CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 503

_id caadria2015_162
id caadria2015_162
authors Amano, Hiroshi
year 2015
title Panelisation With Sheet Metal Cladding On Free-Form Roof
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 713-722
doi https://doi.org/10.52842/conf.caadria.2015.713
summary This document shows a rationalisation method of sheet metal panelling on free-formed surfaces and a case study of it. Ichimonji-buki is a cladding method widely used in Japan for the roofs of traditional temples and shrines. It consists of sheet metal roofing with flat lock seams, allowing for minimal gaps along the joints. By integrating the characteristics of the flat lock joint and a dynamic relaxation analysis via computational modelling, continuous vertical seam lines can be realised while keeping panels almost identical in shape and with a limited number of variations. In the case study of Silver Mountain, the free-formed roof is clad with approximately 8,000 panels, out of which 92% are standardised and can be easily fabricated.
keywords Panelisation, dynamic relaxation, flat lock seams.
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2015_397
id cf2015_397
authors Blonder, Arielle and Grobman, Yasha Jacob
year 2015
title Alternative Fabrication Process for Free-Form FRP Architectural Elements Relying on Fabric Materiality Towards Freedom from Molds and Surface Articulation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 397-410.
summary FRP (fiber reinforced polymers) is a family of composite materials combining fibers and polymers to offer exceptional mechanical properties. Its unique material properties have led to its wide application across industries. Although we witness a growing interest in the material in the architectural field in recent years, a significant barrier to its application lies in the need for a mold. The paper describes a new alternative fabrication process for architectural FRP elements that relies on fabric materiality. It suggests a mold free process, combining form finding and garment making techniques, to allow for complex morphologies, surface articulation and variation. The paper describes both the fabrication process through physical experiments, as well as the design process through the use of two design software tools. It demonstrates the potential for sustainable variation of large component facade system.
keywords FRP, Fabrication, Architecture, Mold, Materiality, Variation
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_247
id ecaade2015_247
authors Garcia, Manuel Jimenez and Retsin, Gilles
year 2015
title Design Methods for Large Scale Printing
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 331-339
doi https://doi.org/10.52842/conf.ecaade.2015.2.331
wos WOS:000372316000039
summary With an exponential increase in the possibilities of computation and computer-controlled fabrication, high density information is becoming a reality in digital design and architecture. However, construction methods and industrial fabrication processes have not yet been reshaped to accommodate the recent changes in those disciplines. Although it is possible to build up complex simulations with millions of particles, the simulation is often disconnected from the actual fabrication process. Our research proposes a bridge between both stages, where one drives the other, producing a smooth transition from design to production. A particle in the digital domain becomes a drop of material in the construction method.The architect's medium of expression has become much more than a representational tool in the last century, and more recently it has evolved even beyond a series of rules to drive from design to production. The design system is the instruction itself; embedding structure, material and tectonics and gets delivered to the very end of the construction chain, where it gets materialised. The research showcased in this paper investigates tectonic systems associated with large scale 3D printing and additive manufacturing methods, inheriting both material properties and fabrication constraints at all stages from design to production. Computational models and custom design software packages are designed and developed as strategies to organise material in space in response to specific structural and logistical input.Although the research has developed a wide spectrum of 3D printing methods, this paper focuses only on two of the most recent projects, where different material and computational logics were investigated. The first, titled Filamentrics, intends to develop free-form space frames, overcoming their homogeneity by introducing robotic plastic extrusion. Through the use of custom made extruders a vast range of high resolution prototypes were developed, evolving the design process towards the fabrication of precise structures that can be materialised using additive manufacturing but without the use of a layered 3D printing method. Instead, material limitations were studied and embedded in custom algorithms that allow depositing material in the air for internal connectivity. The final result is a 3x2x2.5m structure that demonstrates the viability of this construction method for being implemented in more industrial scenarios.While Filamentrics is reshaping the way we could design and build light weight structures, the second project Microstrata aims to establish new construction methods for compression based materials. A layering 3D printing method combines both the deposition of the binder and the distribution of an interconnected network of capillaries. These capillaries are organised following structural principles, configuring a series of channels which are left empty within the mass. In a second stage aluminium is cast in this hollow space to build a continuous tension reinforcement.
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=07a6d8e0-6fe7-11e5-9994-cb14cd908012
last changed 2022/06/07 07:51

_id ascaad2010_097
id ascaad2010_097
authors Kenzari, Bechir
year 2010
title Generative Design and the Reduction of Presence
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 97-106
summary Digital design/fabrication is slowly emancipating architectural design from its traditional static/representational role and endowing it instead with a new, generative function. In opposition to the classical isomorphism between drawings and buildings, wherein the second stand as translations of the first, the digital design/fabrication scenario does not strictly fall within a semiotic frame as much as within a quasi biological context, reminiscent of the Aristotelian notion of entelechy. For the digital data does not represent the building as much it actively works to become the building itself. Only upon sending a given file to a machine does the building begin to materialize as an empirical reality, And eventually a habitable space as we empirically know it. And until the digital data actualizes itself, the building qua building is no more than one single, potential possibility among many others. This new universe of digital design/fabrication does not only cause buildings to be produced as quick, precise, multiply-generated objects but also reduces their presence as original entities. Like cars and fashion items, built structures will soon be manufactured as routinely-consumed items that would look original only through the subtle mechanisms of flexibility: frequent alteration of prototype design (Style 2010, Style 2015..) and “perpetual profiling” (mine, yours, hers,..). The generic will necessarily take over the circumstantial. But this truth will be veiled since “customized prototypes” will be produced or altered to individual or personal specifications. This implies that certain “myths” have to be generated to speed up consumption, to stimulate excessive use and to lock people into a continuous system which can generate consumption through a vocabulary of interchangeable, layered and repeatable functions. Samples of “next season’s buildings” will be displayed and disseminated to enforce this strategy of stimulating and channeling desire. A degree of manipulation is involved, and the consumer is flattered into believing that his or her own free assessment of and choice between the options on offer will lead him or her to select the product the advertiser is seeking to sell. From the standpoint of the architect as a maker, the rising upsurge of digital design and fabrication could leave us mourning the loss of what has been a personal stomping ground, namely the intensity of the directly lived experiences of design and building. The direct, sensuous contact with drawings, models and materials is now being lost to a (digital) realm whose attributes refer to physical reality only remotely. Unlike (analogue) drawings and buildings, digital manipulations and prototypes do not exercise themselves in a real space, and are not subjected in the most rigorous way to spatial information. They denote in this sense a loss of immediacy and a withering of corporal thought. This flexible production of space and the consequent loss of immediate experience from the part of the designer will be analyzed within a theoretical framework underpinned mainly by the works of Walter Benjamin. Samples of digitally-produced objects will be used to illustrate this argument.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ijac201513205
id ijac201513205
authors Nahmad Vazquez, Alicia and Wassim Jabi
year 2015
title A Collaborative Approach to Digital Fabrication:A Case Study for the Design and Production of Concrete ‘Pop-up’ Structures
source International Journal of Architectural Computing vol. 13 - no. 2, 195-216
summary The research presented in this paper utilizes industrial robotic arms and new material technologies to model and explore a prototypical workflow for on-site robotic collaboration based on feedback loops. This workflow will ultimately allow for the construction of customized, free-form, on-site concrete structures without the need for complex formwork. The paper starts with an explanation of the relevance of collaborative robotics through history in the industry and in architecture. An argument is put forward for the need to move towards the development of collaborative processes based on feedback loops amongst the designer, the robot and the material, where they all inform each other continuously. This kind of process, with different degrees of autonomy and agency for each actor, is necessary for on-site deployment of robots. A test scenario is described using an innovative material named concrete canvas that exhibits hybrid soft fabric and rigid thin-shell tectonics. This research project illustrates the benefits of integrating information-embedded materials, masscustomization and feedback loops. Geometry scanning, parametric perforation pattern control, computational analysis and simulation, and robotic fabrication were integrated within a digital fabrication deployment scenario. The paper concludes with a detailed report of research findings and an outline for future work.
series journal
last changed 2019/05/24 09:55

_id ecaade2016_113
id ecaade2016_113
authors Poinet, Paul, Baharlou, Ehsan, Schwinn, Tobias and Menges, Achim
year 2016
title Adaptive Pneumatic Shell Structures - Feedback-driven robotic stiffening of inflated extensible membranes and further rigidification for architectural applications
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 549-558
doi https://doi.org/10.52842/conf.ecaade.2016.1.549
wos WOS:000402063700060
summary The paper presents the development of a design framework that aims to reduce the complexity of designing and fabricating free-form inflatables structures, which often results in the generation of very complex geometries. In previous research the form-finding potential of actuated and constrained inflatable membranes has already been investigated however without a focus on fabrication (Otto 1979). Consequently, in established design-to-fabrication approaches, complex geometry is typically post-rationalized into smaller parts and are finally fabricated through methods, which need to take into account cutting pattern strategies and material constraints. The design framework developed and presented in this paper aims to transform a complex design process (that always requires further post-rationalization) into a more integrated one that simultaneously unfolds in a physical and digital environment - hence the term cyber-physical (Menges 2015). At a full scale, a flexible material (extensible membrane, e.g. latex) is actuated through inflation and modulated through additive stiffening processes, before being completely rigidified with glass fibers and working as a thin-shell under compression.
keywords pneumatic systems; robotic fabrication; feedback strategy; cyber-physical; scanning processes
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2015_043
id caadria2015_043
authors Zboinska, Malgorzata A.
year 2015
title Enriching Creativity in Digital Architectural Design
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 819-828
doi https://doi.org/10.52842/conf.caadria.2015.819
summary Although conceptual design is one of the most important stages of creation, impacting the quality and cost of the final product, current research indicates that designers still lack adequate tools supporting early-stage design. This research challenges that notion, by proposing a hybrid digital design platform for conceptual architectural design. The platform contains four miscellaneous techniques: animation, free-form modelling, associative parametric modelling and per-formance-driven modelling. In a digital design experiment we demon-strate that the collective application of these techniques to early-stage design explorations intensifies the architect’s visual and cognitive rea-soning processes, and hence supports the emergence of promising de-sign artefacts which bear the traces of all the techniques applied in the course of their conception. Additionally, the study also points at some other promising virtues of the hybrid toolset, including: provision of diversified form-finding opportunities on various levels of design ab-straction; the potential to direct designers onto unplanned creation paths; the ability to increase the versatility and functionality of the solutions; and the capacity to sustain design activities of various character, ranging from highly intuitive ones to very rational ones.
keywords Conceptual design methods and tools; free-form modelling; animation; associative parametric modelling; performance-driven design.
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2015_103
id ecaade2015_103
authors Choi, Joshua
year 2015
title Democratic Play - Crowd-Sourcing through Digital Games for Architectural Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 187-197
doi https://doi.org/10.52842/conf.ecaade.2015.2.187
wos WOS:000372316000023
summary This thesis presents a system that uses games. It allows people to participate in the process of designing an architectural space. The site for the design project of this experimental methodology is a courtyard on MIT campus.The games are initially prepared by the architect through sampling various objects, materials, lighting, and figures from different media such as photogrammetric models around the building site and other relevant 3D modeling/animation contents. The goal of this design system is to collage those components into a final architectural form through a democratic process.The games are distributed to students, faculty and staff who will be the users of the space being designed. Through playing these games, they provide preference about the architectural program and various design decisions regarding formal composition, details, and finishes. This crowd-sourcing occurs both implicitly and explicitly while the game is being played, and the collected feed-back informs the architect about design development.This thesis questions the role of the architects in a democratic process of design: Are we the designer of the space, or creator of a system that controls the design process?.
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2015_033
id caadria2015_033
authors Hadilou, Arman
year 2015
title Phototropism of Tensile Façade System through Material Agency
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 127-136
doi https://doi.org/10.52842/conf.caadria.2015.127
summary This paper researches material agencies, mechanical systems and façade designs that are able to respond to environmental changes through local interactions, inspired by biological systems. These are based on a model of distributed intelligence founded on plants and animal collectives, from which intelligent behavior emerges through simple local associations. Biological collective systems integrate material form and responsiveness and have the potential to inform new architectural and engineering strategies. The design approach of this research is based on a data-driven methodology spanning from design inception to simulation and physical modeling. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. The driving concepts are three types of evolutionary adaptation: flexibility, acclimation, and learning. The proposed façade system is a responsive textile shading structure which uses integrated actuators that moderate their local environments through simple interactions with their immediate neighbors. Computational techniques coupled to material logics create an integral design framework leading to heterogeneous environmental and structural conditions, producing local responses to environmental stimuli and ultimately effective performance of the whole system.
keywords Responsive facade; phototropism; material intelligence.
series CAADRIA
email
last changed 2022/06/07 07:49

_id acadia15_185
id acadia15_185
authors Mogas-Soldevila, Laia; Duro-Royo, Jorge; Oxman, Neri
year 2015
title Form Follows Flow: A Material-Driven Computational Workflow for Digital Fabrication of Large-Scale Hierarchically Structured Objects
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 185-193
doi https://doi.org/10.52842/conf.acadia.2015.185
summary In the natural world, biological matter is structured through growth and adaptation, resulting in hierarchically structured forms with tunable material computation. Conventional digital design tools and processes, by contrast, prioritize shape over matter, lacking integration between modeling, analysis, and fabrication. We present a novel computational environment and workflow for the design and additive manufacturing of large-scale hierarchically structured objects. The system, composed by custom multi-barrel deposition attached to robotic positioning, integrates material properties, fabrication constraints and environmental forces to design and construct full-scale architectural components. Such components are physically form-found by digitally extruding natural polymers with functionally graded mechanical and optical properties informed by desired functionality and executed through flow-based fabrication. In this approach, properties such as viscosity, velocity, and pressure embed information in two-dimensional printing patterns and induce three-dimensional shape formation of the fabricated part. As a result, the workflow associates physical material and fabrication constraints to virtual design tools for modeling and analysis, challenging traditional design workflows and prioritizing flow over form.
keywords Material-driven Design, Additive Manufacturing, Integrated Design Workflows, Digital Fabrication, Digital Design Process, Material Ecology
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id cf2015_358
id cf2015_358
authors Tonn, Christian and Bringmann, Oliver
year 2015
title Point Clouds to BIM: Methods for Building Parts Fitting in Laser Scan Data
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 358-369.
summary New construction within existing buildings requires documentation of the existing buildings, in a form that one is familiar with from new construction or architectural design. Laser scanning is a powerful tool to survey the built reality. It provides a replica of the existing building in the form of a point cloud. The difficulty is to analyse the resulting amounts of data that has been generated and being able to interpret it as a Building Information Model (BIM). This article proposes a new generic approach for pattern recognition of architectural objects. The procedure is introduced through the use of two examples - polygon fitting, which is important for the generation of new building element classes and wall detection. The second part describes how individual components can be automatically connected to consistent networks. BIM systems walls should be aligned, within predefined limits of accuracy, either perpendicular to or in line with each other.
keywords point cloud, BIM, pattern recognition, components, wall alignment.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_122
id caadria2015_122
authors Wu, Kuan-Ying and June-Hao Hou
year 2015
title Spark Wall
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 75-83
doi https://doi.org/10.52842/conf.caadria.2015.075
summary Responsive environment uses human computer interface (HCI) to improve how human experience their surrounding. Many research aimed at different kind of interactive environment modules with new digital tectonics or computation components. However, those new environments are sometimes could be manipulated by components which are less use-friendly and complex than traditional counterparts. In this paper, we implemented a real responsive interface – the Spark wall system, which use 160 actuator modules as our responsive feedback interface and depth camera as sensing input. We built up multi-modal interface for different operating purposes allowing user control responsive environment with their human behavior. User could change their body posture to change the pattern of the wall and moreover define touch-input area on any surface. For the user’s perspective, a responsive environment should be simply and understandable control. A responsive artifact should also be able to dynamically correspond to different methods of operation according to the user's intentions.
keywords Responsive environment; human computer interface; surface computing; multi-modal interface; depth sensing.
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2015_74
id ecaade2015_74
authors Bard, Joshua D.; Blackwood, David, Sekhar, Nidhi and Smith, Brian
year 2015
title Decorative Robotic Plastering - A Case Study of Real-Time Human Machine-Collaboration in High-Skill Domains
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 383-388
doi https://doi.org/10.52842/conf.ecaade.2015.2.383
wos WOS:000372316000044
summary This paper explores hybrid digital / physical workflows in the building trades, a high-skill domain where human dexterity and craft can be augmented by the precision and repeatability of digital design and fabrication tools. In particular the paper highlights a project where historic techniques of decorative plastering are extended through live motion capture of a drawing implement, information rich visualization projected in the space of fabrication, and custom robotic tooling to generate free-form running moulds. This workflow allows designers and craftspeople to quickly explore patterns through free-hand sketch, test ideas with shaded previews, and seamlessly produce physical parts using robotic collaborators.
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_561
id ecaadesigradi2019_561
authors Cress, Kevan and Beesley, Philip
year 2019
title Architectural Design in Open-Source Software - Developing MeasureIt-ARCH, an Open Source tool to create Dimensioned and Annotated Architectural drawings within the Blender 3D creation suite.
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 621-630
doi https://doi.org/10.52842/conf.ecaade.2019.1.621
summary MeasureIt-ARCH is A GNU GPL licensed, dimension, annotation, and drawing tool for use in the open source software Blender. By providing free and open tools for the reading and editing of architectural drawings, MeasurIt-ARCH allows works of architecture to be shared, read, and modified by anyone. The digitization of architectural practice over the last 3 decades has brought with it a new set of inter-disciplinary discourses for the profession. An attempt to utilise 'Open-Source' methodologies, co-opted from the world of software development, in order to make high quality design more affordable, participatory and responsible has emerged. The most prominent of these discussions are embodied in Carlo Raitti and Mathew Claudel's manifesto 'Open-Source Architecture' (Ratti 2015) and affordable housing initiatives like the Wikihouse project (Parvin 2016). MeasurIt-ARCH aims to be the first step towards creating a completely Open-Source design pipeline, by augmenting Blender to a level where it can be used produce small scale architectural works without the need for any proprietary software, serving as an exploratory critique on the user experience and implementations of industry standard dimensioning tools that exist on the market today.
keywords Blender; Open-Source; Computer Aided Design ; OSArc
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id sigradi2015_sp_4.388
id sigradi2015_sp_4.388
authors Nunes, Jo?o Fernando Igansi
year 2015
title LUZAZUL: Creation methodology and management of hypermedia for cultural inclusion and public education in the service of TILES IN THE ARCHITECTURAL HERITAGE Pelotas / RS
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 780-785.
summary LUZAZUL - Light Blue project is interdisciplinary, curricular action as documentation and conceptual production strategy for theory and practice, focused on heritage as cultural inclusion vector, public training and development of integrated movable manners. It is based especially on hypermedia resource whose central object is the inventory of the TILE IN ARCHITECTURAL HERITAGE Pelotas - RS, electronically duplicated and made available on mobile, wireless devices. Exploring the conditions of free software platforms, this initiative invests in building method for the development, agency and updating publishable data into digital language.
keywords Tile, Hypermedia, Communication, Inclusion, Education
series SIGRADI
email
last changed 2016/03/10 09:56

_id ecaade2015_280
id ecaade2015_280
authors Adilenidou, Yota
year 2015
title Error as Optimization - Using Cellular Automata Systems to Introduce Bias in Aggregation Models through Multigrids
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 601-610
doi https://doi.org/10.52842/conf.ecaade.2015.2.601
wos WOS:000372316000067
summary This paper is focusing on the idea of error as the origin of difference in form but also as the path and the necessity for optimization. It describes the use of Cellular Automata (CA) for a series of structural and formal elements, whose proliferation is guided through sets of differential grids (multigrids) and leads to the buildup of big span structures and edifices as, for example, a cathedral. Starting from the error as the main idea/tool for optimization, taxonomies of morphological errors occur and at a next step, they are informed with contextual elements to produce an architectural system. A toolbox is composed that can be implemented in different scales and environmental parameters, providing variation, optimization, complexity and detail density. Different sets of experiments were created starting from linear structural elements and continuing to space dividers and larger surface components.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=5cf73be0-6e8f-11e5-b7a4-1b188b87ef84
last changed 2022/06/07 07:54

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
doi https://doi.org/10.52842/conf.acadia.2019.168
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2024_35
id ecaade2024_35
authors Agkathidis, Asterios; Song, Yang; Symeonidou, Ioanna
year 2024
title AI-Assisted Design: Utilising artificial intelligence as a generative form-finding tool in architectural design studio teaching
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 619–628
doi https://doi.org/10.52842/conf.ecaade.2024.2.619
summary Artificial Intelligence (AI) tools are currently making a dynamic appearance in the architectural realm. Social media are being bombarded by word-to-image/image-to-image generated illustrations of fictive buildings generated by tools such as ‘Midjourney’, ‘DALL-E’, ‘Stable Diffusion’ and others. Architects appear to be fascinated by the rapidly generated and inspiring ‘designs’ while others criticise them as superficial and formalistic. In continuation to previous research on Generative Design, (Agkathidis, 2015), this paper aims to investigate whether there is an appropriate way to integrate these new technologies as a generative tool in the educational architectural design process. To answer this question, we developed a design workflow consisting of four phases and tested it for two semesters in an architectural design studio in parallel to other studio units using conventional design methods but working on the same site. The studio outputs were evaluated by guest critics, moderators and external examiners. Furthermore, the design framework was evaluated by the students through an anonymous survey. Our findings highlight the advantages and challenges of the utilisation of AI image synthesis tools in the educational design process of an architectural design approach.
keywords AI, GAI, Generative Design, Design Education
series eCAADe
email
last changed 2024/11/17 22:05

_id acadia15_263
id acadia15_263
authors Ahlquist, Sean
year 2015
title Social Sensory Architectures: Articulating Textile Hybrid Structures for Multi-Sensory Responsiveness and Collaborative Play
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 263-273
doi https://doi.org/10.52842/conf.acadia.2015.263
summary This paper describes the development of the StretchPLAY prototype as a part of the Social Sensory Surfaces research project, focusing on the design of tactile and responsive environments for children with Autism Spectrum Disorder (ASD). The project is directed specifically at issues with sensory processing, the inability of the nervous system to filter sensory input in order to indicate an appropriate response. This can be referred to as a “traffic jam” of sensory data where the intensity of such unfiltered information leads to an over-intensified sensory experience, and ultimately a dis-regulated state. To create a sensory regulating environments, a tactile structure is developed integrating physical, visual and auditory feedback. The structure is defined as a textile hybrid system integrating a seamless knitted textile to form a continuous topologically complex surface. Advancements in the fabrication of the boundary structure, of glass-fiber reinforced rods, enable the form to be more robustly structured than previous examples of textile hybrid or tent-like structures. The tensioned textile is activated as a tangible interface where sensing of touch and pressure on the surface triggers ranges of visual and auditory response. A specific child, a five-year old girl with ASD, is studied in order to tailor the technologies as a response to her sensory challenges. This project is a collaboration with students, researchers and faculty in the fields of architecture, computer science, information (human-computer interaction), music and civil engineering, along with practitioners in the field of ASD-based therapies.
keywords Textile Hybrid, Knitting, Sensory Environment, Tangible Interface, Responsive systems and environments
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_090
id caadria2015_090
authors Altabtabai, Jawad and Wei Yan
year 2015
title A User Interface for Parametric Architectural Design Reviews
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 65-74
doi https://doi.org/10.52842/conf.caadria.2015.065
summary Architectural form and performance are affected by the designer's graphical representation methods. Parametric CAD systems, as design and representation tools, have become ubiquitous in architectural practice and education. Literature in the area of parametric design reviews is scarce and focused within building inspection and construction coordination domains. Additionally, platforms marketed as design review tools lack basic functionality for conducting comprehensive, parametric, and performance-based reviews. We have developed a user interface prototype where geometric and non-geometric information of a Building Information Model were translated into an interactive gaming environment. The interface allows simultaneous occupation and simulation of spatial geometry, enabling the user to engage with object parameters, as well as, performance-based, perspectival, diagrammatic, and orthographic representations for total spatial and performance comprehension.
keywords Design cognition; Virtual/augmented reality and interactive environments; Human-computer interaction.
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_507559 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002