CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 437

_id caadria2015_064
id caadria2015_064
authors Meyer, J.; G. Duchanois, J-C. Bignon and A. Bouali
year 2015
title Computer Design and Digital Manufacturing of Folded Architectural Structures Composed of Wood Panels
doi https://doi.org/10.52842/conf.caadria.2015.641
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 641-650
summary The research presented in this paper revolves around the experimental development of the morpho-structural potential of folded architectural structures made of wood. The aims are to develop an innovative system for timber used in sustainable construction and to increase the inventory of wood architectural tectonics. Laminated timber panels associated with "digital production line" approach have opened up new perspectives for the building industry in creating prefabricated wooden structures. This article provides a characterization of the digital chain associated to the development of non-standard folded structures which consist of wood panels by way of a full-scale experimental pavilion. The purpose is the study of architectural design process from parametric modeling (through CNC machining) and assembly operations to production. Towards the completion of the pavilion, a number of analytical experiments have been performed.
keywords Architecture, folded structure, robotic fabrication, computational design, parametric modeling, wood panels.
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia15_47
id acadia15_47
authors Chaaraoui, Rizkallah; Askarinejad, Ali
year 2015
title Anisoptera; Anisopteran Deformation and the Latent Geometric Patterns of Wood Envelopes
doi https://doi.org/10.52842/conf.acadia.2015.047
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 47-56
summary Advancements in technologies provide Architects, today, with the means to expose new expressive forms using traditional materials. It is therefore possible to design dynamic actuating systems, where several different expressions, or differentiations inherent in the same material, are able to modify its topology and enhance its properties. Wood, traditionally used in construction, is given static expression during its life cycle, where an alignment, or assembly detail, helps retain its original shape. This research outlines the integration of specific and individual anatomical information of wood during the design process. It aids in utilizing the analyzed biological variability and natural irregularities of wood within a material-based architecture, in view of developing a lightweight, and light-filtering dynamic skin. Additionally, the research helps to explore an understanding of the differentiated material composition of wood as its major capacity, rather than its deficiency. Moreover, it analyzes form, material, and structure, as complex interrelations that are embedded in, and explored through an integral design process that seeks to employ typically disregarded, highly differentiated flat materials, in view of enhancing their latent dimensional deformation potential. The main focus of this research is to explore that latent geometric deformation of emerging patterns based on an array of heterogeneous wood veneers in relation to their Hygroscopic and Anisotropic properties. These properties are expressed through a set of flat skins and Mobius arrangements, articulating complex geometric ranges that reveal additional properties, such as bendability and flexibility.
keywords Shape-shifting, Geometric patterns, Anisotropic, Hygroscopic, Open systems, Building envelope
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2015_100
id ecaade2015_100
authors Braumann, Johannes and Brell-Cokcan, Sigrid
year 2015
title Adaptive Robot Control - New Parametric Workflows Directly from Design to KUKA Robots
doi https://doi.org/10.52842/conf.ecaade.2015.2.243
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 243-250
summary In the past years the creative industry has made great advancements in the area of robotics. Accessible robot simulation and control environments based on visual programming systems such as Grasshopper and Dynamo now allow even novice users to quickly and intuitively explore the potential of robotic fabrication, while expert users can use their programming knowledge to create complex, parametric robotic programs. The great advantage of using visual programming for robot control lies in the quick iterations that allow the user to change both geometry and toolpaths as well as machinic parameters and then simulate the results within a single environment. However, at the end of such an iterative optimization process the data is condensed into a robot control data file, which is then copied over to the robot and thus loses its parametric relationship with the code that generated it. In this research we present a newly developed system that allows a dynamic link between the robot and the controlling PC for parametrically adjusting robotic toolpaths and collecting feedback data from the robot itself - enabling entirely new approaches towards robotic fabrication by even more closely linking design and fabrication.
wos WOS:000372316000029
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=9d9da7bc-70ef-11e5-b2fd-efbb508168fd
last changed 2022/06/07 07:54

_id ecaade2015_170
id ecaade2015_170
authors Cavusoglu, Ömer Halil
year 2015
title The Position of BIM Tools in Conceptual Design Phase: Parametric Design and Energy Modeling Capabilities
doi https://doi.org/10.52842/conf.ecaade.2015.1.607
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 607-612
summary Numerous researchers point out that, in the early stages of architectural design, many significant decisions are taken to directly affect functional qualities, the performance of the building, aesthetics, and the relationship of the building with the natural environment and climate, even if there is no certain and valid information to create and obtain adequate design.In this paper, I particularly focus on the early stages of architectural design and search for the opportunities provided by Building Information Modeling (BIM) tools, towards the concept of performance analysis and parametric form seeking. Study also includes case study implementations which visualize the early processes of architectural design with benefits of BIM under different conditions to evaluate its opportunities during these design processes.
wos WOS:000372317300065
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2016_415
id caadria2016_415
authors Crolla, Kristof and Adam Fingrut
year 2016
title Protocol of Error: The design and construction of a bending-active gridshell from natural bamboo
doi https://doi.org/10.52842/conf.caadria.2016.415
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 415-424
summary This paper advocates alternative methods to overcome the impossibility of realising ‘perfect’ digital designs. It discusses Hong Kong’s 2015 ‘ZCB Bamboo Pavilion’ as a methodological case study for the design and construction of architecture from unprocessed natu- ral bamboo. The paper critically evaluates protocols set up to deal with errors resulting from precise digital design systems merging with inconsistent natural resources and onsite craftsmanship. The paper starts with the geometric and tectonic description of the project, illus- trating a complex and restrictive construction context. Bamboo’s unique growth pattern, structural build-up and suitability as a bending- active material are discussed and Cantonese bamboo scaffolding craftsmanship is addressed as a starting point for the project. The pa- per covers protocols, construction drawings and assembly methods developed to allow for the incorporation and of large building toler- ances and dimensional variation of bamboo. The final as-built 3d scanned structure is compared with the original digital model. The pa- per concludes by discussing the necessity of computational architec- tural design to proactively operate within a field of real-world inde- terminacy, to focus on the development of protocols that deal with imperfections, and to redirect design from the virtual world towards the latent opportunities of the physical.
keywords Bamboo; bending-active gridshells; physics simulation; form-finding; indeterminacy
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2017_031
id caadria2017_031
authors Crolla, Kristof, Williams, Nicholas, Muehlbauer, Manuel and Burry, Jane
year 2017
title SmartNodes Pavilion - Towards Custom-optimized Nodes Applications in Construction
doi https://doi.org/10.52842/conf.caadria.2017.467
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 467-476
summary Recent developments in Additive Manufacturing are creating possibilities to make not only rapid prototypes, but directly manufactured customised components. This paper investigates the potential for combining standard building materials with customised nodes that are individually optimised in response to local load conditions in non-standard, irregular, or doubly curved frame structures. This research iteration uses as a vehicle for investigation the SmartNodes Pavilion, a temporary structure with 3D printed nodes built for the 2015 Bi-City Biennale of Urbanism/Architecture in Hong Kong. The pavilion is the most recent staged output of the SmartNodes Project. It builds on the findings in earlier iterations by introducing topologically constrained node forms that marry the principals of the evolved optimised node shape with topological constraints imposed to meet the printing challenges. The 4m high canopy scale prototype structure in this early design research iteration represents the node forms using plastic Fused Deposition Modelling (FDM).
keywords Digital Fabrication; Additive Manufacturing; File to Factory; Design Optimisation; 3D printing for construction
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_247
id ecaade2015_247
authors Garcia, Manuel Jimenez and Retsin, Gilles
year 2015
title Design Methods for Large Scale Printing
doi https://doi.org/10.52842/conf.ecaade.2015.2.331
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 331-339
summary With an exponential increase in the possibilities of computation and computer-controlled fabrication, high density information is becoming a reality in digital design and architecture. However, construction methods and industrial fabrication processes have not yet been reshaped to accommodate the recent changes in those disciplines. Although it is possible to build up complex simulations with millions of particles, the simulation is often disconnected from the actual fabrication process. Our research proposes a bridge between both stages, where one drives the other, producing a smooth transition from design to production. A particle in the digital domain becomes a drop of material in the construction method.The architect's medium of expression has become much more than a representational tool in the last century, and more recently it has evolved even beyond a series of rules to drive from design to production. The design system is the instruction itself; embedding structure, material and tectonics and gets delivered to the very end of the construction chain, where it gets materialised. The research showcased in this paper investigates tectonic systems associated with large scale 3D printing and additive manufacturing methods, inheriting both material properties and fabrication constraints at all stages from design to production. Computational models and custom design software packages are designed and developed as strategies to organise material in space in response to specific structural and logistical input.Although the research has developed a wide spectrum of 3D printing methods, this paper focuses only on two of the most recent projects, where different material and computational logics were investigated. The first, titled Filamentrics, intends to develop free-form space frames, overcoming their homogeneity by introducing robotic plastic extrusion. Through the use of custom made extruders a vast range of high resolution prototypes were developed, evolving the design process towards the fabrication of precise structures that can be materialised using additive manufacturing but without the use of a layered 3D printing method. Instead, material limitations were studied and embedded in custom algorithms that allow depositing material in the air for internal connectivity. The final result is a 3x2x2.5m structure that demonstrates the viability of this construction method for being implemented in more industrial scenarios.While Filamentrics is reshaping the way we could design and build light weight structures, the second project Microstrata aims to establish new construction methods for compression based materials. A layering 3D printing method combines both the deposition of the binder and the distribution of an interconnected network of capillaries. These capillaries are organised following structural principles, configuring a series of channels which are left empty within the mass. In a second stage aluminium is cast in this hollow space to build a continuous tension reinforcement.
wos WOS:000372316000039
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=07a6d8e0-6fe7-11e5-9994-cb14cd908012
last changed 2022/06/07 07:51

_id ijac201513101
id ijac201513101
authors Krietemeyer, Bess; Brandon Andow, Anna Dyson
year 2015
title A Computational Design Framework Supporting Human Interaction with Environmentally-Responsive Building Envelopes
source International Journal of Architectural Computing vol. 13 - no. 1, 1–24
summary Emerging materials present opportunities to fundamentally shift current expectations of dynamic building envelope functionality towards systems that can respond to occupant needs while meeting the energy demands of buildings. In order to assess the environmental, social, and architectural opportunities that are increasing with responsive building envelopes, new tools are needed to simulate their multi-performance capabilities. This paper describes a computational design framework to support human interaction with environmentally-responsive electroactive dynamic daylighting systems. The objective is to develop algorithms for variable solar control and visible transmittance that simultaneously address occupant preferences for visual effects and interaction. Results demonstrate that energy performance and user satisfaction are not mutually exclusive and can be co-optimized. The effectiveness and limitations of the computational framework in assessing strategies to balance environmental performance and human interaction are discussed. Conclusions present areas of ongoing work that integrate multi-user interactions and immersive visualization techniques with multiscalar energy modeling tools.
series journal
last changed 2019/05/24 09:55

_id ecaade2015_325
id ecaade2015_325
authors Lange, Christian J.
year 2015
title Shanghai Lilong Tower Urbanism - Towards an Urbanism of Parametric Preservation
doi https://doi.org/10.52842/conf.ecaade.2015.2.493
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 493-500
summary This paper describes a design approach for a new urban building typology for Shanghai utilizing a set of parametric design techniques to arrive at an alternative solution to current models of urbanization. The goal in this approach was to find a solution that is adaptable and sensitive to the urban environment and has the capacity to preserve historic urban street patterns. The approach included an understanding of the historic urban fabric of Shanghai, a respective plot analysis and the development of a computational method to produce a new urban type. The parametric set-up was build upon an analytical workflow with integrated feedback procedures that informed the design exploration and resulted in multiple design solutions.
wos WOS:000372316000056
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac201513205
id ijac201513205
authors Nahmad Vazquez, Alicia and Wassim Jabi
year 2015
title A Collaborative Approach to Digital Fabrication:A Case Study for the Design and Production of Concrete ‘Pop-up’ Structures
source International Journal of Architectural Computing vol. 13 - no. 2, 195-216
summary The research presented in this paper utilizes industrial robotic arms and new material technologies to model and explore a prototypical workflow for on-site robotic collaboration based on feedback loops. This workflow will ultimately allow for the construction of customized, free-form, on-site concrete structures without the need for complex formwork. The paper starts with an explanation of the relevance of collaborative robotics through history in the industry and in architecture. An argument is put forward for the need to move towards the development of collaborative processes based on feedback loops amongst the designer, the robot and the material, where they all inform each other continuously. This kind of process, with different degrees of autonomy and agency for each actor, is necessary for on-site deployment of robots. A test scenario is described using an innovative material named concrete canvas that exhibits hybrid soft fabric and rigid thin-shell tectonics. This research project illustrates the benefits of integrating information-embedded materials, masscustomization and feedback loops. Geometry scanning, parametric perforation pattern control, computational analysis and simulation, and robotic fabrication were integrated within a digital fabrication deployment scenario. The paper concludes with a detailed report of research findings and an outline for future work.
series journal
last changed 2019/05/24 09:55

_id ecaade2015_28
id ecaade2015_28
authors Sommer, Bernhard; Moncayo, Galo, Sommer-Nawara, Malgorzata and Pont, Ulrich
year 2015
title SolSeduction - A Phyto-Solar Dance-Floor
doi https://doi.org/10.52842/conf.ecaade.2015.2.697
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 697-705
summary As climate and society change, customizing buildings towards specific usage patterns and local weather conditions that might be obsolete within a few years, does not seem to be the smartest approach to building design. Facing the end of readily available highly efficient energy sources, such as oil and gas, we want to re-think the architectural environment towards a symbiotic habitat. The role of energy thus is not seen as a question of supply, but as one parameter among others that shapes the environment. A habitat relies on the physical, chemical and social interaction of different elements and organisms.The authors together with their students pursued a design research re-thinking the architectural environment towards a symbiotic habitat.Full-scale spatial prototypes as elements of such a habitat have been developed focussing on the interfaces between climate, people and other organisms, such as plankton, algae and flowers.
wos WOS:000372316000077
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=21b8b11a-6e91-11e5-b691-00190f04dc4c
last changed 2022/06/07 07:56

_id cf2015_061
id cf2015_061
authors van Stralen, Mateus de Sousa and Cezarino, Cristiano
year 2015
title Woka: Towards a dialogical design of future cities
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 61-76.
summary This paper presents an experiment on an open source construction system named Woka, which allows anyone to design and produce dwellings using standard CNC techniques. Woka was developed as a dialogical design process that empowers self-builders to act in a more autonomous way, expanding the traditional role of design practice and the way buildings are created. The advent and popularization of new design and fabrication processes have encouraged a flux of new theories and project strategies based on computing, each with its promise of changing the architectural practice. Some of these resulted in intellectually seductive; visually provocative and complex shaped architectures, generating a new formal repertoire, but doesn’t indicate a paradigm shift in the process of production of architectural space, still based on authorship. Woka challenges this traditional process proposing dialogue as a design approach, shifting the focus from the object to intersubjectivity, amplifying the potential for novelty to arise.
keywords Parametric design, digital fabrication, dialogical design, autonomous building
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_243
id cf2015_243
authors Velasco, Rodrigo; Brakke, Aaron Paul and Chavarro, Diego
year 2015
title Dynamic façades and computation: Towards an inclusive categorization of high performance kinetic façade systems
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 243.
summary This chapter provides a panorama of the current state of computationally controlled dynamic facades through a literature review and a survey of contemporary projects. This was completed with an underlying interest in understanding how innovative design solutions with the capacity to ‘react to’ and/or ‘interact with’ the varying states of climatic conditions have been developed. An analysis of these projects was conducted, and led to the identification of tendencies, which were subsequently synthesized and articulated. While most classifications are limited to describing the movement or structure needed to achieve morphological transformation, an important recommendation is to also consider control as a determining factor. For this reason, the culmination of the investigation presented here is a proposal for a classification structure of dynamic facades, developed according to the functional modus operandi of each structure in terms of movement and control.
keywords Dynamic Facades, Kinetic Architecture, Computational Control, High Performance Building Envelopes
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_230
id ecaade2015_230
authors Yazici, Sevil
year 2015
title A Course on Biomimetic Design Strategies
doi https://doi.org/10.52842/conf.ecaade.2015.2.111
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 111-118
summary Although redesigning curricula by integrating the CAD tools into architectural education has been an ongoing interest, a new understanding towards solving design problems holistically should be investigated in architectural education. Because natural systems offer design strategies to increase performance and effectiveness with an extensive formal repertoire; incorporating multi-faceted biomimetic principles into the design process is necessary. It is critical to increase skills of students towards algorithmic thinking, as well as to deal with performance issues and sustainability. This paper aims to discuss an undergraduate elective course titled “Sustainable Design and Environment through Biomimicry” which was taught by the author in architectural degree program of Ozyegin University Faculty of Architecture and Design in Fall 2014-2015. Following the exploration of individual research topics, findings were implemented into design problems. The challenges encountered in the teaching process and future lines of the work are discussed in the paper.
wos WOS:000372316000014
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c96be63a-6f80-11e5-8f6b-e7a3874d691b
last changed 2022/06/07 07:57

_id cf2015_240
id cf2015_240
authors Aksoy, Yazgi Badem; Çagdas, Gülen and Balaban, Özgün
year 2015
title A model for sustainable site layout design of social housing with Pareto Genetic Algorithm: SSPM
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 240.
summary Nowadays as the aim to reduce the environmental impact of buildings becomes more apparent, a new architectural design approach is gaining momentum called sustainable architectural design. Sustainable architectural design process includes some regulations itself, which requires calculations, comparisons and consists of several possible conflicting objectives that need to be considered together. A successful green building design can be performed by the creation of alternative designs generated according to all the sustainability parameters and local regulations in conceptual design stage. As there are conflicting criteria's according to LEED and BREAM sustainable site parameters, local regulations and local climate conditions, an efficient decision support system can be developed by the help of Pareto based non-dominated genetic algorithm (NSGA-II) which is used for several possibly conflicting objectives that need to be considered together. In this paper, a model which aims to produce site layout alternatives according to sustainability criteria for cooperative apartment house complexes, will be mentioned.
keywords Sustainable Site Layout Design, Multi Objective Genetic Algorithm, LEED-BREEAM.
series CAAD Futures
type normal paper
email
last changed 2015/06/29 09:30

_id caadria2015_067
id caadria2015_067
authors Choi, Jungsik; Minchan Kim and Inhan Kim
year 2015
title A Methodology of Mapping Interface for Energy Performance Assessment Based on Open BIM
doi https://doi.org/10.52842/conf.caadria.2015.417
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 417-426
summary Early design phase energy modelling is used to provide the design team with feedback about the impact of various building configurations. For better energy-conscious and sustainable building design and operation, the construction of BIM data interoperability for energy performance assessment in the early design phase is important. The purpose of this study is to suggest a development of BIM data interoperability for energy performance assessment based on BIM. To archive this, the authors have investigated advantages of BIM-based energy performance assessment through comparison with traditional energy performance assessment; and suggest requirements for development of Open BIM environment such as BIM data creation and BIM data application. In addition, the authors also suggested on BIM data interoperability system and developed mapping interface.
keywords Building Information Modelling (BIM); Energy Performance Assessment (EPA); Data Interoperability; Energy Property; Industry Foundation Classes (IFC).
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2015_205
id cf2015_205
authors Oliveira, Eduardo; Kirley, Michael; Kvan, Tom; Karakiewicz, Justyna and Vaz, Carlos
year 2015
title Distributed and heterogeneous data analysis for smart urban planning
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 205.
summary Over the past decade, ‘smart’ cities have capitalized on new technologies and insights to transform their systems, operations and services. The rationale behind the use of these technologies is that an evidence-based, analytical approach to decision-making will lead to more robust and sustainable outcomes. However, harvesting high-quality data from the dense network of sensors embedded in the urban infrastructure, and combining this data with social network data, poses many challenges. In this paper, we investigate the use of an intelligent middleware – Device Nimbus – to support data capture and analysis techniques to inform urban planning and design. We report results from a ‘Living Campus’ experiment at the University of Melbourne, Australia focused on a public learning space case study. Local perspectives, collected via crowdsourcing, are combined with distributed and heterogeneous environmental sensor data. Our analysis shows that Device Nimbus’ data integration and intelligent modules provide high-quality support for decision-making and planning.
keywords smart city, smart campus, middleware, data fusion, urban design, urban planning.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_225
id ecaade2015_225
authors Orfanos, Yannis; Papadopoulos, Dimitrios and Zwerlein, Cory
year 2015
title An Integrated Performance Analysis Platform for Sustainable Architecture and Urban Infrastructure Systems
doi https://doi.org/10.52842/conf.ecaade.2015.1.315
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 315-324
summary This applied research brings together the performance analysis of a building's micro-scale and urban-infrastructure's macro-scale. A New York City lot, is serving as the background of experimentation with parametric design, performance simulation, data analysis and visualization. The paper describes the process of integrating design intentions, location parameters, climate data, material properties, and space quality and sustainability metrics into one platform. Although in-depth domain knowledge is irreplaceable, the paper argues that the exploration into contemporary, easily accessible and algorithmic simulation software, provides a unique educational opportunity for architects and students to integrate performance driven design in their every-day practice, and become aware of the consequences of their design on urban infrastructure systems. This allows them to reduce the time frame between design iterations and performance evaluation for the benefit of better informed decisions.
wos WOS:000372317300034
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=91bbabd6-702e-11e5-a0f9-b7d7d9e4ecfd
last changed 2022/06/07 08:00

_id cf2015_485
id cf2015_485
authors Anaf, Márcia and Harris, Ana Lúcia Nogueira de Camargo
year 2015
title The geometry of Chuck Hoberman as the basis for the development of dynamic experimental structures
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 485.
summary The cognitive-theoretical foundation referring to teach drawing as a way of thinking, as well as the construction of the environment by means of drawing using transforming geometries and the formal and para-formal computational process, creating unusual geometries through generative design processes and methodologies, can be seen as some of the main possibilities in exploring dynamic experimental structures for an Adaptive Architecture. This article presents the development of a model for articulated facades, inspired by Hoberman´s Tessellates, and his Adaptive Building Initiative (ABI) project to develop facades models that respond in real time to environmental changes. In addition, we describe an experiment based on the retractable structures, inspired by Hoberman´s work and experimentations. Solutions for responsive facades can offer more flexible architectural solutions providing better use of natural light and contributing to saving energy. Using Rhinoceros and the Grasshopper for modeling and test the responsiveness, the parametric model was created to simulate geometric panels of hexagonal grids that would open and close in reaction to translational motion effects, regulating the amount of light that reaches the building.
keywords Parametric architecture, Hoberman´s Tessellates, Adaptive Building Initiative (ABI), Articulated Facades, Complex Geometries, Retractable structures, Retractable polyhedra.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_484
id cf2015_484
authors Liao, Kai; Vries, Bauke de; Kong, Jun and Zhang, Kang
year 2015
title Pattern, cognition and spatial information processing: Representations of the spatial layout of architectural design with spatial-semantic analytics
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 484.
summary In this paper, we review and extend the idea of Alexander’s “pattern language”, especially from the viewpoints of complexity theories, information systems, and human-computer interaction, to explore spatial cognition-based design representations for “intelligent and adaptive/interactive environment” in architecture and urban planning. We propose a theoretic framework of design patterns “with spatial information processing”, and attempt to incorporate state-of-the-art computational methods of information visualization/visual analytics into the conventional CAAD approaches. Focused on the spatial-semantic analytics, together with abstract syntactic pattern representation, by using “spatial-semantic aware” graph grammar formalization, i.e., Spatial Graph Grammars (SGG), the relevant models, algorithms and tool are proposed. We testify our theoretic framework and computational tool VEGGIE (a Visual Environment of Graph Grammar Induction Engineering) by using actual architectural design works (spatial layout exemplars of a small office building and the three house projects by Frank Lloyd Wright) as study cases, so as to demonstrate our proposed approach for practical applications. The results are discussed and further research is suggested.
keywords Pattern language, complex adaptive systems, spatial cognition, design representations, spatial information processing, Artificial Intelligence, visual language, Spatial Graph Grammars (SGG), spatial-semantic analytics.
series CAAD Futures
email
last changed 2015/06/29 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 21HOMELOGIN (you are user _anon_900074 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002