CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id cf2015_326
id cf2015_326
authors Borges, Marina and Fakury, Ricardo H.
year 2015
title Structural design based on performance applied to development of a lattice wind tower
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 326.
summary This paper studies the process of parametric and algorithmic design, integrating structural analysis and design for the generation of complex geometric structures. This methodology is based on the Performative Model, where the shape is generated using performance criteria. In the approach, the development of complex structures is only possible by reversing the process of thinking to generate the form with established parameters for geometry, material and loading aspects. Thus, the structural engineer no longer only participates in the evaluation phase but also appears in the early stages, creating a process of exploration and production of common knowledge among architects and engineers. To research performance-based design, the development of a conceptual lattice for a wind tower is proposed. Thus, a system is made to generate geometries using Rhinoceros software, the Grasshopper plugin, and the VB programming language, integrated with stress analysis through the Scan & Solve plugin.
keywords Structural Design, Parametric and Algorithm Architecture, Structural Analysis, Performative Model, Lattice Wind Tower.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_158
id ecaade2015_158
authors Kim, Do-Young; Jang, DoJin and author), Sung-AhKim
year 2015
title A Symbiotic Interaction of Virtual and Physical Models in Designing Smart Building Envelope
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 633-642
doi https://doi.org/10.52842/conf.ecaade.2015.2.633
wos WOS:000372316000070
summary The building needs to be designed to minimize its environmental footprint and to be sufficiently adaptive to changing indoor and outdoor environmental conditions. The smart building envelope is an interactive system which is adaptive to environmental conditions by transforming its shape and functions. This is a kind of machine, not like a traditional building component, which should be based on integrated engineering design methods in addition to the exploration of formal aesthetics. As artistic genius or technical skill alone cannot not fully support the design of such a novel product, the design needs to be systemized by introducing a product development method such as prototyping in other industries. Prototyping needs to be integrated in school environment, even if it requires fundamental reconfiguration of current computer-based design studios. This paper aims at proposing a teaching methodology for educating the prototyping-based design of smart building envelope system in digital design studio. This methodology allows novice designers to operate interactions between virtual-physical models. And sketches are used to share ideas to other collaborators such as programming, mechanical operations without technical knowledge. The interactions between virtual-physical models and sketches contribute to not only complement virtual models and physical models, but also achieve high-performance of smart building envelope practically.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=215b1984-6e90-11e5-9ee8-00190f04dc4c
last changed 2022/06/07 07:52

_id cf2015_380
id cf2015_380
authors Barekati, Ehsan; Clayton, Mark J. and Yan, Wei
year 2015
title A BIM-compatible schema for architectural programming information
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 380.
summary Architectural programming, although a key part of AECFM processes, has not been well integrated into Building Information Modeling (BIM). Having access to architectural programming information throughout the lifecycle of a building can add value to design evaluation, facility management, renovation and extension. There is not currently a comprehensive and standard data model to store architectural programming information. Our research is producing a universal format for an architectural program of requirements (UFPOR) that can connect the architectural programming information to the IFC BIM schema. The result is a data model for architectural programming that is inherently interoperable with BIM standard schema. A graphical user interface facilitates data creation and manipulation. The schema and effectiveness of the bridging fields has been tested by entering the content of three two different architectural programming documents into the UFPOR database.
keywords BIM, Architectural Programming, Data Modelling, Interoperability, IFC.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_103
id ecaade2015_103
authors Choi, Joshua
year 2015
title Democratic Play - Crowd-Sourcing through Digital Games for Architectural Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 187-197
doi https://doi.org/10.52842/conf.ecaade.2015.2.187
wos WOS:000372316000023
summary This thesis presents a system that uses games. It allows people to participate in the process of designing an architectural space. The site for the design project of this experimental methodology is a courtyard on MIT campus.The games are initially prepared by the architect through sampling various objects, materials, lighting, and figures from different media such as photogrammetric models around the building site and other relevant 3D modeling/animation contents. The goal of this design system is to collage those components into a final architectural form through a democratic process.The games are distributed to students, faculty and staff who will be the users of the space being designed. Through playing these games, they provide preference about the architectural program and various design decisions regarding formal composition, details, and finishes. This crowd-sourcing occurs both implicitly and explicitly while the game is being played, and the collected feed-back informs the architect about design development.This thesis questions the role of the architects in a democratic process of design: Are we the designer of the space, or creator of a system that controls the design process?.
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2015_067
id caadria2015_067
authors Choi, Jungsik; Minchan Kim and Inhan Kim
year 2015
title A Methodology of Mapping Interface for Energy Performance Assessment Based on Open BIM
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 417-426
doi https://doi.org/10.52842/conf.caadria.2015.417
summary Early design phase energy modelling is used to provide the design team with feedback about the impact of various building configurations. For better energy-conscious and sustainable building design and operation, the construction of BIM data interoperability for energy performance assessment in the early design phase is important. The purpose of this study is to suggest a development of BIM data interoperability for energy performance assessment based on BIM. To archive this, the authors have investigated advantages of BIM-based energy performance assessment through comparison with traditional energy performance assessment; and suggest requirements for development of Open BIM environment such as BIM data creation and BIM data application. In addition, the authors also suggested on BIM data interoperability system and developed mapping interface.
keywords Building Information Modelling (BIM); Energy Performance Assessment (EPA); Data Interoperability; Energy Property; Industry Foundation Classes (IFC).
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2015_185
id caadria2015_185
authors De Oliveira, Maria João and Vasco Moreira Rato
year 2015
title From Morphogenetic Data to Performative Behaviour
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 765-774
doi https://doi.org/10.52842/conf.caadria.2015.765
summary This paper presents part of CORK’EWS, a research work developed within the framework of the Digital Architecture Advanced Program 2012/13 at ISCTE-IUL. The main goal of this investigation was to develop a parametric, customizable and adaptive wall system designed for environmental performance. Moreover, the system is based on standard industrial products: expanded cork blocks produced by Amorim Insulation industries. CAD/CAM resources were the essential tools of the research process, where fundamental and practical knowledge is integrated to understand the microstructure morphological properties of the raw material – cork – and its derivate – natural expanded cork. These properties were upscale and adapted to create a wall with an optimized solar control environmental performance. The result is a digitally fabricated prototype of a new customizable industrial product, adaptable to specific environmental conditions and installation setups being therefore easily commercialized. From microstructural morphology to macroscale construction, the research explores new application possibilities through morphogenesis and opens new possible markets for these customizable products.
keywords Morphogenesis; performance; shading systems; cork.
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2015_164
id caadria2015_164
authors Mcginley, Tim and Darren Fong
year 2015
title Designghosts
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 365-374
doi https://doi.org/10.52842/conf.caadria.2015.365
summary For architects, a database of typological specific occupant behaviour patterns could help in the design of buildings, through a typological specific insight into the previous use of buildings. In addition, appropriately represented occupant behaviour data in commercial buildings represent an important factor for facilities management (FM) and business information (BI) teams in the assessment the operational performance of the enterprise. Building Information Models (BIM) could provide an appropriate reference for this user data. However the mapping of user behaviour data to the BIM models is unclear. This paper presents a ‘designGhost’ information system to support the mapping of occupant behaviour to BIM models, so that the user data can be represented to the different stakeholders. To test the information system a prototype tool is presented to enable the mapping of the building use (designGhost) data to the building’s spaces in order to support architects in the design stage and to support navigation from an operational (FM/BI) perspective. This paper addressees the challenges of developing such a system and proposes directions for future work.
keywords Post occupancy evaluation; BIM; visibility graph analysis; designGhost; occupant behaviour; design science; building design and operation.
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2015_225
id ecaade2015_225
authors Orfanos, Yannis; Papadopoulos, Dimitrios and Zwerlein, Cory
year 2015
title An Integrated Performance Analysis Platform for Sustainable Architecture and Urban Infrastructure Systems
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 315-324
doi https://doi.org/10.52842/conf.ecaade.2015.1.315
wos WOS:000372317300034
summary This applied research brings together the performance analysis of a building's micro-scale and urban-infrastructure's macro-scale. A New York City lot, is serving as the background of experimentation with parametric design, performance simulation, data analysis and visualization. The paper describes the process of integrating design intentions, location parameters, climate data, material properties, and space quality and sustainability metrics into one platform. Although in-depth domain knowledge is irreplaceable, the paper argues that the exploration into contemporary, easily accessible and algorithmic simulation software, provides a unique educational opportunity for architects and students to integrate performance driven design in their every-day practice, and become aware of the consequences of their design on urban infrastructure systems. This allows them to reduce the time frame between design iterations and performance evaluation for the benefit of better informed decisions.
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=91bbabd6-702e-11e5-a0f9-b7d7d9e4ecfd
last changed 2022/06/07 08:00

_id caadria2015_077
id caadria2015_077
authors Shiff, Galit; Yael Gilad and Amos Ophir
year 2015
title Adaptive Polymer Based BIPV Skin
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 345-354
doi https://doi.org/10.52842/conf.caadria.2015.345
summary This study focuses on developing three-dimensional solar panels, as an alternative to traditional flat Photovoltaic (PV) surfaces in Building Integrated Photovoltaic (BIPV). We propose to increase the energy efficiency of buildings by using the entire envelope for energy production as well as by increasing the efficiency of solar energy output in orientations which were traditionally considered as non-ideal. The panels are constructed from Polycarbonate with integrated flexible photovoltaic film, solar paint or dye. The methodology included digital algorithm-based tools for achieving optimized variable three-dimensional surfaces according to local orientation and location, computational climatic simulations and comparative field tests. In addition, the structural, mechanical and thermal properties of the integration between flexible PV sheets and hard plastic curved panels were studied. Interim results demonstrate a potential improvement of 50-80% in energy production per building unit resulting from geometric variations per-se. The dependence of energy production by surface geometry was revealed and an optimized method for solar material distribution on the surface was proposed. A parametric digital tool for automatic generation of optimized three-dimensional panels was developed together with a database and material models of the optimized panels system.
keywords Building Integrated Photovoltaics; digital algorithm; climatic simulations; building envelope
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2015_382
id cf2015_382
authors Shin, Jihye; Choi, Jungsik and Kim, Inhan
year 2015
title Development of BIM performance measurement system for architectural design firms
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 382.
summary Despite the effort of Korean government to vitalize BIM adoption in AEC industry, the domestic adoption of BIM is still in its initial step. Particular in design field where medium and small firms being the majority, shows lower level of BIM adoption. The primary reason for this can be considered as lacking of necessities caused by uncertain benefits of BIM. Therefore, it is time to develop the objectives, quantifiable and qualitative measurement system of BIM performances. The purpose of this study is to suggest the BIM Performance Measurement System for architectural design firms. In achieving this, the authors have developed Balanced Scorecard (BSC) and validated its appropriateness by questionnaire survey with experts and performing statistical analysis. This development can be contributed to the voluntary BIM adoption by visualizing the detailed benefit of BIM and to the improvement of enterprise competitiveness by facilitating management of design process and estimating future outcome.
keywords Building Information Modeling (BIM), BIM adoption, BIM benefit, Performance Measurement System (PMS), Balanced Scorecard (BSC), Critical Success Factors (CSF), Key Performance Indicators (KPI).
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_072
id caadria2015_072
authors Si, Fei and Tsung-Hsien Wang
year 2015
title Building Massing Optimisation in Early Design Stage
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 583-592
doi https://doi.org/10.52842/conf.caadria.2015.583
summary This paper proposes a performance-driven design workflow based on Total Sunlight Hours evaluation. The objective is to investigate an optimal solution of a building massing design meeting solar radiation criteria as early as in the conceptual design stage. In our paper, such a process is demonstrated through a case study on an Experimental Social Housing project. We illustrate how design constraints are encoded with the evaluation criterion, Total Sunlight Hours (TSH), through an integrated computational workflow. Alongside with such a computation-intensive process, we also experimented with the same design project using a conventional design approach. The advantages and disadvantages of using a performance-driven computational workflow over a conventional design process are discussed and presented. In particular, we examine how a performance-driven design workflow can be integrated within the iterative design process and how human designers interact with computation to investigate optimal design solutions.
keywords Performance-driven design; environmentally-conscious; parametric modelling; building massing optimisation; daylight performance evaluation
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia15_69
id acadia15_69
authors Wilcox, Glenn; Trandafirescu, Anca
year 2015
title C-Lith: Carbon Fiber Architectural Units
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 69-79
doi https://doi.org/10.52842/conf.acadia.2015.069
summary C-LITH is the reconsideration of the architectural building unit through the exploration of new composite techniques and materials. Our project develops individual compo- nents that exploit the strength, lightness, and variability possible with carbon ber laments when paired with computation, digital fabrication, and hand assembly. Traditionally, architectural units made of brick or concrete are small and multiple, heavy, dif cult to vary, and are much better in compression than tension. Using carbon ber laments to create variable units allows for larger individual units that can vary in both shape and structural performance as needed. Our units, developed through winding pre-preg carbon ber tow around disposable molds, bene t structurally from the quasi-isotropic properties that are developed through the winding patterns. The specific structural capacities of the units remain to be understood through further testing and analysis, which falls outside the scope of this current research. At this junction, structural capacities have been determined empirically, i.e. will it stand? Most importantly, as a formal study, our units address the use of carbon ber at the scale of architectural production. A majority of the effort involved in materializing C-LITH was the development of a two-fold prototypical manufacturing process that produces the components and assembly. For this we invented a method to quickly and cheaply construct variable cardboard molds that could withstand the wound casting and baking steps, but could also be easily weakened through water immersion to be removed. For the assembly we developed a rigid dummy-jig system to hold the joint plates in position with a high level of precision but could also incrementally absorb the adjustment errors unavoidable in hand assembly systems. Using a simple pin connection the resultant structures can be easily disassembled for transportation and reassembly elsewhere.
keywords Carbon Fiber Composite, Variability, Fabrication, Computation, Coding, Molds, Jigging, Assembly
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id ecaade2015_86
id ecaade2015_86
authors Zboinska, Malgorzata A.; Cudzik, Jan, Juchnevic, Robert and Radziszewski, Kacper
year 2015
title A Design Framework and a Digital Toolset Supporting the Early-Stage Explorations of Responsive Kinetic Building Skin Concepts
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 715-725
doi https://doi.org/10.52842/conf.ecaade.2015.2.715
wos WOS:000372316000079
summary In this paper we present the first phase of our research on the development of a framework for early-stage responsive kinetic building skin design. The aims of this study were: to formulate a methodological and instrumental basis for the construction of the framework, to conduct an initial pre-assessment of its features, and finally to provide the first example of how the framework could be applied in practice. Importantly, at this point our goal was not yet to indicate the framework's effectiveness, but rather focus on formulating its foundations. A pilot design experiment, aimed at the probing of the framework's characteristics, suggests the emergence of its two noteworthy features. Firstly, it allows to freely but at the same time also systematically explore six design aspects of responsive architecture: form, functionality, performance, kinetic behaviors, system mechanics and responsiveness. Secondly, it helps to explore these six aspects using diverse means: parametric models, digital simulations, computational analyses, physical models and interactive prototypes. These features suggest that the framework could be a valid and useful means of supporting designers in the complex task of creating architectural concepts of responsive kinetic structures.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=0d8a987e-6e92-11e5-84ad-00190f04dc4c
last changed 2022/06/07 07:57

_id sigradi2015_2.162
id sigradi2015_2.162
authors Almeida, Fernando; Andrade, Max
year 2015
title GIS as a catalyst tool for Smart Cities
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 46-50.
summary Every building has its individual and measurable role on resources consumption, waste generation and neighborhood impact within a city, and tracking this behavior is an essential task for establishing a sustainable path into a Smart City model. This paper preliminarily investigates how GIS can contribute in creating an integrated and dynamic system built to attend public utilities and urban management offices for parameters at various scales.
keywords GIS, Smart Cities, Urban Infrastructure, Public Services, Urban Management
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_130
id ecaade2015_130
authors Asl, Mohammad Rahmani; Stoupine, Alexander, Zarrinmehr, Saied and Yan, Wei
year 2015
title Optimo: A BIM-based Multi-Objective Optimization Tool Utilizing Visual Programming for High Performance Building Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 673-682
doi https://doi.org/10.52842/conf.ecaade.2015.1.673
wos WOS:000372317300073
summary Within the architecture, engineering, and construction (AEC) industry, the application of multidisciplinary optimization methods has been shown to reach significant improvements in building performance compared to conventional design methods. As a result, the use of multidisciplinary optimization in the process of design is growing and becoming a common method that provides desired performance feedback for decision making. However, there is a lack of BIM-based multidisciplinary optimization tools that use the rich information stored in Building Information Models (BIM) to help designers explore design alternatives across multiple competing design criteria. In this paper we introduce Optimo, an open-source visual programming-based Multi-Objective Optimization (MOO) tool, which is developed to parametrically interact with Autodesk Revit for BIM-based optimization. The paper details the development process of Optimo and also provides the initial validation of its results using optimization test functions. Finally, strengths, limitations, current adoption by academia and industry, and future improvements of Optimo for building performance optimization are discussed.
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia15_161
id acadia15_161
authors Baharlou, Ehsan; Menges, Achim
year 2015
title Toward a Behavioral Design System: An Agent-Based Approach for Polygonal Surfaces Structures
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 161-172
doi https://doi.org/10.52842/conf.acadia.2015.161
summary The following research investigates the development of an agent-based design method as an integrative design tool for polygonal surface structures. The aim of this research is to develop a computational tool that self-organizes the emergence of polygonal surface structures from interaction between its constitutive lattices. This research focuses on the ethological level of morphogenesis that is relevant to the animal or insect societies, whereby agents mediate the material organizations with environmental aspects. Meanwhile, behavior-based approaches are investigated as a bottom-up system to develop a computational framework in which the lower-level features constantly interact. The lower-level features such as material properties (e.g., geometric descriptions) are abstracted into building blocks or agents to construct the agent’s morphology. The abstracted principles, which define the agent’s morphology, are aggregated into a generative tool to explore the emergent complexities. This exploration coupled with the generative constraint mechanisms steers the collective agents system toward the cloud of solutions; hence, the collective behaviors of agents constitute the polygonal surface structures. This polygonal system is a bottom up approach of developing the complex surface that emerges through topological and topographical interaction between cells and their surrounding environment. Subsequently, the integrative system is developed through agent-based parametric modelling, in which the knowledge-based system as a top-down approach is substituted with the agent system together with its morphological features and significant behaviors.
keywords Agent-Based System, Behavioral-Based System, Polygonal Surface Structures, Self-Organization and Emergence
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia16_362
id acadia16_362
authors Beesley, Philip; Ilgun, Zeliha, Asya; Bouron, Giselle; Kadish, David; Prosser, Jordan; Gorbet, Rob; Kulic, Dana; Nicholas, Paul; Zwierzycki, Mateusz
year 2016
title Hybrid Sentient Canopy: An implementation and visualization of proprioreceptive curiosity-based machine learning
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 362-371
doi https://doi.org/10.52842/conf.acadia.2016.362
summary This paper describes the development of a sentient canopy that interacts with human visitors by using its own internal motivation. Modular curiosity-based machine learning behaviour is supported by a highly distributed system of microprocessor hardware integrated within interlinked cellular arrays of sound, light, kinetic actuators and proprioreceptive sensors in a resilient physical scaffolding system. The curiosity-based system involves exploration by employing an expert system composed of archives of information from preceding behaviours, calculating potential behaviours together with locations and applications, executing behaviour and comparing result to prediction. Prototype architectural structures entitled Sentient Canopy and Sentient Chamber developed during 2015 and 2016 were developed to support this interactive behaviour, integrating new communications protocols and firmware, and a hybrid proprioreceptive system that configured new electronics with sound, light, and motion sensing capable of internal machine sensing and externally- oriented sensing for human interaction. Proprioreception was implemented by producing custom electronics serving photoresistors, pitch-sensing microphones, and accelerometers for motion and position, coupled to sound, light and motion-based actuators and additional infrared sensors designed for sensing of human gestures. This configuration provided the machine system with the ability to calculate and detect real-time behaviour and to compare this to models of behaviour predicted within scripted routines. Testbeds located at the Living Architecture Systems Group/Philip Beesley Architect Inc. (LASG/PBAI, Waterloo/Toronto), Centre for Information Technology (CITA, Copenhagen) National Academy of Sciences (NAS) in Washington DC are illustrated.
keywords intedisciplinary/collaborative design, intelligent environments, artificial intelligence, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id cf2015_005
id cf2015_005
authors Celani, Gabriela; Sperling, David M. and Franco, Juarez M. S. (eds.)
year 2015
title Preface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 5-13.
summary Since 1985 the Computer-Aided Architectural Design Futures Foundation has fostered high level discussions about the search for excellence in the built environment through the use of new technologies with an exploratory and critical perspective. In 2015, the 16th CAAD Futures Conference was held, for the first time, in South America, in the lively megalopolis of Sao Paulo, Brazil. In order to establish a connection to local issues, the theme of the conference was "The next city". The city of Sao Paulo was torn down and almost completely rebuilt twice, from the mid 1800s to the mid 1900s, evolving from a city built in rammed-earth to a city built in bricks and then from a city built in bricks to a city built in concrete. In the 21st century, with the widespread use of digital technologies both in the design and production of buildings, cities are changing even faster, in terms of layout, materials, shapes, textures, production methods and, above all, in terms of the information that is now embedded in built systems.Among the 200 abstracts received in the first phase, 64 were selected for presentation in the conference and publication in the Electronic Proceedings, either as long or short papers, after 3 tough evaluation stages. Each paper was reviewed by at least three different experts from an international committee of more than 80 highly experienced researchers. The authors come from 23 different countries. Among all papers, 10 come from Latin-American institutions, which have been usually under-represented in CAAD Futures. The 33 highest rated long papers are also being published in a printed book by Springer. For this reason, only their abstracts were included in this Electronic Proceedings, at the end of each chapter.The papers in this book have been organized under the following topics: (1) modeling, analyzing and simulating the city, (2) sustainability and performance of the built environment, (3) automated and parametric design, (4) building information modeling (BIM), (5) fabrication and materiality, and (6) shape studies. The first topic includes papers describing different uses of computation applied to the study of the urban environment. The second one represents one of the most important current issues in the study and design of the built environment. The third topic, automated and parametric design, is an established field of research that is finally becoming more available to practitioners. Fabrication has been a hot topic in CAAD conferences, and is becoming ever more popular. This new way of making design and buildings will soon start affecting the way cities look like. Finally, shape studies are an established and respected field in design computing that is traditionally discussed in CAAD conferences.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_172
id caadria2015_172
authors Choo, Thian-Siong and Patrick Janssen
year 2015
title Performance-Based Parametric Design : A Framework for Building Envelope Design
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 603-612
doi https://doi.org/10.52842/conf.caadria.2015.603
summary Existing performance-based design exploration methods typically suffer from a lack of real-time feedback and a lack of actionable feedback. This paper proposes a hybrid design exploration method that overcomes these issues by combining parametric modelling, surrogate modelling, and evolutionary algorithms. The proposed method is structured as a mixed-initiative approach, in which parametric modelling is the key to creating a synergistic relationship between the architect and the computational system. Surrogate-based techniques will address the issue of real-time feedback, the evolutionary exploration techniques will address the issue of actionable feedback. As a first stage in developing the PEX method, this paper reports on two experiments conducted to identify an appropriate surrogate modelling technique that is efficient and robust.
keywords Performance-based design, parametric modelling, surrogate modelling, evolutionary algorithms
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2015_384
id cf2015_384
authors Cursi, Stefano; Simeone, Davide and Toldo, Ilaria
year 2015
title A semantic web approach for built heritage representation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 384.
summary In a built heritage process, meant as a structured system of activities aimed at the investigation, preservation, and management of architectural heritage, any task accomplished by the several actors involved in it is deeply influenced by the way the knowledge is represented and shared. In the current heritage practice, knowledge representation and management have shown several limitations due to the difficulty of dealing with large amount of extremely heterogeneous data. On this basis, this research aims at extending semantic web approaches and technologies to architectural heritage knowledge management in order to provide an integrated and multidisciplinary representation of the artifact and of the knowledge necessary to support any decision or any intervention and management activity. To this purpose, an ontology-based system, representing the knowledge related to the artifact and its contexts, has been developed through the formalization of domain-specific entities and relationships between them.
keywords Built Heritage, Knowledge-based model, Ontology-based systems, Building Information Modeling, Semantic web technologies.
series CAAD Futures
email
last changed 2015/06/29 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_196014 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002