CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id ecaade2015_241
id ecaade2015_241
authors Herneoja, Aulikki; Pihlajaniemi, Henrika, Österlund, Toni, Luusua, Anna and Markkanen, Piia
year 2015
title Remarks on Transdisciplinarity as Basis for Conducting Research by Design Teamwork in Real World Context through Two Case Studies of Algorithm Aided Lighting Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 61-70
doi https://doi.org/10.52842/conf.ecaade.2015.2.061
wos WOS:000372316000009
summary The definition of Research by Design (RD) as a research methodology is not yet well established. RD takes its position not only as a research method next to the 'traditional' sciences but also in relation to the creative design practice, where transdicsiplinarity is in essential role. Rather than defining architecture being transdisciplinary in itself, we see beneficial to conduct research together with various disciplines concerning the complexity of the life-world. Also in this interdisciplinary research group we are willing to hold on the designerly way of knowledge production. Of our practical experience working in an interdisciplinary research group shared values, research project management together with participation with evaluative aims were the most challenging aspects. At its best, attempt for genuine transcdisciplinarity was beneficial and rewarding, though sometimes challenging. We would like to target the discussion how we architects, as researchers identify in an interdisciplinary research group conducting transdisciplinary research.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=33cc5b92-6e8f-11e5-b6d3-1f476c2fddef
last changed 2022/06/07 07:49

_id acadia15_81
id acadia15_81
authors Hussein, Ahmed
year 2015
title Sandworks / Sand Tectonic Prototype
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 81-94
doi https://doi.org/10.52842/conf.acadia.2015.081
summary This paper outlines a material based research that proposes a time-based architecture that extends Frei Otto’s research of sand formations using sand’s natural angle of repose. The tectonic system focuses on developing compressive structures of sand for hot climate desert areas through a zero-waste formative process whose architecture reorganizes materials naturally available on the site. Formations are hardened as a surface through the phase changing properties of a saline solution which crystallizes when cooled, bonding with the sand. The proportion of insulation material defines the building life span redistributes the materials back into its environment at the end of its cycle. The materiality and spatial qualities of the project are based on the conical and constant angle surfaces generated through the gravitational process of sand formation. Between the digital opportunities of sand formation and its physical possibilities, this paper outlines the analogue-digital methods of sand computation through a comprehensive study in four main sections; material system, material computation, design system and robotic fabrication.
keywords Material computation, analogues digital methods, Sand, Digital design and robotic fabrication, ecological tectonic system
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id eaea2015_t2_paper03
id eaea2015_t2_paper03
authors Bar-Eli, Amos
year 2015
title On (New) Ruins Reconciliation Capacity
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.142-151
summary This paper takes a critical look at the characteristics of new-ruins and evaluates some of their contemporary usages. The paper analyses the new-ruin as a phenomenon, and evaluates its role in architectural heritage. It views the unique reconciliation characteristics of the new-ruin, and its presence as a powerful tool capable of accommodating binary opposing conditions.
keywords new-ruins; architecture heritage; architecture theory
series EAEA
email
last changed 2016/04/22 11:52

_id sigradi2015_3.394
id sigradi2015_3.394
authors Bastiani, Jamile De; Pupo, Regiane T.
year 2015
title Materialize to inform and educate
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 161-166.
summary The protection and preservation of historical heritage are important tasks for all walks of life because rebuilding the exclusionary social memory, symbolically representing the nation’s identity. From this reflection, the problem arises of how to make the people appreciate the historic buildings. The Region of Medium High Uruguay, will serve as pilot study on a method of applying to the enhancement of national heritage by the population that is through the materialization of form. It is with the help of computer modeling combined with digital prototyping that seeks to find effective alternatives that use new technologies in the upgrading of historic buildings, a form of knowledge, integration and collaboration. In many areas of knowledge, consciousness makes the human being is connected to the world through all the senses. And touch, as experimentation and understanding of space it inhabits, may be the most overlooked sense in recent informatization times. In this research, the new realization techniques used to attempt to leverage awareness and understanding of a heritage, for a population hitherto alien to the cultural and historical values of a local architecture.
keywords Materialize, Inform, Aware, Appreciation
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_100
id ecaade2015_100
authors Braumann, Johannes and Brell-Cokcan, Sigrid
year 2015
title Adaptive Robot Control - New Parametric Workflows Directly from Design to KUKA Robots
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 243-250
doi https://doi.org/10.52842/conf.ecaade.2015.2.243
wos WOS:000372316000029
summary In the past years the creative industry has made great advancements in the area of robotics. Accessible robot simulation and control environments based on visual programming systems such as Grasshopper and Dynamo now allow even novice users to quickly and intuitively explore the potential of robotic fabrication, while expert users can use their programming knowledge to create complex, parametric robotic programs. The great advantage of using visual programming for robot control lies in the quick iterations that allow the user to change both geometry and toolpaths as well as machinic parameters and then simulate the results within a single environment. However, at the end of such an iterative optimization process the data is condensed into a robot control data file, which is then copied over to the robot and thus loses its parametric relationship with the code that generated it. In this research we present a newly developed system that allows a dynamic link between the robot and the controlling PC for parametrically adjusting robotic toolpaths and collecting feedback data from the robot itself - enabling entirely new approaches towards robotic fabrication by even more closely linking design and fabrication.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=9d9da7bc-70ef-11e5-b2fd-efbb508168fd
last changed 2022/06/07 07:54

_id ecaaderis2018_103
id ecaaderis2018_103
authors Davidová, Marie and Prokop, Šimon
year 2018
title TreeHugger - The Eco-Systemic Prototypical Urban Intervention
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 75-84
keywords The paper discusses co-design, development, production, application of TreeHugger (see Figure 1). The co-design among community and trans-disciplinary participants with different expertise required scope of media mix, switching between analogue, digital and back again. This involves different degrees of physical and digital 'GIGA-Mapping' (Sevaldson, 2011, 2015), 'Grasshopper3d' (Davidson, 2017) scripting and mix of digital and analogue fabrication to address the real life world. The critical participation of this 'Time-Based Design' (Sevaldson, 2004, 2005) process is the interaction of the prototype with eco-systemic agency of the adjacent environment - the eco-systemic performance. The TreeHugger is a responsive solid wood insect hotel, generating habitats and edible landscaping (Creasy, 2004) on bio-tope in city centre of Prague. To extend the impact, the code was uploaded for communities to download, local-specifically edit and apply worldwide. Thus, the fusion of discussed processes is multi-scaled and multi-layered, utilised in emerging design field: Systemic Approach to Architectural Performance.
series eCAADe
email
last changed 2018/05/29 14:33

_id ecaade2015_247
id ecaade2015_247
authors Garcia, Manuel Jimenez and Retsin, Gilles
year 2015
title Design Methods for Large Scale Printing
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 331-339
doi https://doi.org/10.52842/conf.ecaade.2015.2.331
wos WOS:000372316000039
summary With an exponential increase in the possibilities of computation and computer-controlled fabrication, high density information is becoming a reality in digital design and architecture. However, construction methods and industrial fabrication processes have not yet been reshaped to accommodate the recent changes in those disciplines. Although it is possible to build up complex simulations with millions of particles, the simulation is often disconnected from the actual fabrication process. Our research proposes a bridge between both stages, where one drives the other, producing a smooth transition from design to production. A particle in the digital domain becomes a drop of material in the construction method.The architect's medium of expression has become much more than a representational tool in the last century, and more recently it has evolved even beyond a series of rules to drive from design to production. The design system is the instruction itself; embedding structure, material and tectonics and gets delivered to the very end of the construction chain, where it gets materialised. The research showcased in this paper investigates tectonic systems associated with large scale 3D printing and additive manufacturing methods, inheriting both material properties and fabrication constraints at all stages from design to production. Computational models and custom design software packages are designed and developed as strategies to organise material in space in response to specific structural and logistical input.Although the research has developed a wide spectrum of 3D printing methods, this paper focuses only on two of the most recent projects, where different material and computational logics were investigated. The first, titled Filamentrics, intends to develop free-form space frames, overcoming their homogeneity by introducing robotic plastic extrusion. Through the use of custom made extruders a vast range of high resolution prototypes were developed, evolving the design process towards the fabrication of precise structures that can be materialised using additive manufacturing but without the use of a layered 3D printing method. Instead, material limitations were studied and embedded in custom algorithms that allow depositing material in the air for internal connectivity. The final result is a 3x2x2.5m structure that demonstrates the viability of this construction method for being implemented in more industrial scenarios.While Filamentrics is reshaping the way we could design and build light weight structures, the second project Microstrata aims to establish new construction methods for compression based materials. A layering 3D printing method combines both the deposition of the binder and the distribution of an interconnected network of capillaries. These capillaries are organised following structural principles, configuring a series of channels which are left empty within the mass. In a second stage aluminium is cast in this hollow space to build a continuous tension reinforcement.
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=07a6d8e0-6fe7-11e5-9994-cb14cd908012
last changed 2022/06/07 07:51

_id ecaade2015_ws-robowood
id ecaade2015_ws-robowood
authors Hornung, Philipp; Johannes Braumann, Reinhold Krobath, Sigrid Brell-Cokcan and Georg Glaeser
year 2015
title Robotic Woodcraft: Creating Tools for Digital Design and Fabrication
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 33-36
doi https://doi.org/10.52842/conf.ecaade.2015.2.033
wos WOS:000372316000004
summary Robotic Woodcraft is a transdisciplinary, arts-based investigation into robotic arms at the University for Applied Arts Vienna. Bringing together the craftsmen of the Department for Wood Technology, the geometers of the Department for Arts and Technology, the young industrial design office Lucy.D and the roboticists of the Association for Robots in Architecture, the research project explores new approaches on how to couple high-tech robotic arms with high-end wood fabrication. In the eCAADe workshop, participants are introduced to KUKA|prc (parametric robot control, Braumann and Brell-Cokcan, 2011) and shown approaches on how to create their own digital fabrication tools for customized fabrication processes involving wood.
keywords Robotic woodcraft; Arts-based research; Robotic fabrication; Visual programming; Parametric robot control
series eCAADe
last changed 2022/06/07 07:50

_id ecaade2015_265
id ecaade2015_265
authors Hosey, Shannon; Beorkrem, Christopher, Damiano, Ashley, Lopez, Rafael and McCall, Marlena
year 2015
title Digital Design for Disassembly
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 371-382
doi https://doi.org/10.52842/conf.ecaade.2015.2.371
wos WOS:000372316000043
summary The construction and building sector is now widely known to be one of the biggest energy consumers, carbon emitters, and creators of waste. Some architectural agendas for sustainability focus on energy efficiency of buildings that minimize their energy intake during their lifetime - through the use of more efficient mechanical systems or more insulative wall systems. One issue with these sustainability models is that they often ignore the hierarchy of energy within architectural design. The focus on the efficiency is but one aspect or system of the building assembly, when compared to the effectiveness of the whole, which often leads to ad-hoc ecology and results in the all too familiar “law of unintended consequences” (Merton, 1936). As soon as adhesive is used to connect two materials, a piece of trash is created. If designers treat material as energy, and want to use energy responsibly, they can prolong the lifetime of building material by designing for disassembly. By changing the nature of the physical relationship between materials, buildings can be reconfigured and repurposed all the while keeping materials out of a landfill. The use of smart joinery to create building assemblies which can be disassembled, has a milieu of new possibilities created through the use of digital manufacturing equipment. These tools afford designers and manufacturers the ability to create individual joints of a variety of types, which perform as well or better than conventional systems. The concept of design for disassembly is a recognizable goal of industrial design and manufacturing, but for Architecture it remains a novel approach. A classic example is Kieran Timberlake's Loblolly House, which employed material assemblies “that are detailed for on-site assembly as well as future disassembly and redeployment” (Flat, Inc, 2008). The use of nearly ubiquitous digital manufacturing tools helps designers create highly functional, precise and effective methods of connection which afford a building to be taken apart and reused or reassembled into alternative configurations or for alternative uses. This paper will survey alternative energy strategies made available through joinery using digital manufacturing and design methods, and will evaluate these strategies in their ability to create diassemblable materials which therefore use less energy - or minimize the entropy of energy over the life-cycle of the material.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=4075520a-6fe7-11e5-bcc8-f7d564ea25ed
last changed 2022/06/07 07:50

_id ecaade2015_227
id ecaade2015_227
authors Ireland, Tim
year 2015
title An Artificial Life Approach to Configuring Architectural Space
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 581-590
doi https://doi.org/10.52842/conf.ecaade.2015.2.581
wos WOS:000372316000065
summary This paper presents a method of configuring architectural space that articulates the coupling of an organism with its environment; expressing the spatiality of unfolding engagement in the world. The premise is that space is a consequence of cohesion, effected through constraints and processes of enaction. An Artificial Life model is presented as an analogue of a bottom-up approach to architectural design that takes into account that we as organisms interact with our ever present changing environment and redefine our spatial domain depending on our sensory interaction with said environment.
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2015_194
id ecaade2015_194
authors Kaushik, Vignesh and Janssen, Patrick
year 2015
title Urban Windflow:Investigating the use of animation software for simulating windflow around buildings
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 225-234
doi https://doi.org/10.52842/conf.ecaade.2015.1.225
wos WOS:000372317300024
summary The animation and visual effects industry is producing advanced software capable of generating realistic behaviours faster than ever by using algorithms that approximate the physics of the real world. There is an opportunity to utilize these software to support performance-based conceptual design for complex simulations such as Computational Fluid Dynamics (CFD). This paper investigates a method of performing windflow simulation using an animation software that implements an Eulerian based smoke solver. These simulations run orders of magnitude faster than the similar simulations in dedicated high-end CFD applications. The paper compares the animated simulation results to a benchmark case with measured wind-tunnel data. The results indicate that at certain points in the animation, the accuracy is very high. However, the challenge lies in predicting best frame at which to stop the animation. The paper ends with a discussion of how this challenge might be tackled.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c02da8d0-702d-11e5-ba25-7396141e161c
last changed 2022/06/07 07:52

_id ecaade2015_84
id ecaade2015_84
authors Kontovourkis, Odysseas and Tryfonos, George
year 2015
title Robotic Fabrication of Tensile Mesh Structures and Real Time Response - The Development and Simulation of a Custom-Made End Effector Tool
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 389-398
doi https://doi.org/10.52842/conf.ecaade.2015.2.389
wos WOS:000372316000045
summary This paper presents an ongoing research, aiming to introduce a fabrication procedure for the development of tensile mesh systems. The purpose of this methodology is to be implemented in real time, based on a feedback loop logic cyclically iterated between robotic machine control and elastic material behaviour. Our purpose is to extend the capacity of robotically driven mechanisms to the fabrication of complex tensile structures and at the same time, reduce the defects that might occur due to the deformation of the elastic material. In this paper, emphasis is given to the development of a custom-made end effector tool, which is responsible to add elastic threads and create connections in the form of nodes. Based on additive fabrication logic, this process suggests the real time development of physical prototypes through the increasing smoothness of mesh structures.
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2015_188
id caadria2015_188
authors Krakhofer, Stefan and Martin Kaftan
year 2015
title Augmented Reality Design Decision Support Engine for the Early Building Design Stage
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 231-240
doi https://doi.org/10.52842/conf.caadria.2015.231
summary Augmented reality has come a long way and experienced a paradigm shift in 1999 when the ARToolKit was released as open source. The nature of interaction between the physical world and the virtual-world has changed forever. Fortunately for the AECO industry, the transition from traditional Computer Aided Design to virtual building design phrased as Building Information Modeling has created a tremendous potential to adopt Augmented Reality. The presented research is situated in the early design stage of project inception and focuses on supporting informed collective decision-making, characterized by a dynamic back and forth analytical process generating large amounts of data. Facilitation aspects, such as data-collection, storage and access to enable comparability and evaluation are crucial for collective decision-making. The current research has addressed these aspects by means of data accessibility, visualization and presentation. At the core of the project is a custom developed Augmented Reality framework that enables data interaction within the design model. In order to serve as a collaborative decision support engine, the framework also allows multiple models and their datasets to be displayed and exercised simultaneously. The paper demonstrates in the case study the successful application of the AR tool during collaborative design decision meetings.
keywords Augmented Reality; Design Decision Support; Data Visualization.
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2015_169
id ecaade2015_169
authors Nakama, Yuki; Onishi, Yasunobu and Iki, Kazuhisa
year 2015
title Development of Building Information Management System with Data Collecting Functions based on IoT Technology
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 647-655
doi https://doi.org/10.52842/conf.ecaade.2015.1.647
wos WOS:000372317300070
summary Facility management is aimed at energy saving, increasing the lifespan of buildings, enhancing the satisfaction of facility users and reducing running costs. To that end, it is important to grasp the conditions of the building in detail, and to analyze them one by one in order to execute building operation and maintenance strategically. However, conventional CAFM is insufficient. Therefore, we developed a system (called Building Information Management System) to utilize BIM data made on a Web site. We used groupware to support the system and an information platform that enables continuous management of a great variety of maintenance information. In addition, we developed a system to input information of building operation and maintenance using a mobile device on the site of checking and patrolling so as to reduce the burden of inputting information. A sensor network is used to acquire building operation and maintenance information to enhance building operation and maintenance. We also developed a system to automatically input sensing information into the building information for Building Information Management System, and to connect it with a 3D model. It has therefore become easier to collect the large amount of information necessary for strategic building operation and maintenance.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=0d63b958-7021-11e5-a1ec-00190f04dc4c
last changed 2022/06/07 07:59

_id caadria2015_012
id caadria2015_012
authors Nakama, Yuki; Yasunobu Onishi and Kazuhisa Iki
year 2015
title Development of Building Information Management System Using BIM toward Strategic Building Operation and Maintenance
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 397-406
doi https://doi.org/10.52842/conf.caadria.2015.397
summary Facility management is aimed at energy saving, increasing the lifespan of buildings, enhancing the satisfaction of facility users and reducing running costs. To that end, it is important to grasp the conditions of the building in detail, and to analyze them one by one in order to execute building operation and maintenance strategically. However, conventional CAFM is insufficient. Therefore, we developed a system (called Building Information Management System) to utilize BIM data made in BIM-CAD on a Web site. We used groupware to support the system and an information platform that enables flexible management of a great variety of maintenance information. In addition, we developed an environmental measurement module and built a structure to sensor information automatically by using a development system. For quality maintenance, detailed information of building operation and maintenance is both from human input and sensors. The proposed method analysis of a building and provides the foundation for strategic control of maintenance.
keywords BIM, FM, Groupware, Web application, Sensor
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2015_15
id ecaade2015_15
authors Platzer, Bernhard and Wurzer, Gabriel
year 2015
title ab-walkable Cities - A Grid-based Analysis Method to Identify Walkable Neighborhoods for Goal-directed Pedestrians
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 335-340
doi https://doi.org/10.52842/conf.ecaade.2015.1.335
wos WOS:000372317300036
summary Current research treats walkability in cities as an urban asset, to be identified by formal methods in order to let people benefit from it. In this paper, we take an activity-based view on the subject, arguing that walkability is not an end in itself but must always be seen from the standpoint of a specific activity to be performed. More precisely, we look at the specific walkability when seeking to perform an activity 'a' (e.g. shopping) within a given time budget 'b' (e.g. 15 minutes). Based on these two factors, we have devised a grid-based analysis method that computes transitions between grid cells. As result, we get a walkability map that extends the traditional 'proximity-based' understanding of neighborhoods by the notion of goal-directed pedestrians. To argue for the applicability of our approach, we showcase i it in two cities with different urban structure (Yerevan and Wiener Neustadt) before concluding.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=964b94d2-7023-11e5-9b6c-2b9d19e7b17e
last changed 2022/06/07 08:00

_id sigradi2015_12.215
id sigradi2015_12.215
authors Riether, Gernot; Wit, Andrew John
year 2015
title Redefining the Parametric Pedagogy. Reflections on a digital design build studio
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 713-718.
summary During the summer of 2014, a unique pedagogical prototype was initiated and tested through a short five-week digital design build workshop lead by Professors Gernot Riether and Andrew John Wit at Ball State University in Muncie, Indiana. Unlike the typical design studio typology where projects are initiated through a series of top down predetermined project frameworks, this studio allowed for projects to emerge through student’s navigating an area of research in digital design and fabrication. The studio was supplied by nothing more than an entrepreneurial mindset, initial budget and the requirement that an architectural project would be realized at full-scale by the end of the semester. Over the course of the semester, students tested, stumbled and pressed through a series of follies and prototypes that resulted in the realization of the Underwood Pavilion. This paper explores a novel design pedagogy, through the lens of this Digital Design Build Studio.
keywords Studio pedagogy, Computation, Design Build, Digital Fabrication
series SIGRADI
email
last changed 2016/03/10 09:58

_id ijac202321410
id ijac202321410
authors Rihani, Nemeh
year 2023
title Interactive immersive experience: Digital technologies for reconstruction and experiencing temple of Bel using crowdsourced images and 3D photogrammetric processes
source International Journal of Architectural Computing 2023, Vol. 21 - no. 4, 730-756
summary This paper investigates the potential of dense multi-image 3D photogrammetric reconstruction of destroyed cultural heritage monuments by employing public domain imagery for heritage site visitors. This work focuses on the digital reconstruction of the Temple of Bel, one of the heritage monuments in Palmyra, Syria, which was demolished in the summer of 2015 due to armed conflict. This temple is believed to be one of the most significant religious structures of the first century AD in the Middle East and North Africa (MENA) region with its unique design and condition before destruction actions. The process is carried out using solely one source of images; the freely available visitors’ images collected from the social media platforms and web search engines. This paper presents a digital 3D reconstruction workflow for the collected images using an advanced photogrammetry pipeline and dense image matching software. The virtually reconstructed outputs will be managed and implemented efficiently in Unity3D to create an entire 3D virtual interactive environment for the deconstructed temple to be visualised and experienced using the new Oculus Quest VR headset. The virtual Palmyra’s visitor will be offered an enhanced walk-through off-site interactive, immersive experience compared to the real-world one, which is non-existing and unobtainable at the site in the current time.
keywords Cultural heritage, crowdsourced images, 3D photogrammetric reconstruction, digital heritage, virtual heritage, immersive technologies, Palmyra
series journal
last changed 2024/04/17 14:30

_id ecaade2015_175
id ecaade2015_175
authors Schaffranek, Richard and Harald, Trapp
year 2015
title Automated Generation of Heuristics for Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 483-492
doi https://doi.org/10.52842/conf.ecaade.2015.2.483
wos WOS:000372316000055
summary The crisis of architecture is a crisis of form, therefore new approaches and definitions are necessary. The children´s game of Hide-and-Seek seems extremely relevant to learn the complex interplay of social interaction and space. What if its hiding places were to be designed by an architect? Is there a method to relate the rules of the game to the number, design and layout of its obstacles in such a way as to create a successful game?A possibility to tackle this problem is the use of metaheuristic solvers. But even for the simple game of Hide-and-Seek, their use is confined to cases with a very limited set of obstacles and players, since the time needed to calculate the fitness function increases rapidly. To overcome this we suggest the use of statistical methods to develop a heuristic fitness function based on properties which can be directly computed from the values of the genotype. The resulting function makes is possible to solve the given problem using a metaheuristic solver not only for the simple cases with 3 or 4, but also for those with n obstacles.
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2015_211
id ecaade2015_211
authors Stellingwerff, Martijn
year 2015
title The MOOC-ability of Design Education
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 57-60
doi https://doi.org/10.52842/conf.ecaade.2015.2.057
wos WOS:000372316000008
summary In the past three years, Massive Open Online Courses (MOOCs) have become an important new way for universities to reach out to possible matriculates, life long learners and alumni. Although MOOCs already cover a vast amount of subjects and curricula, it is remarkable to ascertain the lack of Architectural Design courses on the main platforms like edX and Coursera. Online courses do cover design aspects, e.g. about styles and building materials, but 'design as activity' is an exceptional subject in the portfolio of available MOOCs. In contrast, the CAAD community was one of the first to develop Virtual Design Studio's (VDS) and experimental predecessors of MOOC platforms, such as the AVOCAAD course database system (Af Klercker et al. 2001). Yet, the query 'MOOC' still does not ring a bell in the CUMINCAD publication database (per May 2015). In this paper I will explore a palette of design education settings, in order to find a fit to what a MOOC platform can offer. I will compare the 'MOOC-ability' of Design Education to chances in Virtual Design Studio's and developments in ubiquitous mobile platforms.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=fe4b575c-6e8e-11e5-a43c-c7a045e8393b
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_596486 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002