CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id cf2015_326
id cf2015_326
authors Borges, Marina and Fakury, Ricardo H.
year 2015
title Structural design based on performance applied to development of a lattice wind tower
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 326.
summary This paper studies the process of parametric and algorithmic design, integrating structural analysis and design for the generation of complex geometric structures. This methodology is based on the Performative Model, where the shape is generated using performance criteria. In the approach, the development of complex structures is only possible by reversing the process of thinking to generate the form with established parameters for geometry, material and loading aspects. Thus, the structural engineer no longer only participates in the evaluation phase but also appears in the early stages, creating a process of exploration and production of common knowledge among architects and engineers. To research performance-based design, the development of a conceptual lattice for a wind tower is proposed. Thus, a system is made to generate geometries using Rhinoceros software, the Grasshopper plugin, and the VB programming language, integrated with stress analysis through the Scan & Solve plugin.
keywords Structural Design, Parametric and Algorithm Architecture, Structural Analysis, Performative Model, Lattice Wind Tower.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_211
id cf2015_211
authors Hu, Yongheng
year 2015
title The Computation Turn in Structural Performance Based Architecture Design
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 211-225.
summary It is necessary for an architect to engage closely with structural design, to interpret their design idea thoroughly, and it requires carefully collaboration between architect and engineer. The structural performance based design is not only to obey structure principle but to explore different possibilities of engineer and architectural innovation. Architects could apply this method in the earlier stage of design, and it could provide the efficient solution for structure, create a new spatial experience and further improve the construction quality in the later phase of development. In comparison to structural performance-based design in history, the computational technology has made it possible for architects to implement further the structural knowledge in more dynamic and sophisticated environment. This paper will discuss the history development and current transformation of this method. Three research project will explain the current experimental design process and back the idea of this method.
keywords Performance Based Architecture design, Computational Design, Structural Optimization
series CAAD Futures
type normal paper
email
last changed 2015/07/28 20:41

_id ecaade2015_206
id ecaade2015_206
authors Luyten, Laurens
year 2015
title CAAD and Conceptual Design Collaboration between Architects and Structural Engineers
doi https://doi.org/10.52842/conf.ecaade.2015.2.215
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 215-224
summary Architectural design benefits from a design collaboration between architect and engineers that starts early in the design process. This paper presents a proposal for a new structural language developed to support an early design collaboration between architect and structural engineer. This language expresses the essential characteristics of the conceptual design of the structural engineer, and requires a limited amount of structural engineering knowledge for the architect to comprehend. The language is evaluated in different case studies with architecture and interior architecture students: they show the students' appreciation as it is found easy to learn and use, and a helpful tool in conceptual design collaboration with a structural engineer. Although the language is developed for manual 3D sketching, the paper briefly indicates its potentials for digital 3D representations and more intelligent CAAD like Multi-Agent System (MAS).
wos WOS:000372316000026
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=3d3e3cd0-6fe9-11e5-a486-00190f04dc4c
last changed 2022/06/07 07:51

_id acadia15_211
id acadia15_211
authors Melsom, James; Girot, Christophe; Hurkxkens, Ilmar
year 2015
title Directed Deposition: Exploring the Roles of Simulation and Design in Erosion and Landslide Processes
doi https://doi.org/10.52842/conf.acadia.2015.211
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 211-221
summary Working with and against environmental processes, such as the movement of water, earth, and rock, and terrain, has been a perpetual challenge since the dawn of civilisation. While it has been possible to gradually tame many landscapes to perform in a predictable manner, there are many circumstances where we are forced to live with and around such processes in everyday life. This research is primarily interested in the potential of design to interact with such processes. Specifically, we are interested in the designed redirection of erosion and landslide processes already observable in nature, taking the urbanised hillsides of the Alps as test case scenario. The research specialisation continues a research and design focus specialised on processes material deposition of river and flood systems, further down the water catchment chain (REF: ANON 2012). This specific alpine research is compelling in the context of Anthropocene processes, we are specifically focussed in the appraisal, harnessing and redirection of existing environmental phenomena, given what can be understood as our inevitable interaction with these processes (Sijmons 2015). Within this broader research, which has ecological, cultural, and formal potential, this paper shall explore the practical aspects of connecting design, and the designer, with the potential for understanding and designing these evolving mountain landscapes. There is a long history behind the development of landscape elements which control avalanches, mud, rock, and landslides. The cultural, functional and aesthetic role of such elements in the landscape is relatively undiscussed, epitomising an approach that is primarily pragmatic in both engineering and expense. It is perhaps no surprise that these elements have a dominant physical and visual presence in the contemporary landscape. Through the investigation of synergies with other systems, interests, and design potential for such landscape elements, it is proposed that new potential can be found in their implementation. This research proposes that the intuitive linking of common design software to direct landslide simulation, design of and cultural use can interact with these natural processes. This paper shall demonstrate methods to within which design can enter the process of landscape management, linking the modelling processes of the landscape designer with the simulation capabilities of the specialised engineer.
keywords Landscape Design Workflows, Landscape Simulation, Terrain Displacement, Material Flow, Erosion Processes, Interdisciplinary Workflows
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id eaea2015_t2_paper14
id eaea2015_t2_paper14
authors Rynkowska-Sachse, Anna
year 2015
title Architectural Means of Expression in the Creation of Contemporary Heritage Interpretation Centres and Their Role in Envisioning Heritage. Examples from South Africa
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.259-267
summary Heritage Interpretation Centres are specially created facilities for evaluation of the cultural and/or natural heritage of a given area and its transformation into an educational, cultural or tourism product. Approach to heritage and architectural means of expression in the creation of contemporary Heritage Interpretation Centres and the impact on users, especially European ones, are presented on the example of buildings from South Africa (The Mapungubwe Interpretation Centre, Alexandra Interpretation Centre, Freedom Park). Field studies of selected buildings allowed an assessment of how effective and easy to read the message of cultural heritage was for people from the outside, and by what architectural means it was possible.
keywords Contemporary Heritage Interpretation Centre; architectural means of expression; South Africa
series EAEA
email
last changed 2016/04/22 11:52

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
doi https://doi.org/10.52842/conf.acadia.2019.168
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia15_357
id acadia15_357
authors Ashour, Yassin; Kolarevic, Branko
year 2015
title Heuristic Optimization in Design
doi https://doi.org/10.52842/conf.acadia.2015.357
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 357-369
summary This paper presents a workflow called the ‘heuristic optimization workflow’ that integrates Octopus, a Multi-Objective Optimization (MOO) engine with Grasshopper3D, a parametric modeling tool, and multiple simulation software. It describes a process that enables the designer to integrate disparate domains via Octopus and complete a feedback loop with the developed interactive, real-time visualization tools. A retrospective design of the Bow Tower in Calgary is used as a test case to study the impact of the developed workflow and tools, as well as the impact of MOO on the performance of the solutions. The overall workflow makes MOO based results more accessible to designers and encourages a more interactive ‘heuristic’ exploration of various geometric and topological trajectories. The workflow also reduces design decision uncertainty and design cycle latency through the incorporation of a feedback loop between geometric models and their associated quantitative data. It is through the juxtaposition of extreme performing solutions that serendipity is created and the potential for better multiple performing solutions is increased.es responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Multi-Objective Optimization, Generative Design, Performance-Based Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2016_415
id caadria2016_415
authors Crolla, Kristof and Adam Fingrut
year 2016
title Protocol of Error: The design and construction of a bending-active gridshell from natural bamboo
doi https://doi.org/10.52842/conf.caadria.2016.415
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 415-424
summary This paper advocates alternative methods to overcome the impossibility of realising ‘perfect’ digital designs. It discusses Hong Kong’s 2015 ‘ZCB Bamboo Pavilion’ as a methodological case study for the design and construction of architecture from unprocessed natu- ral bamboo. The paper critically evaluates protocols set up to deal with errors resulting from precise digital design systems merging with inconsistent natural resources and onsite craftsmanship. The paper starts with the geometric and tectonic description of the project, illus- trating a complex and restrictive construction context. Bamboo’s unique growth pattern, structural build-up and suitability as a bending- active material are discussed and Cantonese bamboo scaffolding craftsmanship is addressed as a starting point for the project. The pa- per covers protocols, construction drawings and assembly methods developed to allow for the incorporation and of large building toler- ances and dimensional variation of bamboo. The final as-built 3d scanned structure is compared with the original digital model. The pa- per concludes by discussing the necessity of computational architec- tural design to proactively operate within a field of real-world inde- terminacy, to focus on the development of protocols that deal with imperfections, and to redirect design from the virtual world towards the latent opportunities of the physical.
keywords Bamboo; bending-active gridshells; physics simulation; form-finding; indeterminacy
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_209
id ecaade2015_209
authors D'Uva, Domenico
year 2015
title Parametric Morphogenesis - An Historical Framing in London's Architecture beyond the Verge of the 20th Century
doi https://doi.org/10.52842/conf.ecaade.2015.1.381
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 381-387
summary The approach of contemporary architecture with urban environment has always been in perpetual evolution. The path between concept and real building has been driven since ancient times by traditional drawing tools which discretized the architect ideas into shapes. The cases studied for morphogenesis evolution, featured in the top-notch architectural firms, have been framed into two different strategies. In the first family the shape is created by the modifications of several distinct geometrical elements, which create formal complexity. In the second family of buildings the complexity is the result of very few geometrical elements, whose morphogenetic process generates complex forms. As the geometrical elements decrease in number, the draft shape must undergo a deeper process of modification to solve the functional, sustainability and structural issues.
wos WOS:000372317300041
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2015_48
id ecaade2015_48
authors Edemskaya, Elizaveta and Agkathidis, Asterios
year 2015
title Vladimir Shukhov - A Critical Review on Digital Architecture
doi https://doi.org/10.52842/conf.ecaade.2015.1.395
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 395-402
summary This paper is a critical review on advantages and disadvantages of contemporary digital architecture, in retrospect to Vladimir Shukhov's design techniques, applied in the early 20th century. After investigating Shukhov's structural systems, this paper explores the relationship between performance and form, questioning the necessity of high-complexity structures. It will present unpublished archive material of his early work and stimulate a valuable discussion by comparing it with contemporary projects designed by renowned architects. The study on Shukhov focuses on his tessellation method of double-curved surfaces using simple standardized elements. The study of present digital approaches revolves around leading architects using computational tools (e.g. Foster and Partners, Buro Happold and Arup), who have materialized high complexity structures composed by irregular units. Our findings highlight advantages and disadvantages of contemporary computational approaches.
wos WOS:000372317300043
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=bbc13038-7022-11e5-936a-d7a776e5d67a
last changed 2022/06/07 07:55

_id acadia15_173
id acadia15_173
authors Erdine, Elif
year 2015
title Generative Processes in Tower Design: Simultaneous Integration of Tower Subsystems Through Biomimetic Analogies
doi https://doi.org/10.52842/conf.acadia.2015.173
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 173-184
summary The research presented in the paper formulates part of the methodological approach of a recently completed PhD thesis. The principle aim of the thesis is to achieve simultaneous integration of tower subsystems which can coherently adapt to their internal and external context during the initial phases of the design process. In this framework, the tower subsystems are grouped as the structural system, floor system, vertical circulation system, facade system, and environmental system. The paper focuses on the implementation of the specific biomimetic analogies towards the integration of tower subsystems through computationally generated dynamic systems. The biomimetic analogies are the mechanical and organizational properties of branched constructions, the mechanical properties of the bamboo stem, and the micro-structure of the porcupine quill/ hedgehog spine. Each biomimetic analogy is described in relation to the design domain. Methods of employing the mathematical and geometrical principles of the biomimetic analogies during design explorations are elaborated. Outcomes of the design output are outlined and discussed with a concentration on achieving tower subsystem integration, differentiation, and co-adaptation properties.
keywords Tower, integration, biomimetics, minimal detours, bamboo stem, porcupine quill, hedgehog spine, generative
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id sigradi2015_sp_10.179
id sigradi2015_sp_10.179
authors Espinoza, Verónica Paola Rossado; Torres, Daniel Antonio Serrano
year 2015
title Scientific Approach to the Project in a Computational Perspective of Architecture: The Hochschule für Gestaltung-Ulm and its Diaspora
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 818-822.
summary BIM methodology is a process that make possible to integrate the construction project on a 3D model. It contains the necessary information, optimizing stages, allowing early analysis and product virtualization. This methodology, reduces the time of implementation, anticipates the decisions making and improves productivity. The project requires the coordination of various professionals such as architects, civil, electrical, structural engineers, contractors and administrators, who needs specialized teaching by experts in BIM methodology. There are few professionals who are truly qualified to lead or carry out an entirely project whit this methodology.
series SIGRADI
email
last changed 2016/03/10 09:51

_id ecaade2015_247
id ecaade2015_247
authors Garcia, Manuel Jimenez and Retsin, Gilles
year 2015
title Design Methods for Large Scale Printing
doi https://doi.org/10.52842/conf.ecaade.2015.2.331
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 331-339
summary With an exponential increase in the possibilities of computation and computer-controlled fabrication, high density information is becoming a reality in digital design and architecture. However, construction methods and industrial fabrication processes have not yet been reshaped to accommodate the recent changes in those disciplines. Although it is possible to build up complex simulations with millions of particles, the simulation is often disconnected from the actual fabrication process. Our research proposes a bridge between both stages, where one drives the other, producing a smooth transition from design to production. A particle in the digital domain becomes a drop of material in the construction method.The architect's medium of expression has become much more than a representational tool in the last century, and more recently it has evolved even beyond a series of rules to drive from design to production. The design system is the instruction itself; embedding structure, material and tectonics and gets delivered to the very end of the construction chain, where it gets materialised. The research showcased in this paper investigates tectonic systems associated with large scale 3D printing and additive manufacturing methods, inheriting both material properties and fabrication constraints at all stages from design to production. Computational models and custom design software packages are designed and developed as strategies to organise material in space in response to specific structural and logistical input.Although the research has developed a wide spectrum of 3D printing methods, this paper focuses only on two of the most recent projects, where different material and computational logics were investigated. The first, titled Filamentrics, intends to develop free-form space frames, overcoming their homogeneity by introducing robotic plastic extrusion. Through the use of custom made extruders a vast range of high resolution prototypes were developed, evolving the design process towards the fabrication of precise structures that can be materialised using additive manufacturing but without the use of a layered 3D printing method. Instead, material limitations were studied and embedded in custom algorithms that allow depositing material in the air for internal connectivity. The final result is a 3x2x2.5m structure that demonstrates the viability of this construction method for being implemented in more industrial scenarios.While Filamentrics is reshaping the way we could design and build light weight structures, the second project Microstrata aims to establish new construction methods for compression based materials. A layering 3D printing method combines both the deposition of the binder and the distribution of an interconnected network of capillaries. These capillaries are organised following structural principles, configuring a series of channels which are left empty within the mass. In a second stage aluminium is cast in this hollow space to build a continuous tension reinforcement.
wos WOS:000372316000039
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=07a6d8e0-6fe7-11e5-9994-cb14cd908012
last changed 2022/06/07 07:51

_id cf2015_324
id cf2015_324
authors Gerber, David Jason; Pantazis, Evangelos and Marcolino, Leandro Soriano
year 2015
title Design Agency: Prototyping Multi-Agent Systems in Architecture
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 324.
summary This paper presents research on the prototyping of multi-agent systems for architectural design. It proposes a design exploration methodology at the intersection of architecture, engineering, and computer science. The motivation of the work includes exploring bottom up generative methods coupled with optimizing performance criteria including for geometric complexity and objective functions for environmental, structural and fabrication parameters. The paper presents the development of a research framework and initial experiments to provide design solutions, which simultaneously satisfy complexly coupled and often contradicting objectives. The prototypical experiments and initial algorithms are described through a set of different design cases and agents within this framework; for the generation of façade panels for light control; for emergent design of shell structures; for actual construction of reciprocal frames; and for robotic fabrication. Initial results include multi-agent derived efficiencies for environmental and fabrication criteria and discussion of future steps for inclusion of human and structural factors.
keywords Generative Design, Parametric Design, Multi-Agent Systems, Digital Fabrication, Form Finding, Reciprocal Frames.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id acadia19_234
id acadia19_234
authors Grewal, Neil; Escallon, Miguel; Chaudhary, Abhinav; Hramyka, Alina
year 2019
title INFRASONIC
doi https://doi.org/10.52842/conf.acadia.2019.234
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 234-245
summary In 2015, an earthquake of 7.8 magnitude displaced over 6.6 million people in Kathmandu, Nepal. Three years later, the country continues in its struggle to rebuild its capital. The aim of this study is to investigate a construction system, produced from locally sourced materials, that can aggregate and deploy as self-built, habitable infrastructure. The study focused on the relationship between material resonance, earthquake resistant structures, and fabrication strategies. An agent-based form-finding algorithm was developed using knowledge acquired through physical prototyping of mycelium-based composites to generate earthquake resistant geometries, optimize material usage, and enhance spatial performance. The results show compelling evidence for a construction methodology to design and construct a 3-4 story building that holds a higher degree of resistance to earthquakes. The scope of work contributes to advancements in bioengineering, confirming easy-to-grow, light-weight mycelium-composites as viable structural materials for construction.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2015_033
id caadria2015_033
authors Hadilou, Arman
year 2015
title Phototropism of Tensile Façade System through Material Agency
doi https://doi.org/10.52842/conf.caadria.2015.127
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 127-136
summary This paper researches material agencies, mechanical systems and façade designs that are able to respond to environmental changes through local interactions, inspired by biological systems. These are based on a model of distributed intelligence founded on plants and animal collectives, from which intelligent behavior emerges through simple local associations. Biological collective systems integrate material form and responsiveness and have the potential to inform new architectural and engineering strategies. The design approach of this research is based on a data-driven methodology spanning from design inception to simulation and physical modeling. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. The driving concepts are three types of evolutionary adaptation: flexibility, acclimation, and learning. The proposed façade system is a responsive textile shading structure which uses integrated actuators that moderate their local environments through simple interactions with their immediate neighbors. Computational techniques coupled to material logics create an integral design framework leading to heterogeneous environmental and structural conditions, producing local responses to environmental stimuli and ultimately effective performance of the whole system.
keywords Responsive facade; phototropism; material intelligence.
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2015_105
id caadria2015_105
authors Hosny, A.; N. Jacobson and Z. Seibold
year 2015
title Voxel Beam
doi https://doi.org/10.52842/conf.caadria.2015.755
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 755-764
summary Voxelbeam explores precedents in the optimization of architectural structures, namely the Sydney Opera house Arup beam. The authors research three areas crucial to conceiving an innovative contemporary reinterpretation of the beam: A shift in structural analysis techniques from analytical to numerical models such as topology optimization, the fundamental differences between digital and analog representations of structural forces, and the translation of structural analysis data into methods for digital fabrication. The research aims to re-contextualize the structural beam within contemporary digital platforms, explores the architectural implications of topology optimization, and proposes two fabrication strategies based on the analysis results – including automated off-site pre-casting and multi-material 3d printing.
keywords Digital Fabrication, Topology Optimization, Multi-material 3D Printing, Emergent Structural Design, Arup Beam.
series CAADRIA
email
last changed 2022/06/07 07:50

_id eaea2015_t2_paper07
id eaea2015_t2_paper07
authors Januszkiewicz, Krystyna; Paszkowska, Natalia E.
year 2015
title Towards the new Baroque Within the Historic Context of a City
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.186-198
summary A new approach to design - Curvilinear forms designed in synthetic digital space - indicates the direction of a new turn in architecture, interest in its structural and environmental aspect. The presented case studies show how curvilinear forms of such architecture coexist with the historic context and how they inscribe in to the existing urban fabric with a complex historical substance. Following the Zeitgeist, the new architecture reconfigures the expression, reception and materiality, as well as uses the context to validate its existence. The features of this new architecture may be referred to the achievements of the Baroque and considered in a wider context of historical changes in the urban fabric.
keywords heritage perception; curvilinear architecture; digital Baroque
series EAEA
email
last changed 2016/04/22 11:52

_id cf2015_463
id cf2015_463
authors Leblanc, François
year 2015
title Super-details: Integrated patterns from 3D printing processes to performance-based design
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 463.
summary Performance-based architecture has predominately been influenced by computational advances in simulating complex organizations. The advent of 3D printing, however, has introduced a new approach to generate complex forms, which is redirecting focus from shape-centric design to material design, namely, innovative structures and properties generated by the process itself. This article investigated the multiscale approach potential to design using extrusion-based 3D printing techniques that offer novel geometric organizations that conform to desired performance. It was found that 3D printed toolpaths adapted to extrusion-based systems render an anisotropic behavior to the architectural object that is best optimized by designing tessellated surfaces as the primary structural shape from which small-scale periodic surfaces can be embedded within a larger geometric system.
keywords 3D printing, multiscale design, extrusion-based systems, porous material, topology, CAD integration.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_447
id cf2015_447
authors Meyer, J.; Duchanois, G. and Bignon, J.C.
year 2015
title Analysis and validation of the digital chain relating to architectural design process: Achievement of a folded structure composed of wood panels
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 447-459.
summary The research presented in this paper revolves around the experimental development of the morpho-structural potential of folded architectural structures made of wood. The aims are to develop an innovative system for timber used in sustainable construction and to increase the inventory of wood architectural tectonics. First, this article provides a characterization of the digital chain associated to the development of non-standard folded structures consisting of wood panels. The purpose is to study the architectural design process from parametric modeling (through CNC machining) and assembly operations to production by way of a full-scale experimental pavilion. Secondly, a number of analytical experiments have been performed towards the completion of the pavilion, in order to validate the design process.
keywords Architecture, folded structure, robotic fabrication, computational design, parametric modeling, wood panels
series CAAD Futures
email
last changed 2015/06/29 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_34360 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002