CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 588

_id caadria2015_077
id caadria2015_077
authors Shiff, Galit; Yael Gilad and Amos Ophir
year 2015
title Adaptive Polymer Based BIPV Skin
doi https://doi.org/10.52842/conf.caadria.2015.345
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 345-354
summary This study focuses on developing three-dimensional solar panels, as an alternative to traditional flat Photovoltaic (PV) surfaces in Building Integrated Photovoltaic (BIPV). We propose to increase the energy efficiency of buildings by using the entire envelope for energy production as well as by increasing the efficiency of solar energy output in orientations which were traditionally considered as non-ideal. The panels are constructed from Polycarbonate with integrated flexible photovoltaic film, solar paint or dye. The methodology included digital algorithm-based tools for achieving optimized variable three-dimensional surfaces according to local orientation and location, computational climatic simulations and comparative field tests. In addition, the structural, mechanical and thermal properties of the integration between flexible PV sheets and hard plastic curved panels were studied. Interim results demonstrate a potential improvement of 50-80% in energy production per building unit resulting from geometric variations per-se. The dependence of energy production by surface geometry was revealed and an optimized method for solar material distribution on the surface was proposed. A parametric digital tool for automatic generation of optimized three-dimensional panels was developed together with a database and material models of the optimized panels system.
keywords Building Integrated Photovoltaics; digital algorithm; climatic simulations; building envelope
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2015_8.81
id sigradi2015_8.81
authors Alvarado, Rodrigo García; Lobos, Danny; Nope, Alberto; Tinapp, Frank
year 2015
title BIM + UAV Assessment of Roofs’ Solar Potential
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 336-340.
summary This paper describes a novel method for determining the capacity to generate solar energy integrated into the roofs of buildings by aerial survey using UAVs and BIM models for sizing the covering surfaces and integration of solar panels. Various digital procedures are enchained like planning of trajectories, image processing, geometric reconstitution, simulation of solar radiation and calculation of energy generation to promote on-site installation of clean energy sources in existing buildings, to ensure a more sustainable habitat.
keywords BIM, UAV, Solar Energy, Sustainable Building
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2015_467
id cf2015_467
authors Benrós, Deborah; Eloy, Sara and Duarte, José Pinto
year 2015
title Re-inventing ceramic tiles: Using shape grammars as a generative method and the impact on design methodology
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 467.
summary The following paper describes the process and results achieved with the workshop entitled ‘Re-inventing Portuguese ceramic tiles’ reflecting on design methodology and design teaching. Workshop participants were invited to rethink ceramic tile patterns developing a different process which used shape grammars as a generative system. Each participant group developed a three stage task using shape grammars principles and methodology. The preliminary results the work developed are of particular relevance in shape grammar research: firstly shape grammar formulae does not constitute an intuitive process to most creative designers which are often trained to design singular solutions for a specific problem, secondly more than one operative shape grammar can be formulated to represent the same corpus of solutions and lastly the generative potential of grammars transcends the normal capacities of the original grammarist aiding in design exploration and enlarging the corpus of feasible solutions. This paper also reflects on the impact of shape grammars as a design methodology.
keywords Shape grammar, patterns, ceramic tiles, 2d, 3d
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_17
id ecaade2015_17
authors Conti, Zack Xuereb; Shepherd, Paul and Richens, Paul
year 2015
title Multi-objective Optimisation of Building Geometry for Energy Consumption and View Quality
doi https://doi.org/10.52842/conf.ecaade.2015.1.287
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 287-294
summary In property development, the view quality contributes significantly to the property value. In many cases, the architect is constrained by the property developer to take full advantage of the view by designing large glazed facades ignoring the consequence on the energy consumption of the building caused by the conflicting orientation of the view. This paper presents a design tool to help the architect interactively explore different building and window geometries that trade-off energy consumption (kWh) and view quality (€). This design tool allows interaction with parametric building geometry, simulation of energy consumption and view quality, and an optimisation search engine. The simulation of the view quality quantifies a view according to the visibility and quality of its contents by using a novel view-scoring method. The design tool is tested with both north-oriented and south-oriented views and produces a Pareto front from which resulting geometries are visualised.
wos WOS:000372317300031
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=5681d860-702e-11e5-b00a-0bb98a953a02
last changed 2022/06/07 07:56

_id cf2015_434
id cf2015_434
authors Dalla Vecchia, Luisa Félix; da Silva, Adriane Borda; Pires, Janice; Veiga, Mônica; Vasconselos, Tássia and Borges, Letícia
year 2015
title Tactile models of elements of architectural heritage: from the building scale to the detail
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 434-446.
summary This paper describes the development of three-dimensional models, produced using digital fabrication techniques with the goal of providing a haptic experience of architectural heritage. These models were produced in three different representations: the building as a whole, elements and details. This study first undertakes a process of analysis and the formal decomposition of architectural components to identify basic or simplified elements which make it easier to understand the represented object by touching. The results obtained come from assessment tests of the tactile models as experienced by mainly blind individuals. Secondly, as part of this process, a method of constructing such models is defined. This study facilitates a greater understanding of the relationship between the represented objects (historic buildings) and the tactile models, and provides a technological and discursive basis for future implementation of tactile models in a specific context.
keywords tactile models, architectural heritage, digital fabrication, haptic experience.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_119
id ecaade2015_119
authors Dokonal, Wolfgang; Knight, Michael W. and Dengg, Ernst Alexander
year 2015
title New Interfaces - Old Models
doi https://doi.org/10.52842/conf.ecaade.2015.1.101
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 101-106
summary The rapid development of new Virtual Reality (VR) devices such as the Oculus Rift and Google Cardboard together with Augmented Reality (AR) applications such as 3Dplus (by the Finnish company advice) or gaming software such as Unity3D and Unreal Engine 4 raises the question of how we can use these new interfaces and applications to access our increasingly data-rich models. In this paper we will summarise the results of a joint international workshop where students explored the use of these new interfaces on existing models. During the course of the workshop, the students built their own VR environments to test spatial perception and then used different types of housing models with these interfaces to find out what kind of information inside those data rich models is best suited to be accessed using these new interfaces. The question will be if there is any added value - besides the novelty factor - in using these new devices in combination with old models. To give an extra dimension to the virtual nature of the workshop, students collaborated with some of the tutors primarily digitally using the virtual models and other online tools (Skype/Twitter/discussion boards). By having collaboration through the medium of the virtual interactive model as the core communication method, the amount, type and methods of presenting the information is tested and evaluated. This is work in progress and we had to experience several problems that we could not overcome in the available time.
wos WOS:000372317300011
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=54a3a8e0-702c-11e5-9592-c7c2b292a6cf
last changed 2022/06/07 07:55

_id ijac201513206
id ijac201513206
authors Erhan, Halil; Ivy Y. Wang, and Naghmi Shireen
year 2015
title Harnessing Design Space: A Similarity-Based Exploration Method for Generative Design
source International Journal of Architectural Computing vol. 13 - no. 2, 217-236
summary Working with multiple alternatives is a central activity in design; therefore, we expect computational systems to support such work. There is a need to find out the tool features supporting this central activity so that we can build new systems. To explore such features, we propose a method that aims to enable interaction with a large number of design alternatives by similaritybased exploration. Using existing data analysis and visualization techniques adopting similarity-based search, we formalized the method and its elements by focusing on systematic filtering, clustering, and choosing alternatives. We present a scenario on developing conceptual designs for a residential apartment to illustrate how the method can be applied, as well as to reveal the limitation of current tools and the potential interactive clustering and filtering features for the new systems coupled with parametric design.
series journal
last changed 2019/05/24 09:55

_id caadria2015_096
id caadria2015_096
authors Fukuda, Tomohiro; Toshiki Tokuhara and Nobuy-Oshi Yabuki
year 2015
title Development of A Kinematic Physical Model for Building Volume Simulation
doi https://doi.org/10.52842/conf.caadria.2015.241
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 241-250
summary Both a physical model and VR are three-dimensional expression tools to enable intuitive understanding; however, both have pros and cons. Thus, this research took up the challenge of developing a kinematic physical model system for volume simulation of buildings or a city by using a physical model and VR data integrally. The developed system consists both of hardware which packed 105 lifting rods into a grid (the height of the rods could be changed individually by stepper motors) and of software which calculated the height of each rod from the VR data and lifted the rods. Through conducting verification experiments on the prototype system, a physical urban model could be produced in about two minutes, within acceptable error limits. In conclusion, the proposed method was evaluated as feasible and effective.
keywords Kinematic model; physical model; Virtual Reality; rapid prototyping; building volume simulation; interaction.
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2015_033
id caadria2015_033
authors Hadilou, Arman
year 2015
title Phototropism of Tensile Façade System through Material Agency
doi https://doi.org/10.52842/conf.caadria.2015.127
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 127-136
summary This paper researches material agencies, mechanical systems and façade designs that are able to respond to environmental changes through local interactions, inspired by biological systems. These are based on a model of distributed intelligence founded on plants and animal collectives, from which intelligent behavior emerges through simple local associations. Biological collective systems integrate material form and responsiveness and have the potential to inform new architectural and engineering strategies. The design approach of this research is based on a data-driven methodology spanning from design inception to simulation and physical modeling. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. The driving concepts are three types of evolutionary adaptation: flexibility, acclimation, and learning. The proposed façade system is a responsive textile shading structure which uses integrated actuators that moderate their local environments through simple interactions with their immediate neighbors. Computational techniques coupled to material logics create an integral design framework leading to heterogeneous environmental and structural conditions, producing local responses to environmental stimuli and ultimately effective performance of the whole system.
keywords Responsive facade; phototropism; material intelligence.
series CAADRIA
email
last changed 2022/06/07 07:49

_id sigradi2015_8.339
id sigradi2015_8.339
authors Heidrich, Felipe Etchegaray; Dominguez, Ernest Redondo
year 2015
title Immersion, interactivity and Non-Photorealistic: Analysis of a possibility for three-dimensional models of academic architectural projects
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 420-424.
summary This paper had as objective to propose a development method for a graphical representations with immersion, interactivity and non- photorealistic for use in the communication of academic architectural projects and which can be generated using the same digital models that students develop normally.
keywords Immersion, Interactivity, Non-Photorealistic, QTVR, Tablet
series SIGRADI
email
last changed 2016/03/10 09:53

_id cf2015_211
id cf2015_211
authors Hu, Yongheng
year 2015
title The Computation Turn in Structural Performance Based Architecture Design
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 211-225.
summary It is necessary for an architect to engage closely with structural design, to interpret their design idea thoroughly, and it requires carefully collaboration between architect and engineer. The structural performance based design is not only to obey structure principle but to explore different possibilities of engineer and architectural innovation. Architects could apply this method in the earlier stage of design, and it could provide the efficient solution for structure, create a new spatial experience and further improve the construction quality in the later phase of development. In comparison to structural performance-based design in history, the computational technology has made it possible for architects to implement further the structural knowledge in more dynamic and sophisticated environment. This paper will discuss the history development and current transformation of this method. Three research project will explain the current experimental design process and back the idea of this method.
keywords Performance Based Architecture design, Computational Design, Structural Optimization
series CAAD Futures
type normal paper
email
last changed 2015/07/28 20:41

_id ecaade2015_194
id ecaade2015_194
authors Kaushik, Vignesh and Janssen, Patrick
year 2015
title Urban Windflow:Investigating the use of animation software for simulating windflow around buildings
doi https://doi.org/10.52842/conf.ecaade.2015.1.225
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 225-234
summary The animation and visual effects industry is producing advanced software capable of generating realistic behaviours faster than ever by using algorithms that approximate the physics of the real world. There is an opportunity to utilize these software to support performance-based conceptual design for complex simulations such as Computational Fluid Dynamics (CFD). This paper investigates a method of performing windflow simulation using an animation software that implements an Eulerian based smoke solver. These simulations run orders of magnitude faster than the similar simulations in dedicated high-end CFD applications. The paper compares the animated simulation results to a benchmark case with measured wind-tunnel data. The results indicate that at certain points in the animation, the accuracy is very high. However, the challenge lies in predicting best frame at which to stop the animation. The paper ends with a discussion of how this challenge might be tackled.
wos WOS:000372317300024
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c02da8d0-702d-11e5-ba25-7396141e161c
last changed 2022/06/07 07:52

_id ecaade2015_139
id ecaade2015_139
authors Krietemeyer, Bess and Rogler, Kurt
year 2015
title Real-Time Multi-Zone Building Performance Impacts of Occupant Interaction with Dynamic Façade Systems
doi https://doi.org/10.52842/conf.ecaade.2015.2.669
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 669-678
summary Recent developments in responsive electroactive materials are increasing the rate at which next-generation façade technologies can respond to environmental conditions, building energy demands, and the actions of building occupants. Simulating the real-time performance of dynamic façade systems is critical for understanding the impacts that occupant response will have on whole-building energy performance and architectural design. This paper describes a method for real-time analysis of the multi-zone building performance impacts of occupant interaction with a dynamic façade system, the Electroactive Dynamic Display System (EDDS). The objective is to optimize EDDS implementation and define system limitations, incorporate EDDS as a dynamic factor in multi-zone building energy analyses, and provide real-time feedback of building performance data based on environmental conditions and occupant interactions. Preliminary results of parametric simulation methods demonstrate the ability of dynamic façade systems to consider real-time occupant interaction in the analysis of daylighting and thermal performance of buildings.
wos WOS:000372316000074
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2015_065
id caadria2015_065
authors Matsubayashi, Michio; and Shun Watanabe
year 2015
title Generating Schematic Diagrams of MEP Systems from 3D Building Information Models for Use in Conservation
doi https://doi.org/10.52842/conf.caadria.2015.293
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 293-302
summary In this paper, we propose a method of generating schematic diagrams from 3D models of mechanical, electrical and plumbing (MEP) systems in order to represent this information in a more traditional, user-friendly format. It can be difficult to grasp the relationships between various MEP elements in building information models (BIM) because they are represented in a visually complex, three-dimensional manner. On the other hand, the relationships between building elements can be easily understood when using traditional schematic diagrams. First, sets of connected elements are extracted from a 3D model of MEP elements using their connection properties. Next, various elements of these systems are identified as nodes and their connections are represented as edges. Finally, these systems are displayed as a schematic diagram using element attribute information.
keywords BIM; Schematic Diagram; Attribute Information; Graph; Existing Buildings.
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2015_012
id caadria2015_012
authors Nakama, Yuki; Yasunobu Onishi and Kazuhisa Iki
year 2015
title Development of Building Information Management System Using BIM toward Strategic Building Operation and Maintenance
doi https://doi.org/10.52842/conf.caadria.2015.397
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 397-406
summary Facility management is aimed at energy saving, increasing the lifespan of buildings, enhancing the satisfaction of facility users and reducing running costs. To that end, it is important to grasp the conditions of the building in detail, and to analyze them one by one in order to execute building operation and maintenance strategically. However, conventional CAFM is insufficient. Therefore, we developed a system (called Building Information Management System) to utilize BIM data made in BIM-CAD on a Web site. We used groupware to support the system and an information platform that enables flexible management of a great variety of maintenance information. In addition, we developed an environmental measurement module and built a structure to sensor information automatically by using a development system. For quality maintenance, detailed information of building operation and maintenance is both from human input and sensors. The proposed method analysis of a building and provides the foundation for strategic control of maintenance.
keywords BIM, FM, Groupware, Web application, Sensor
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2015_314
id ecaade2015_314
authors Narahara, Taro and Kobayashi, Yoshihiro
year 2015
title Crowd Mapper: Projection-based Interactive Pedestrian Agents for Collective Design in Architecture
doi https://doi.org/10.52842/conf.ecaade.2015.1.191
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 191-200
summary Crowd Mapper is a projection-based, low-cost spatial design tool that can visualize possible pedestrian crowd behaviors associated with spatial configurations that are interactively updated by users. The method utilizes efficient representation of 2-D silhouette-based figures using agent-based computation, developed by the first author, and allows real-time editing of building designs by multiple users. The use of projection mapping technology allows architects to project multiple design schemes with three-dimensional depth and qualities. While this method still conforms to the familiar framework of architectural production standards utilizing traditional white massing models, the method has a potential to improve the existing work flow and stimulate the creativity of architects by its real-time editing capabilities.
wos WOS:000372317300020
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=73e06404-702d-11e5-95d7-4b1f80fd74e7
last changed 2022/06/07 07:59

_id sigradi2015_sp_4.388
id sigradi2015_sp_4.388
authors Nunes, Jo?o Fernando Igansi
year 2015
title LUZAZUL: Creation methodology and management of hypermedia for cultural inclusion and public education in the service of TILES IN THE ARCHITECTURAL HERITAGE Pelotas / RS
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 780-785.
summary LUZAZUL - Light Blue project is interdisciplinary, curricular action as documentation and conceptual production strategy for theory and practice, focused on heritage as cultural inclusion vector, public training and development of integrated movable manners. It is based especially on hypermedia resource whose central object is the inventory of the TILE IN ARCHITECTURAL HERITAGE Pelotas - RS, electronically duplicated and made available on mobile, wireless devices. Exploring the conditions of free software platforms, this initiative invests in building method for the development, agency and updating publishable data into digital language.
keywords Tile, Hypermedia, Communication, Inclusion, Education
series SIGRADI
email
last changed 2016/03/10 09:56

_id ascaad2016_004
id ascaad2016_004
authors Peteinarelis, Alexandros; Socrates Yiannoudes
year 2016
title Algorithmic Thinking in Design and Construction - Working with parametric models
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 19-28
summary This paper examines the parametric model in algorithmic design processes, using the outcome of an educational digital design and fabrication course as a case study. In its long history, algorithmic design as a form-finding method, allowed designers to manage complex non-standard associative geometries, suggesting a shift from the digital representation of form, to its systematic representation into a parametric model through code. Rather than a style or a tool, the parametric model is best defined in mathematical terms; in practice it incorporates the organizational logic of the form and the topological associations of its parts, so that a change in its constitutive parameters will invoke a concerted update of the entire model, and, iteratively, formal and structural variations. In a series of design experiments that took place at the School of Architecture of the Technical University of Crete in the spring of 2015, we used parametric models represented into visual code, from the initial conceptual stage to fabrication. From the experience and outcome of this course, we deduced that, compared to other digital formation methods, parametric models allow the designer to constantly interact with the model through the code, producing discreet variations without losing control of the design intentions, by “searching” into a wide range (albeit finite) of virtual results. This suggested a shift in culturally embedded patterns of modernist design thinking.
series ASCAAD
email
last changed 2017/05/25 13:13

_id sigradi2015_6.387
id sigradi2015_6.387
authors Pramanik, Adetania; Haymaker, John; Swarts, Matthew; Zimring, Craig
year 2015
title Integrating clinic process flow, space syntax and space adjacency analysis: Formalization of computational method in building programming
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 262-272.
summary This paper presents a computational space adjacency analysis method by integrating information and analysis from process flow methods used in the healthcare system with space syntax methods used in architecture. These methods involve similar conceptual properties related to activity, space and flow. However, their implementation in the building programming process is disconnected, and relies solely on experience and expert opinions. The basic approach for the integration was by abstracting these similar properties in the process flow diagram, space connectivity diagram, and justified plan graph into nodes and edges representations. A case study of a clinic that is currently in the construction phase was used to develop the integration procedure and comparison analysis with the actual floorplan.
keywords Spatial Adjacency, Process Flow, Space Syntax, Graph Theory, Building Programming
series SIGRADI
email
last changed 2016/03/10 09:58

_id acadia15_57
id acadia15_57
authors Sina, Ata; Pitt, Shannon; Meyboom, Annalisa; Olson, James; Martinez, Mark
year 2015
title Thermocatalytic Metafolds
doi https://doi.org/10.52842/conf.acadia.2015.057
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 57-67
summary Thermocatalytic Metafolds comprises a paper-based fabrication process that initiates ascetic self-assembly via heat application. Metafolds utilizes a composite material of paper with a selectively applied shape-changing polymer crafted via a multi-step computational, two-dimensional drafting fabrication method. Upon heat application, the paper self-folds into predetermined, three-dimensional, highly accurate, rigid shapes. The final product maintains a notable resilience to alteration, and the stringency of form serves as a testament to the process’ potential to transform the ways in which design is undertaken. This exploration of material properties has cumulated in a process that demonstrates a design based on a detailed understanding of how the composite material behaves under specific conditions.
keywords Self-assembly, folding, composite, fabrication
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_537263 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002