CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id sigradi2015_4.87
id sigradi2015_4.87
authors Cordido, Mariolly Dávila; González, José Javier Alayón; Prado, Odart Graterol
year 2015
title Geometric and graphical analysis of the pyramids of Le Corbusier (1950-1957)
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 177-182.
summary This paper addresses the issue about the geometrical properties and physical measures of the pyramids that Le Corbusier planned throughout his career; while approaching these bodies through his drawings and perspectives. This aims to decipher the objective role of mathematics, and the subjectivity of the visual-perceptive in his approach to the design process. Le Corbusier, one of the greatest masters of modern architecture, still uses the classical perspective as a tool that allows him to express the pictorial nature of his compositions and to demonstrate his aspirations about shape.
series SIGRADI
email
last changed 2016/03/10 09:49

_id cf2015_037
id cf2015_037
authors de Vries, Bauke; Grond, Manon and van der Zee, Aant
year 2015
title Development of a multi-disciplinary university wide design course
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 37-46.
summary Design is one of the basic skills of every engineer. However until now design is only seen as a core course in Architecture studies and lately in Industrial Engineering studies. This paper reports about the development of a design course for all departments of a typical technical university. After a short overview of design teaching tradition, an inventory is presented of the different interpretation of design by the various departments. The course development is presented over two periods: 2012-2014, and 2014-2015. In between a major change was conducted. The course learning goals and student evaluations are presented. In the discussion we reflect on fundamental and practical problems that occur in design teaching for such a wide audience. Finally we draw conclusions on the changing role of design what is needed to give design the same status as mathematics in a technical curriculum.
keywords Design, Design teaching, Multi-disciplinary design
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_213
id caadria2015_213
authors Kornkasem, Sorachai and John B. Black
year 2015
title CAAD, Cognition & Spatial Thinking Training
doi https://doi.org/10.52842/conf.caadria.2015.561
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 561-570
summary The current study explored different spatial training methods and investigated the sequence of processed-based mental simulation that was facilitated by various structures of external spatial representations, including 3D technology in Computer Aided-Architectural Design (CAAD), spatial cues, and/or technical languages. The goal was to better understand how these components fostered planning experiences and affected spatial ability acquisition framed as the formation of spatial mental models, for further developing spatial training environments fundamental to Science, Technology, Engineering, and Mathematics (STEM) education, specifically for architecture education and cognition. Two experiments were conducted using a between-subjects design to examine the effects of spatial training methods on spatial ability performance. Across both studies learners improved in their spatial skills, specifically the learners in the 3D-augmented virtual environments over the 3D-direct physical manipulation conditions. This study is built upon the work in the fields of computer-user interface, visuospatial thinking and human learning.
keywords Spatial thinking training; cognitive processes; CAAD.
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
doi https://doi.org/10.52842/conf.acadia.2019.168
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia15_311
id acadia15_311
authors Ahrens, Chandler
year 2015
title Klimasymmetry, Locating Thermal Tactility
doi https://doi.org/10.52842/conf.acadia.2015.311
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 311-322
summary The Klimasymmetry research project is part of ongoing investigations that ask how the design of a surface emanating radiant heating and cooling can influence the non-visual spatial boundaries created by asymmetrical thermal conditions. This research investigates the nature of the surface as an initiator of a thermal environment in an attempt to locate thermal tactility and the spatial perception according to radiant heat transfer. Surface qualities such as the quantity of area and thermal capacity of the material affects the ability of the panel to emit or absorb electromagnetic radiation, informing the geometry, topography, and location of each panel relative to the human body.
keywords Thermal behavior, Radiant panel system, Material computation, Digital Fabrication, Fabric forming, Glass Fiber Reinforced Gypsum
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_111
id caadria2015_111
authors Alani, Mostafa W. and Carlos R. Barrios
year 2015
title A Parametric Description for Metamorphosis of Islamic Geometric Patterns
doi https://doi.org/10.52842/conf.caadria.2015.593
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 593-602
summary This paper presents a parametric approach toward studying the characteristics of the Islamic geometric patterns (IGP). The presented computational system utilizes a parametric description of the geometry to initiate the process of metamorphosis exploration and to document the generated variations. The study found that changing the parameters in the description produces new variations that have a wide range of qualitative and quantitative properties; some match exactly the properties of traditionally existed geometries.
keywords Parametric Design; Metamorphosis; shape-code; key-shape; Islamic Geometric Pattern.
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2015_090
id caadria2015_090
authors Altabtabai, Jawad and Wei Yan
year 2015
title A User Interface for Parametric Architectural Design Reviews
doi https://doi.org/10.52842/conf.caadria.2015.065
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 65-74
summary Architectural form and performance are affected by the designer's graphical representation methods. Parametric CAD systems, as design and representation tools, have become ubiquitous in architectural practice and education. Literature in the area of parametric design reviews is scarce and focused within building inspection and construction coordination domains. Additionally, platforms marketed as design review tools lack basic functionality for conducting comprehensive, parametric, and performance-based reviews. We have developed a user interface prototype where geometric and non-geometric information of a Building Information Model were translated into an interactive gaming environment. The interface allows simultaneous occupation and simulation of spatial geometry, enabling the user to engage with object parameters, as well as, performance-based, perspectival, diagrammatic, and orthographic representations for total spatial and performance comprehension.
keywords Design cognition; Virtual/augmented reality and interactive environments; Human-computer interaction.
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2015_485
id cf2015_485
authors Anaf, Márcia and Harris, Ana Lúcia Nogueira de Camargo
year 2015
title The geometry of Chuck Hoberman as the basis for the development of dynamic experimental structures
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 485.
summary The cognitive-theoretical foundation referring to teach drawing as a way of thinking, as well as the construction of the environment by means of drawing using transforming geometries and the formal and para-formal computational process, creating unusual geometries through generative design processes and methodologies, can be seen as some of the main possibilities in exploring dynamic experimental structures for an Adaptive Architecture. This article presents the development of a model for articulated facades, inspired by Hoberman´s Tessellates, and his Adaptive Building Initiative (ABI) project to develop facades models that respond in real time to environmental changes. In addition, we describe an experiment based on the retractable structures, inspired by Hoberman´s work and experimentations. Solutions for responsive facades can offer more flexible architectural solutions providing better use of natural light and contributing to saving energy. Using Rhinoceros and the Grasshopper for modeling and test the responsiveness, the parametric model was created to simulate geometric panels of hexagonal grids that would open and close in reaction to translational motion effects, regulating the amount of light that reaches the building.
keywords Parametric architecture, Hoberman´s Tessellates, Adaptive Building Initiative (ABI), Articulated Facades, Complex Geometries, Retractable structures, Retractable polyhedra.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id acadia15_123
id acadia15_123
authors Askarinejad, Ali; Chaaraoui, Rizkallah
year 2015
title Spatial Nets: the Computational and Material Study of Reticular Geometries
doi https://doi.org/10.52842/conf.acadia.2015.123
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 123-135
summary Reticular systems are in many aspects a distinct taxonomy of volumetric geometries. In comparison with the conventional embodiment of a ‘volume’ that encapsulates a certain quantity of space with a shell reticular geometries emerge from the accumulation of micro elements to define a gradient of space. Observed in biological systems, such structures result from their material properties and formation processes as well as often ‘simple’ axioms that produce complex results. In micro or macro levels, from forest tree canopies to plant cell walls these porous volumes are not shaped to have a singular ‘solution’ for a purpose; they provide the fundamental geometric characteristics of a ‘line cloud’ that is simultaneously flexible in response to its environment, porous to other systems (light, air, liquids) and less susceptible to critical damage. The porosity of such systems and their volumetric depth also result in kinetic spatial qualities in a 4D architectural space. Built upon a ‘weaving’ organization and the high performance material properties of carbon fiber composite, this research focuses on a formal grammar that initiates the complex system of a reticular volume. A finite ‘lexical’ axiom is consisted of the basic characters of H, M and L responding to the anchor points on the highest, medium and lower levels of the extruding loom. The genome thus produces a string of data that in the second phase of programming are assigned to 624 points on the loom. The code aims to distribute the nodes across the flat line cloud and organize the sequence for the purpose of overlapping the tensioned strings. The virtually infinite results are then assessed through an evolutionary solver for confining an array of favorable results that can be then selected from by the designer. This research focuses on an approximate control over the fundamental geometric characteristics of a reticular system such as node density and directionality. The proposal frames the favorable result of the weave to be three-dimensional and volumetric – avoiding distinctly linear or surface formations.
keywords Reticular Geometries, Weaving, Line Clouds, Three-dimensional Form-finding, Carbon fiber, Prepreg composite, Volumetric loom, Fiberous Materials, Weaving fabrication, Formal Language, Lexical design, Evolutionary solver
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id eaea2015_t2_paper03
id eaea2015_t2_paper03
authors Bar-Eli, Amos
year 2015
title On (New) Ruins Reconciliation Capacity
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.142-151
summary This paper takes a critical look at the characteristics of new-ruins and evaluates some of their contemporary usages. The paper analyses the new-ruin as a phenomenon, and evaluates its role in architectural heritage. It views the unique reconciliation characteristics of the new-ruin, and its presence as a powerful tool capable of accommodating binary opposing conditions.
keywords new-ruins; architecture heritage; architecture theory
series EAEA
email
last changed 2016/04/22 11:52

_id ecaade2015_293
id ecaade2015_293
authors Batliner, Curime; Newsum, MichaelJake and Rehm, M.Casey
year 2015
title Live: Synchronous Computing in Robot Driven Design
doi https://doi.org/10.52842/conf.ecaade.2015.2.277
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 277-286
summary Challenging our contemporary understanding of representation and simulation in architecture SCI-Arc has been developing a unique digital/physical design platform where the relationships between humans, machines and matter are constantly in flux re-calibrating, reshuffling, reordering aligning digital and physical and vis versa. The robot as a technology takes an important role in these new ideation environments. “Live” is an applicaton which enables real-time robotic control and grants the robot substantial agency situating it as an interactive design tool that immediately responds to designed signal and sensor inputs in its environment. Current research explores interactive environments, gesture based human-machine interactions and autonomous agent driven design programs.
wos WOS:000372316000033
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=6fff29ba-6fe7-11e5-a661-eb66006fc007
last changed 2022/06/07 07:54

_id caadria2015_237
id caadria2015_237
authors Bazalo, Frano. and Tane J. Moleta
year 2015
title Responsive Algorithms
doi https://doi.org/10.52842/conf.caadria.2015.209
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 209-218
summary An algorithm is a process of addressing a problem in a finite number of steps. In the context of architectural design, algorithmic thinking means taking on an interpretive role to understand the results in relation to design criteria, knowing how to modify the code to explore new options, and speculating on further design potentials. The application of algorithms within architecture often addresses the developed design stages, primarily to optimise structure, test environmental performance or to resolve complex construction. This research aims to explore algorithmic tools with a focus on early stage design. This design stage is often developed using traditional processes and is where algorithmic applications have been less successfully executed. The objectives are to algorithmically explore the areas of space planning, programme layout, form finding and form optimisation within early stage architectural design. Through the combination of a range of diverse algorithms, this research has an ultimate aim of integrating a computational workflow into practice at the early design stage.
keywords Computational design, Early stage design
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2018_1359
id sigradi2018_1359
authors Bertola Duarte, Rovenir; Ziger Dalgallo, Ayla; Consalter Diniz, Maria Luisa; Romão Magoga, Thais
year 2018
title A window to the autism: the political role of the difference of an objectile in the homogeneous school
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 848-853
summary This paper approaches the insertion of an objectile in the homogeneous space of a school, looking to bring flexibility and responsiveness to assist a user with Autism Spectrum Disorder (ASD). The research concerns with photosensitivity, a problem faced by almost 25% of the children with autism (Miller-Horn; Spence; Takeoka, 2011). The study is based on the theories for ASD environments that speak of ‘sensorial perception’ and ‘thinking with imagery’ (Mostafa, 2008), and the coexistence of Sensory Design Theory and Neuro-Typical Method (Pomana, 2015). The result consists of a gadget developed in MIT App Inventor tool and a curtain that interact responsively through an Arduino code, for a new connection between the user and his surroundings.
keywords Objectile; Responsive Architecture; Architecture and autism; ASD; Inclusive school
series SIGRADI
email
last changed 2021/03/28 19:58

_id cf2015_326
id cf2015_326
authors Borges, Marina and Fakury, Ricardo H.
year 2015
title Structural design based on performance applied to development of a lattice wind tower
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 326.
summary This paper studies the process of parametric and algorithmic design, integrating structural analysis and design for the generation of complex geometric structures. This methodology is based on the Performative Model, where the shape is generated using performance criteria. In the approach, the development of complex structures is only possible by reversing the process of thinking to generate the form with established parameters for geometry, material and loading aspects. Thus, the structural engineer no longer only participates in the evaluation phase but also appears in the early stages, creating a process of exploration and production of common knowledge among architects and engineers. To research performance-based design, the development of a conceptual lattice for a wind tower is proposed. Thus, a system is made to generate geometries using Rhinoceros software, the Grasshopper plugin, and the VB programming language, integrated with stress analysis through the Scan & Solve plugin.
keywords Structural Design, Parametric and Algorithm Architecture, Structural Analysis, Performative Model, Lattice Wind Tower.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id acadia17_202
id acadia17_202
authors Cupkova, Dana; Promoppatum, Patcharapit
year 2017
title Modulating Thermal Mass Behavior Through Surface Figuration
doi https://doi.org/10.52842/conf.acadia.2017.202
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 202-211
summary This research builds upon a previous body of work focused on the relationship between surface geometry and heat transfer coefficients in thermal mass passive systems. It argues for the design of passive systems with higher fidelity to multivariable space between performance and perception. Rooted in the combination of form and matter, the intention is to instrumentalize design principles for the choreography of thermal gradients between buildings and their environment from experiential, spatial and topological perspectives (Figure 1). Our work is built upon the premise that complex geometries can be used to improve both the aesthetic and thermodynamic performance of passive building systems (Cupkova and Azel 2015) by actuating thermal performance through geometric parameters primarily due to convection. Currently, the engineering-oriented approach to the design of thermal mass relies on averaged thermal calculations (Holman 2002), which do not adequately describe the nuanced differences that can be produced by complex three-dimensional geometries of passive thermal mass systems. Using a combination of computational fluid dynamic simulations with physically measured data, we investigate the relationship of heat transfer coefficients related to parameters of surface geometry. Our measured results suggest that we can deliberately and significantly delay heat absorption re-radiation purely by changing the geometric surface pattern over the same thermal mass. The goal of this work is to offer designers a more robust rule set for understanding approximate thermal lag behaviors of complex geometric systems, with a focus on the design of geometric properties rather than complex thermal calculations.
keywords design methods; information processing; physics; smart materials
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia19_360
id acadia19_360
authors Dackiw, Jean-Nicolas Alois; Foltman, Andrzej; Garivani, Soroush; Kaseman, Keith; Sollazzo, Aldo
year 2019
title Cyber-physical UAV Navigation and Operation
doi https://doi.org/10.52842/conf.acadia.2019.360
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 360-367
summary The purpose of this paper is to present a work in progress pertaining to drone pose estimation and flight calibration. This paper intends to underline the increasing importance of determining alternative path planning instruments through accurate localization for Unmanned Aerial Vehicles (UAVs) with the purpose of achieving complex flight operations for the emerging applications of autonomous robotics in surveying, design, fabrication, and on-site operations. This research is based on the implementation of novel technologies such as Augmented Reality (AR), Robot Operating System (ROS), and computational approaches to define a drone calibration methodology, leveraging existing methods for drone path planning. Drones are equipped with measurement systems to provide geo-location and time information such as onboard Global Positioning System (GPS) sensors, and Inertial Measurement Units (IMU). As stated in previous research, to increase navigation capabilities, measurements and data processing algorithms have a critical role (Daponte et al. 2015). The outcome of this work in progress showcases valuable results in calculating and assessing accurate positioning for UAVs, and developing data exchanges in transmission, reception, and tracking.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id eaea2015_t2_paper08
id eaea2015_t2_paper08
authors Di Mascio, Danilo
year 2015
title Analytical Drawings of Architectural Built Heritage
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.199-208
summary The following paper provides reflections on the importance of analytical drawings in the process of understanding the architectural built heritage together with relevant aspects to analyse, theories and tools to produce them. The role of these graphic works is to analyse, document and communicate only a few aspects of the building. The main aim is to undertake an analysis through the use of one or more drawings representing the graphic translation of an analytical thought. The piece of writing presents a theoretical approach and examples of analytical drawings produced during previous researches, using CAD and 3d modelling software, to investigate some tangible and intangible characteristics of the architectural heritage.
keywords analytical drawings; 3d modelling; architectural heritage
series EAEA
type normal paper
email
more admin
last changed 2016/08/16 08:29

_id acadia15_323
id acadia15_323
authors Diniz, Nancy
year 2015
title The Anatomy of a Prototype: Situating the Prototype and Prototyping on Design Conceptual Thinking
doi https://doi.org/10.52842/conf.acadia.2015.323
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 323-332
summary The role of prototypes is well established in the field of Design. There is however lack of knowledge about the fundamental nature of prototypes, there are different types of prototypes and they are sometimes difficult to define, for example: from low- versus high-fidelity prototypes, centered on evaluation or as support of design exploration. There have also been efforts to provide new ways of thinking about the activity of using prototypes, such as experience prototyping and paper prototyping. This paper aims at reflecting on efforts to provide a discourse for reflecting or understanding fundamental characteristics of prototypes in design and specifically the role of prototyping in design education.
keywords Design process, design pedagogy, conceptual thinking through prototyping, physical computing
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id sigradi2015_6.42
id sigradi2015_6.42
authors Henriques, Gonçalo Castro
year 2015
title Responsive systems, relevance, state of the art and developments
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 200-206.
summary Responsive architecture is often seen as one that merely adapts to change. This reflects its limited and still incipient application in architecture. Given the current resource’s crisis, a systemic building management is essential. This article argues that there is no established process for creating and managing responsive architecture. Therefore, it claims is necessary to deepen knowledge about systems, computation, mathematics, biology and robotics. Despite being a vast subject, it proposes a ‘state of the art’ about systems, investigating how to operate them. Based on this, proposes a method for generating responsive systems. This method is tested in a practical case.
keywords Responsive Systems, Meta-Systems, Static Adaptation, Dynamic Adaptation, Heuristics
series SIGRADI
email
last changed 2016/03/10 09:53

_id ecaade2015_241
id ecaade2015_241
authors Herneoja, Aulikki; Pihlajaniemi, Henrika, Österlund, Toni, Luusua, Anna and Markkanen, Piia
year 2015
title Remarks on Transdisciplinarity as Basis for Conducting Research by Design Teamwork in Real World Context through Two Case Studies of Algorithm Aided Lighting Design
doi https://doi.org/10.52842/conf.ecaade.2015.2.061
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 61-70
summary The definition of Research by Design (RD) as a research methodology is not yet well established. RD takes its position not only as a research method next to the 'traditional' sciences but also in relation to the creative design practice, where transdicsiplinarity is in essential role. Rather than defining architecture being transdisciplinary in itself, we see beneficial to conduct research together with various disciplines concerning the complexity of the life-world. Also in this interdisciplinary research group we are willing to hold on the designerly way of knowledge production. Of our practical experience working in an interdisciplinary research group shared values, research project management together with participation with evaluative aims were the most challenging aspects. At its best, attempt for genuine transcdisciplinarity was beneficial and rewarding, though sometimes challenging. We would like to target the discussion how we architects, as researchers identify in an interdisciplinary research group conducting transdisciplinary research.
wos WOS:000372316000009
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=33cc5b92-6e8f-11e5-b6d3-1f476c2fddef
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_890466 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002