CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 583

_id ecaade2015_320
id ecaade2015_320
authors Rayo, Diego Alejandro Velandia
year 2015
title Option One: A Model of Participatory Design to Construct a Rural Social Housing From Digital Fabrication
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 531-539
doi https://doi.org/10.52842/conf.ecaade.2015.2.531
wos WOS:000372316000060
summary Option one is the first prototype in the process of construction, based on the application of integrated processes of digital fabrication: This methodology was developed through a research project which explores options of rural public housing. The design process is integrated with other variables such as: participative design, directed self-build and the integration of tangible and intangible aspects. Parametric modeling was used as a strategy to create an integrated process of design, production and assembly based on a code created in grasshopper. Once finished, the housing unit will be handed over to a rural family. This will allow for doing follow-up and evaluation.
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2015_8.47
id sigradi2015_8.47
authors Romcy, Neliza Maria e Silva; Tinoco, Marcelo Bezerra de Melo
year 2015
title Investigations into interfaces between parametric modeling and other representation tools in architectural design
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 322-327.
summary Researches about different processes of representation in architectural design allows the acknowledgment about their specificities regarding to potential and limitations. This study aims to investigate the possible interfaces between parametric modeling and other representation media, in order to understand its introduction into design process and its integration with other tools. The methodology consist of literature review to select different media, including sketching, architectural model, BIM and computer-aided manufacturing. As a result, the study identified which processes would be able to assist parametric modeling and suggested possible interfaces between the presented tools.
series SIGRADI
email
last changed 2016/03/10 09:59

_id caadria2015_119
id caadria2015_119
authors Ryu, Jungrim and Seungyeon Choo
year 2015
title A Development Direction of a New Archi-Urban Integration Model for Utilizing Spatial Information
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 795-805
doi https://doi.org/10.52842/conf.caadria.2015.795
summary For efficient interoperability of information between IFC (a standard open BIM model) and CityGML(a standard model in GIS), the information system is comparatively analysed through IFC, CityGML and LandXML. A direction for developing object-oriented AUIM (Archi-Urban Integration Model) for analysis and maintenance of spatial information is proposed. In this study, LOD for AUIM-based interior spatial information is presented. At the same time, strategies for BIM-GIS convergence are sought.
keywords Spatial Information, Interoperability, Spatial Data Model Standards, BIM/GIS, Info-Convergence.
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_256
id ecaade2015_256
authors Sachs, Hans
year 2015
title Design=Production - Material and Process Driven Design and Production
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 269-276
doi https://doi.org/10.52842/conf.ecaade.2015.2.269
wos WOS:000372316000032
summary With the comprehensive integration of software-based tools in actual processes of design development and fabrication, the boundaries between design and production become increasingly blurred. The methodology of the process of creation changes: the design development phase reaches up to the last produced model in a product series, in the same time the serial production cycle already starts with the first prototype.The aim of this research project is to explore and show the re-strengthening link between form, function, material and fabrication particularly driven by raising prominence of digital tools for design and production. Hereby the focus is on two points: the implementation of user data/input in the light of 'Open Innovation' as driver of form and function on one hand and the crafing inspired aproach of a comprehensive integration of material properties, behaviour tradional techniques of processing into the the design process.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=417116d4-6fe3-11e5-a9c3-f324760e4be6
last changed 2022/06/07 07:56

_id caadria2015_157
id caadria2015_157
authors Janssen, Patrick
year 2015
title Parametric BIM Workflows
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 437-446
doi https://doi.org/10.52842/conf.caadria.2015.437
summary Building Information Modelling systems enable the creation of associative parametric models that include sets of interlinked parametric objects. Graph-based modelling systems on the other hand enable the creation of parametric models with more complex iterative behaviours. Parametric BIM workflows aim to link graph-based systems to BIM systems. A key requirement of such workflows is the ability to generate associative BIM models. However, current approaches to creating such workflows are complicated by the fact that the process of cooking is only able to generate explicit geometry. An alternative approach is proposed in which the cooking process is able to generate associative models, thereby enabling more user friendly and streamlined BIM workflows to be created.
keywords Building Information Modelling, Parametric modelling, BIM workflows
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2015_169
id ecaade2015_169
authors Nakama, Yuki; Onishi, Yasunobu and Iki, Kazuhisa
year 2015
title Development of Building Information Management System with Data Collecting Functions based on IoT Technology
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 647-655
doi https://doi.org/10.52842/conf.ecaade.2015.1.647
wos WOS:000372317300070
summary Facility management is aimed at energy saving, increasing the lifespan of buildings, enhancing the satisfaction of facility users and reducing running costs. To that end, it is important to grasp the conditions of the building in detail, and to analyze them one by one in order to execute building operation and maintenance strategically. However, conventional CAFM is insufficient. Therefore, we developed a system (called Building Information Management System) to utilize BIM data made on a Web site. We used groupware to support the system and an information platform that enables continuous management of a great variety of maintenance information. In addition, we developed a system to input information of building operation and maintenance using a mobile device on the site of checking and patrolling so as to reduce the burden of inputting information. A sensor network is used to acquire building operation and maintenance information to enhance building operation and maintenance. We also developed a system to automatically input sensing information into the building information for Building Information Management System, and to connect it with a 3D model. It has therefore become easier to collect the large amount of information necessary for strategic building operation and maintenance.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=0d63b958-7021-11e5-a1ec-00190f04dc4c
last changed 2022/06/07 07:59

_id caadria2018_016
id caadria2018_016
authors Zahedi, Ata and Petzold, Frank
year 2018
title Utilization of Simulation Tools in Early Design Phases Through Adaptive Detailing Strategies
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 11-20
doi https://doi.org/10.52842/conf.caadria.2018.2.011
summary Decisions taken at early stages of building design have a significant effect on the planning steps for the entire lifetime of the project as well as the performance of the building throughout its lifecycle (MacLeamy 2004). Building Information Modelling (BIM) could bring forward and enhance the planning and decision-making processes by enabling the direct reuse of data hold by the model for diverse analysis and simulation tasks (Borrmann et al. 2015). The architect today besides a couple of simplified simulation tools almost exclusively uses his know-how for evaluating and comparing design variants in the early stages of design. This paper focuses on finding new ways to facilitate the use of analytical and simulation tools during the important early phases of conceptual building design, where the models are partially incomplete. The necessary enrichment and proper detailing of the design model could be achieved by means of dialogue-based interaction concepts with analytical and simulation tools through adaptive detailing strategies. This concept is explained using an example scenario for design process. A generic description of the aimed dialog-based interface to various simulation tools will also be discussed in this paper using an example scenario.
keywords BIM; Early Design Stages; Adaptive Detailing ; Communication Protocols; Design Variants
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2015_004
id caadria2015_004
authors Kotsopoulos, Sotirios D. and Federico Casalegno
year 2015
title Responsive Architectures
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 335-344
doi https://doi.org/10.52842/conf.caadria.2015.335
summary Real-time supply of computational power into built environments enables to re-address questions of user experience, comfort and building performance. This presentation discusses the features of responsive architecture through the example of a ‘programmable window’ that was designed and deployed in a prototype house, in Trento, N. Italy. In the example the parts and functionalities of building skins were revisited, to integrate advances in electroactive materials, information communication technologies and control systems engineering.
keywords Electroactive materials; model-based control; programmable windows.
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2015_247
id ecaade2015_247
authors Garcia, Manuel Jimenez and Retsin, Gilles
year 2015
title Design Methods for Large Scale Printing
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 331-339
doi https://doi.org/10.52842/conf.ecaade.2015.2.331
wos WOS:000372316000039
summary With an exponential increase in the possibilities of computation and computer-controlled fabrication, high density information is becoming a reality in digital design and architecture. However, construction methods and industrial fabrication processes have not yet been reshaped to accommodate the recent changes in those disciplines. Although it is possible to build up complex simulations with millions of particles, the simulation is often disconnected from the actual fabrication process. Our research proposes a bridge between both stages, where one drives the other, producing a smooth transition from design to production. A particle in the digital domain becomes a drop of material in the construction method.The architect's medium of expression has become much more than a representational tool in the last century, and more recently it has evolved even beyond a series of rules to drive from design to production. The design system is the instruction itself; embedding structure, material and tectonics and gets delivered to the very end of the construction chain, where it gets materialised. The research showcased in this paper investigates tectonic systems associated with large scale 3D printing and additive manufacturing methods, inheriting both material properties and fabrication constraints at all stages from design to production. Computational models and custom design software packages are designed and developed as strategies to organise material in space in response to specific structural and logistical input.Although the research has developed a wide spectrum of 3D printing methods, this paper focuses only on two of the most recent projects, where different material and computational logics were investigated. The first, titled Filamentrics, intends to develop free-form space frames, overcoming their homogeneity by introducing robotic plastic extrusion. Through the use of custom made extruders a vast range of high resolution prototypes were developed, evolving the design process towards the fabrication of precise structures that can be materialised using additive manufacturing but without the use of a layered 3D printing method. Instead, material limitations were studied and embedded in custom algorithms that allow depositing material in the air for internal connectivity. The final result is a 3x2x2.5m structure that demonstrates the viability of this construction method for being implemented in more industrial scenarios.While Filamentrics is reshaping the way we could design and build light weight structures, the second project Microstrata aims to establish new construction methods for compression based materials. A layering 3D printing method combines both the deposition of the binder and the distribution of an interconnected network of capillaries. These capillaries are organised following structural principles, configuring a series of channels which are left empty within the mass. In a second stage aluminium is cast in this hollow space to build a continuous tension reinforcement.
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=07a6d8e0-6fe7-11e5-9994-cb14cd908012
last changed 2022/06/07 07:51

_id acadia15_47
id acadia15_47
authors Chaaraoui, Rizkallah; Askarinejad, Ali
year 2015
title Anisoptera; Anisopteran Deformation and the Latent Geometric Patterns of Wood Envelopes
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 47-56
doi https://doi.org/10.52842/conf.acadia.2015.047
summary Advancements in technologies provide Architects, today, with the means to expose new expressive forms using traditional materials. It is therefore possible to design dynamic actuating systems, where several different expressions, or differentiations inherent in the same material, are able to modify its topology and enhance its properties. Wood, traditionally used in construction, is given static expression during its life cycle, where an alignment, or assembly detail, helps retain its original shape. This research outlines the integration of specific and individual anatomical information of wood during the design process. It aids in utilizing the analyzed biological variability and natural irregularities of wood within a material-based architecture, in view of developing a lightweight, and light-filtering dynamic skin. Additionally, the research helps to explore an understanding of the differentiated material composition of wood as its major capacity, rather than its deficiency. Moreover, it analyzes form, material, and structure, as complex interrelations that are embedded in, and explored through an integral design process that seeks to employ typically disregarded, highly differentiated flat materials, in view of enhancing their latent dimensional deformation potential. The main focus of this research is to explore that latent geometric deformation of emerging patterns based on an array of heterogeneous wood veneers in relation to their Hygroscopic and Anisotropic properties. These properties are expressed through a set of flat skins and Mobius arrangements, articulating complex geometric ranges that reveal additional properties, such as bendability and flexibility.
keywords Shape-shifting, Geometric patterns, Anisotropic, Hygroscopic, Open systems, Building envelope
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id sigradi2015_000
id sigradi2015_000
authors Cybis Perreira, Alice T.; Pupo, Regiane T. (Ed.)
year 2015
title Project Information for Interaction
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0; vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015
summary The chosen theme "Project Information for interaction" reveals one of the most important ways that technology has offered to improve the design process by integrating information into the elements of digital graphic in a parametric way. This integration allows many design professionals to interact on the same model, enabling simulations, materializations, revisions with data more close to the reality, avoiding errors and wastes. Projects with highest social responsibility can be performed by inserting this new way of designing in education and professional practices. So, this conference is dedicated to give time and space for presentations and discussions of researches and experiences in this area applied to the various fields such as Architecture, Urbanism, Design, Animation, Arts, among others. Looking into another perspective, this issue also brings the concept of Smart Cities, where the provision of information integrated with graphics inserted in the towns components (streets, open areas, buildings and objects), allow more responsible interactions, generating sustainable and collaborative actions among citizens.

series SIGRADI
email
last changed 2016/03/10 09:50

_id sigradi2020_392
id sigradi2020_392
authors Fialho, Beatriz Campos; Codinhoto, Ricardo; Fabricio, Márcio Minto
year 2020
title BIM and IoT for the AEC Industry: A systematic literature mapping
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 392-399
summary The AEC industry has been facing a digital transformation for improving services involved in buildings lifecycle, fostered by two disruptive technologies: Building Information Modelling (BIM) and Internet of Things (IoT). However, the literature lacks discussions regarding applications and challenges of BIM and IoT systems in the AEC. This Systematic Literature Mapping addresses this gap through search, analysis, and classification of 75 journal article abstracts published between 2015 and 2019. An increase of articles over the period is observed, predominantly with technical and processual solutions for Construction and Operation and Maintenance. The interoperability of data is a key challenge to organizations.
keywords Building Information Modelling, Internet of Things, Integration, Network, Smart Cities
series SIGraDi
email
last changed 2021/07/16 11:49

_id ecaade2015_83
id ecaade2015_83
authors Fukuda, Tomohiro; Mori, Keisuke and Imaizumi, Jun
year 2015
title Integration of CFD, VR, AR and BIM for Design Feedback in a Design Process - An Experimental Study
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 665-672
doi https://doi.org/10.52842/conf.ecaade.2015.1.665
wos WOS:000372317300072
summary To improve indoor thermal environment, it is necessary to promote a lean design process, so forecasting and consensus building by experiment and numerical calculation from the design stage have become essential. Rapid advances in software and hardware allow feedback to be generated on novel design alternatives, rather than relying on simulation results based on past designs. However, this concept has not been fully verified. Therefore, this study presents an integrated design tool which consists of Computational Fluid Dynamics (CFD), Virtual Reality (VR), Augmented Reality (AR) and Building Information Modeling (BIM). The tool was applied to the problems of an actual housing design project. Both the content of design feedback on design problems revealed through simulations in the project, and the features in the feedback process were discussed.
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2015_307
id ecaade2015_307
authors Kallegias, Alexandros and Erdine, Elif
year 2015
title Design by Nature: Concrete Infiltrations
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 513-520
doi https://doi.org/10.52842/conf.ecaade.2015.2.513
wos WOS:000372316000058
summary The paper aims to address methods of realizing computationally generated self-organizing systems on a one-to-one scale with the employment of a singular material system. The case study described in this paper is the outcome of an investigation which has explored earth scaffolding, fabric form-work, and concrete materiality during an international three-week architecture workshop. Real-time generative form-finding methods based on branching and bundling systems in nature have been developed and simulated in an open-source programming environment. The outcome of the simulation stage has been analyzed structurally via Finite Element Analysis (FEA), results of which have served as inputs for the fine-tuning of the simulation. Final three-dimensional geometry has been fabricated by employing fabric, essentially forming the fabric form-work. Fabric form-work is then laid on top of the earth scaffolding, followed by the process of concrete casting. From a pedagogical point of view, the research focuses on the integration of digital design techniques between various design/architecture/analysis platforms combined with basic and advanced techniques of construction within a limited time frame.abstract here by clicking this paragraph.
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2015_172
id ecaade2015_172
authors Mark, Earl and Zita Ultmann
year 2015
title Environmental Footprint Design Tool - Exchanging GIS and CAD Data in Real Time
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 217-223
doi https://doi.org/10.52842/conf.ecaade.2015.1.217
wos WOS:000372317300023
summary The pairing of CAD and GIS data creates an opportunity to connect an architectural design process more immediately with its environmental constraints. Yet the GIS data may be too overwhelmingly complex to be fully used in CAD without computer-assisted methods of highlighting relevant information. This paper reports on the implementation of an integrated environment for three-dimensional design geometrical modeling and obtaining environmental impact feedback. The project focused on enhancements to the data exchange and on the development of a related set of tools. While the technologies of CAD and GIS may rely on separate representational models,in combination they can provide a more complete view of the built and natural environment. The challenge in integration is that of bridging analytical methods and database formats used in the two technologies. Our approach is rooted in part in constraint based design methods well established in CAD (e.g., Sketchpad, Generative Components, CATIA). Within such CAD systems geometrical transformations may be intentionally constrained to help enforce some previously made design decisions. Although this current implementation modestly relates to geometrical constraints, the use of probabilistic risk values is more central to its methodology.
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2015_101
id ecaade2015_101
authors Markusiewicz, Jacek and Slyk, Jan
year 2015
title From Shaping to Information Modeling in Architectural Education: Implementation of Augmented Reality Technology in Computer-Aided Modeling
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 83-90
doi https://doi.org/10.52842/conf.ecaade.2015.2.083
wos WOS:000372316000011
summary While learning computer-aided modeling techniques, students of architecture should not only gain knowledge on how to model three-dimensional forms, but also how to define and understand the information beneath the shapes. Architectural presentation as an intellectual communication-focused process requires new media to channel information in a contemporary way. These can be text, image, sound, video or a digital model. The integration of augmented reality in teaching computer-aided modeling in architecture school provides more thorough learning experience as it opens new opportunities. The authors present the process of implementing AR technology in architectural education - its theoretical background, the outcome of students' work and technical solutions. They argue that the use of AR interface increases the effectiveness of user-model interaction in comparison to standard mouse-based techniques of three-dimensional manipulation due to the intuitive touch-screen interaction and direct control on the camera.
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2015_109
id ecaade2015_109
authors Markusiewicz, Jacek, Strzala, Marcin and Koszewski, Krzysztof
year 2015
title Modular Light Cloud. Design, Programming and Making - Towards the Integration of Creative Actions
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 91-101
doi https://doi.org/10.52842/conf.ecaade.2015.2.091
wos WOS:000372316000012
summary Modular Light Cloud is an installation that is conceived to explore the boundaries of architecture and art. Its interactivity is a metaphor of mutual influences that derive from activities performed in space - associated with motion, sound and light.It is an experimental project focused on the integration of architectural elements, structure, information technology, performing arts, electronics and digital fabrication in architectural education.The project was completed in a two-week student workshop in collaboration with a contemporary dance artist. The students were taught the basics of parametric design, programming of electronic components and digital fabrication during tutorial classes. The making process combined three stages of development: design, construction and programming of interaction.The final form consists of two irregular spatial trusses made of aluminum profiles connected with 3d printed nodes. The profiles are equipped with LED strips and electronic components: light sensors, sound and communication between them. These systems control the intensity of light emitted by the diodes based on the inputs.The result is a working prototype presented as interactive installation featuring contemporary dance artist. It was displayed at art festivals and other events.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e17b2300-6f83-11e5-836f-4becdc2939a0
last changed 2022/06/07 07:59

_id cf2015_381
id cf2015_381
authors Menegotto, José Luis
year 2015
title A framework for speech-oriented CAD and BIM systems
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 381.
summary This article discusses the development of a Speech Oriented Graphics Interface embedded in CAD and BIM software. The aim is to provide the means to work with complex 3D BIM models with minimal touch operations. We can cite the growing need for tools and user interfaces to assist designers in handling complex models, minimizing the risk of producing changes accidentally. In this area, the integration of a graphical database in BIM applications can be seen as an advantage over traditional CAD applications. However, we can note a difficulty in this integration, due to the need to maintain the constant levels of mental concentration required in order to effectively manage a larger inter-connected graphical database. Specifically in this area, voice interfaces can help by avoiding the need of "touch" to work with the 3D models, looking for improving its robustness and consistency. In addition, SR is used in order to reduce cognitive stress among the users, trying eliminating the need to memorize and remember commands, names and locations in GUI interfaces.
keywords Accessibility, Text to Speech, Speech Recognition, CAD-BIM.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id acadia15_185
id acadia15_185
authors Mogas-Soldevila, Laia; Duro-Royo, Jorge; Oxman, Neri
year 2015
title Form Follows Flow: A Material-Driven Computational Workflow for Digital Fabrication of Large-Scale Hierarchically Structured Objects
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 185-193
doi https://doi.org/10.52842/conf.acadia.2015.185
summary In the natural world, biological matter is structured through growth and adaptation, resulting in hierarchically structured forms with tunable material computation. Conventional digital design tools and processes, by contrast, prioritize shape over matter, lacking integration between modeling, analysis, and fabrication. We present a novel computational environment and workflow for the design and additive manufacturing of large-scale hierarchically structured objects. The system, composed by custom multi-barrel deposition attached to robotic positioning, integrates material properties, fabrication constraints and environmental forces to design and construct full-scale architectural components. Such components are physically form-found by digitally extruding natural polymers with functionally graded mechanical and optical properties informed by desired functionality and executed through flow-based fabrication. In this approach, properties such as viscosity, velocity, and pressure embed information in two-dimensional printing patterns and induce three-dimensional shape formation of the fabricated part. As a result, the workflow associates physical material and fabrication constraints to virtual design tools for modeling and analysis, challenging traditional design workflows and prioritizing flow over form.
keywords Material-driven Design, Additive Manufacturing, Integrated Design Workflows, Digital Fabrication, Digital Design Process, Material Ecology
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id cf2015_205
id cf2015_205
authors Oliveira, Eduardo; Kirley, Michael; Kvan, Tom; Karakiewicz, Justyna and Vaz, Carlos
year 2015
title Distributed and heterogeneous data analysis for smart urban planning
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 205.
summary Over the past decade, ‘smart’ cities have capitalized on new technologies and insights to transform their systems, operations and services. The rationale behind the use of these technologies is that an evidence-based, analytical approach to decision-making will lead to more robust and sustainable outcomes. However, harvesting high-quality data from the dense network of sensors embedded in the urban infrastructure, and combining this data with social network data, poses many challenges. In this paper, we investigate the use of an intelligent middleware – Device Nimbus – to support data capture and analysis techniques to inform urban planning and design. We report results from a ‘Living Campus’ experiment at the University of Melbourne, Australia focused on a public learning space case study. Local perspectives, collected via crowdsourcing, are combined with distributed and heterogeneous environmental sensor data. Our analysis shows that Device Nimbus’ data integration and intelligent modules provide high-quality support for decision-making and planning.
keywords smart city, smart campus, middleware, data fusion, urban design, urban planning.
series CAAD Futures
email
last changed 2015/06/29 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_802590 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002