offer will lead him or her to select the product the advertiser is seeking to sell. From the standpoint of the architect as a maker, the rising upsurge of digital design and fabrication could leave us mourning the loss of what has been a personal stomping ground, namely the intensity of the directly lived experiences of design and building. The direct, sensuous contact with drawings, models and materials is now being lost to a (digital) realm whose attributes refer to physical reality only remotely. Unlike (analogue) drawings and buildings, digital manipulations and prototypes do not exercise themselves in a real space, and are not subjected in the most rigorous way to spatial information. They denote in this sense a loss of immediacy and a withering of corporal thought. This flexible production of space and the consequent loss of immediate experience from the part of the designer will be analyzed within a theoretical framework underpinned mainly by the works of Walter Benjamin. Samples of digitally-produced objects will be used to illustrate this argument.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2015_271
id ecaade2015_271
authors Kreutzberg, Anette
year 2015
title Conveying Architectural Form and Space with Virtual Reality
doi https://doi.org/10.52842/conf.ecaade.2015.1.117
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 117-124
summary The purpose of this study was to explore the user experience of non-specialists viewing and navigating in an architectural native (Revit) BIM model in Virtual Reality (VR) with a head mounted display (HMD). The perceived sense of presence as well as the quality of vision and total VR experience was examined and also compared with standard computer screen display. The study shows that conveying architectural form and space to non-specialists can be done with reasonable good results with the use of present time real-time rendered BIM models in VR even if the HMD is not calibrated individually. The study also shows that development of VR hardware and real-time render software as well as the practical use must be further developed to fully utilize the VR potential.
wos WOS:000372317300013
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7d2df70c-702c-11e5-a756-67dba6a9858a
last changed 2022/06/07 07:51

_id ecaade2015_136
id ecaade2015_136
authors Makki, Mohammed; Farzaneh, Ali and Navarro, Diego
year 2015
title The Evolutionary Adaptation of Urban Tissues through Computational Analysis
doi https://doi.org/10.52842/conf.ecaade.2015.2.563
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 563-571
summary The use of evolutionary solvers in design has introduced the potential of dealing with multiple conflicting objectives under a single design model. The experiments presented in this paper employ an evolutionary solver towards the generation of a 4x4 urban superblock in the city of Barcelona, one of the highest population density cities in Europe. The superblock is based on Cerda's iconic 8-sided block and takes three conflicting objectives into account, aiming not only to achieve a high density proposal but one that considers block relations, as well as green space throughout the city. The design is based on principles of evolutionary science, generating a population of solutions, whose individuals are ranked and selected based on a fitness criteria. Rather than aiming to reach a single 'optimal' solution, the model produces a population of solutions that are optimized in relation to the design environment.
wos WOS:000372316000063
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2015_015
id caadria2015_015
authors Melenbrink, Nathan and Nathan King
year 2015
title Fulldome Interfacing
doi https://doi.org/10.52842/conf.caadria.2015.221
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 221-230
summary The ability to communicate design intent to potential users, clients, and communities is fundamental to the process of architectural design. Conventionally, this need is addressed through phased submissions of drawings, renderings, animations, and physical models—all with the intention of representing space and its constituent elements. Recent technological advancements however—including tools like those produced by OculusTM—have begun to present new opportunities for spatial representation through the use of simulated 3D environments that are both convenient for the design team and readily accepted by clients and end users. While immersive technologies do present novel representational opportunities, current workflows position the potential at the conclusion of the design process, not as part of it. The project presented here moves beyond mere representation and positions simulated 3D environments within the design process itself. To this end, an integrated real-time computational workflow that enables the use of simulated spatial experience as an iterative design tool was developed in order to create the illusion of being in a space while it is being designed and allowing experientially informed decision making. The Fulldome Interface creates a collaborative immersive environment that utilizes a novel computational design workflow (linking the parametric GrasshopperTM for RhinocerosTM design environment to the Unity3DTM gaming engine) that responds in real-time through dome-based stereoscopic projection that can be experienced by multiple occupants simultaneously.
keywords Immersive; fulldome; real-time; interface; parametric design
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2015_102
id caadria2015_102
authors Loh, Paul
year 2015
title Articulated Timber Ground, Making Pavilion as Pedagogy
doi https://doi.org/10.52842/conf.caadria.2015.023
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 23-32
summary Designing and making a pavilion within a studio setting has been undertaken by various educators and researchers as a valuable pedagogy in the past 10 years. It aims to construct a collaborative environment that allows students to develop an integrated approach to learning; through association, teamwork and creative collaboration. Usually the tacit knowledge applied and acquired through making, and the knowledge of design strategy and analysis are separated in the way they are taught; it is often difficult to integrate these within the same coursework which often leads to students using digital software and fabrication tools as problem solving devices. This paper looks at an integrated approach to learning computational design and digital fabrication through the making of a pavilion by a Master level design studio. The paper discusses the pedagogy of making through creative collaboration and integrated workflow. It focuses on the use of digital and physical prototypes as devices to stimulate an oscillating dialogue between problem solving and puzzle making; a counterpoint for students to develop and search for new knowledge in order to create personalised learning experience. The paper concludes with an examination on the limits of digital prototype when interfaced with physical environment.
keywords Digital Fabrication; Collaborative Design; Design Workflow; Pedagogy, File to Production
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2015_164
id caadria2015_164
authors Mcginley, Tim and Darren Fong
year 2015
title Designghosts
doi https://doi.org/10.52842/conf.caadria.2015.365
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 365-374
summary For architects, a database of typological specific occupant behaviour patterns could help in the design of buildings, through a typological specific insight into the previous use of buildings. In addition, appropriately represented occupant behaviour data in commercial buildings represent an important factor for facilities management (FM) and business information (BI) teams in the assessment the operational performance of the enterprise. Building Information Models (BIM) could provide an appropriate reference for this user data. However the mapping of user behaviour data to the BIM models is unclear. This paper presents a ‘designGhost’ information system to support the mapping of occupant behaviour to BIM models, so that the user data can be represented to the different stakeholders. To test the information system a prototype tool is presented to enable the mapping of the building use (designGhost) data to the building’s spaces in order to support architects in the design stage and to support navigation from an operational (FM/BI) perspective. This paper addressees the challenges of developing such a system and proposes directions for future work.
keywords Post occupancy evaluation; BIM; visibility graph analysis; designGhost; occupant behaviour; design science; building design and operation.
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia15_69
id acadia15_69
authors Wilcox, Glenn; Trandafirescu, Anca
year 2015
title C-Lith: Carbon Fiber Architectural Units
doi https://doi.org/10.52842/conf.acadia.2015.069
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 69-79
summary C-LITH is the reconsideration of the architectural building unit through the exploration of new composite techniques and materials. Our project develops individual compo- nents that exploit the strength, lightness, and variability possible with carbon ber laments when paired with computation, digital fabrication, and hand assembly. Traditionally, architectural units made of brick or concrete are small and multiple, heavy, dif cult to vary, and are much better in compression than tension. Using carbon ber laments to create variable units allows for larger individual units that can vary in both shape and structural performance as needed. Our units, developed through winding pre-preg carbon ber tow around disposable molds, bene t structurally from the quasi-isotropic properties that are developed through the winding patterns. The specific structural capacities of the units remain to be understood through further testing and analysis, which falls outside the scope of this current research. At this junction, structural capacities have been determined empirically, i.e. will it stand? Most importantly, as a formal study, our units address the use of carbon ber at the scale of architectural production. A majority of the effort involved in materializing C-LITH was the development of a two-fold prototypical manufacturing process that produces the components and assembly. For this we invented a method to quickly and cheaply construct variable cardboard molds that could withstand the wound casting and baking steps, but could also be easily weakened through water immersion to be removed. For the assembly we developed a rigid dummy-jig system to hold the joint plates in position with a high level of precision but could also incrementally absorb the adjustment errors unavoidable in hand assembly systems. Using a simple pin connection the resultant structures can be easily disassembled for transportation and reassembly elsewhere.
keywords Carbon Fiber Composite, Variability, Fabrication, Computation, Coding, Molds, Jigging, Assembly
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id ecaade2015_280
id ecaade2015_280
authors Adilenidou, Yota
year 2015
title Error as Optimization - Using Cellular Automata Systems to Introduce Bias in Aggregation Models through Multigrids
doi https://doi.org/10.52842/conf.ecaade.2015.2.601
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 601-610
summary This paper is focusing on the idea of error as the origin of difference in form but also as the path and the necessity for optimization. It describes the use of Cellular Automata (CA) for a series of structural and formal elements, whose proliferation is guided through sets of differential grids (multigrids) and leads to the buildup of big span structures and edifices as, for example, a cathedral. Starting from the error as the main idea/tool for optimization, taxonomies of morphological errors occur and at a next step, they are informed with contextual elements to produce an architectural system. A toolbox is composed that can be implemented in different scales and environmental parameters, providing variation, optimization, complexity and detail density. Different sets of experiments were created starting from linear structural elements and continuing to space dividers and larger surface components.
wos WOS:000372316000067
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=5cf73be0-6e8f-11e5-b7a4-1b188b87ef84
last changed 2022/06/07 07:54

_id acadia15_123
id acadia15_123
authors Askarinejad, Ali; Chaaraoui, Rizkallah
year 2015
title Spatial Nets: the Computational and Material Study of Reticular Geometries
doi https://doi.org/10.52842/conf.acadia.2015.123
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 123-135
summary Reticular systems are in many aspects a distinct taxonomy of volumetric geometries. In comparison with the conventional embodiment of a ‘volume’ that encapsulates a certain quantity of space with a shell reticular geometries emerge from the accumulation of micro elements to define a gradient of space. Observed in biological systems, such structures result from their material properties and formation processes as well as often ‘simple’ axioms that produce complex results. In micro or macro levels, from forest tree canopies to plant cell walls these porous volumes are not shaped to have a singular ‘solution’ for a purpose; they provide the fundamental geometric characteristics of a ‘line cloud’ that is simultaneously flexible in response to its environment, porous to other systems (light, air, liquids) and less susceptible to critical damage. The porosity of such systems and their volumetric depth also result in kinetic spatial qualities in a 4D architectural space. Built upon a ‘weaving’ organization and the high performance material properties of carbon fiber composite, this research focuses on a formal grammar that initiates the complex system of a reticular volume. A finite ‘lexical’ axiom is consisted of the basic characters of H, M and L responding to the anchor points on the highest, medium and lower levels of the extruding loom. The genome thus produces a string of data that in the second phase of programming are assigned to 624 points on the loom. The code aims to distribute the nodes across the flat line cloud and organize the sequence for the purpose of overlapping the tensioned strings. The virtually infinite results are then assessed through an evolutionary solver for confining an array of favorable results that can be then selected from by the designer. This research focuses on an approximate control over the fundamental geometric characteristics of a reticular system such as node density and directionality. The proposal frames the favorable result of the weave to be three-dimensional and volumetric – avoiding distinctly linear or surface formations.
keywords Reticular Geometries, Weaving, Line Clouds, Three-dimensional Form-finding, Carbon fiber, Prepreg composite, Volumetric loom, Fiberous Materials, Weaving fabrication, Formal Language, Lexical design, Evolutionary solver
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_237
id caadria2015_237
authors Bazalo, Frano. and Tane J. Moleta
year 2015
title Responsive Algorithms
doi https://doi.org/10.52842/conf.caadria.2015.209
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 209-218
summary An algorithm is a process of addressing a problem in a finite number of steps. In the context of architectural design, algorithmic thinking means taking on an interpretive role to understand the results in relation to design criteria, knowing how to modify the code to explore new options, and speculating on further design potentials. The application of algorithms within architecture often addresses the developed design stages, primarily to optimise structure, test environmental performance or to resolve complex construction. This research aims to explore algorithmic tools with a focus on early stage design. This design stage is often developed using traditional processes and is where algorithmic applications have been less successfully executed. The objectives are to algorithmically explore the areas of space planning, programme layout, form finding and form optimisation within early stage architectural design. Through the combination of a range of diverse algorithms, this research has an ultimate aim of integrating a computational workflow into practice at the early design stage.
keywords Computational design, Early stage design
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201715302
id ijac201715302
authors Borges de Vasconselo, Tássias and David Sperling
year 2017
title From representational to parametric and algorithmic interactions: A panorama of Digital Architectural Design teaching in Latin America
source International Journal of Architectural Computing vol. 15 - no. 3, 215-229
summary This study focuses on the context of graphic representation technologies and digital design on Architectural teaching in Latin America. From categories proposed by Oxman and Kotnik and through a mapping study framed by a systematic review in CumInCAD database, it is presented a panorama of the state-of-art of the digital design on Architectural teaching in the region, between 2006 and 2015. The results suggest a context of coexistence of representational interaction and parametric interaction, as well as a transition from one to another and the emergence of the first experiments in algorithmic interaction. As this mapping shows an ongoing movement toward Digital Architectural Design in Latin America in the last decade, and points out its dynamics in space in time, it could contribute to strengthen a crowdthinking network on this issue in the region and with other continents.
keywords Computer-aided architectural design, Digital Architectural Design teaching, interaction with digital media, levels of design computability, Latin America, mapping study
series journal
email
last changed 2019/08/07 14:03

_id acadia17_202
id acadia17_202
authors Cupkova, Dana; Promoppatum, Patcharapit
year 2017
title Modulating Thermal Mass Behavior Through Surface Figuration
doi https://doi.org/10.52842/conf.acadia.2017.202
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 202-211
summary This research builds upon a previous body of work focused on the relationship between surface geometry and heat transfer coefficients in thermal mass passive systems. It argues for the design of passive systems with higher fidelity to multivariable space between performance and perception. Rooted in the combination of form and matter, the intention is to instrumentalize design principles for the choreography of thermal gradients between buildings and their environment from experiential, spatial and topological perspectives (Figure 1). Our work is built upon the premise that complex geometries can be used to improve both the aesthetic and thermodynamic performance of passive building systems (Cupkova and Azel 2015) by actuating thermal performance through geometric parameters primarily due to convection. Currently, the engineering-oriented approach to the design of thermal mass relies on averaged thermal calculations (Holman 2002), which do not adequately describe the nuanced differences that can be produced by complex three-dimensional geometries of passive thermal mass systems. Using a combination of computational fluid dynamic simulations with physically measured data, we investigate the relationship of heat transfer coefficients related to parameters of surface geometry. Our measured results suggest that we can deliberately and significantly delay heat absorption re-radiation purely by changing the geometric surface pattern over the same thermal mass. The goal of this work is to offer designers a more robust rule set for understanding approximate thermal lag behaviors of complex geometric systems, with a focus on the design of geometric properties rather than complex thermal calculations.
keywords design methods; information processing; physics; smart materials
series ACADIA
email
last changed 2022/06/07 07:56

_id cf2015_124
id cf2015_124
authors de Souza, Douglas Lopes; Martinez, Andressa Carmo Pena and Santos, Denise de Mônaco
year 2015
title The Potential Use of Laser Scanner in Urban Contexts
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 124-134.
summary 3D laser scanner is an instrument that employs LiDAR technology to map out objects in space by means of remote detection. In Architecture, digital mapping through 3D laser scanning mainly aims at creating digital surface models based on instant recordings of still objects, whereas lived spaces such as squares, streets, and urban surroundings presuppose the presence of people on the move. This paper presents some preliminary results of an investigation on the use of 3D laser scanning in urban contexts. It seeks to examine experimental data on moving people obtained in point clouds and discuss their operationalization possibilities and limitations. The main goal of this investigation is to assess the potential of this technology for use as a research tool and in city-scale design processes.
keywords 3D laser scanning technology, motion modeling, geometrical modeling, computational tools, urban survey.
series CAAD Futures
email
last changed 2015/06/29 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_131177 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002