CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id ecaade2015_100
id ecaade2015_100
authors Braumann, Johannes and Brell-Cokcan, Sigrid
year 2015
title Adaptive Robot Control - New Parametric Workflows Directly from Design to KUKA Robots
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 243-250
doi https://doi.org/10.52842/conf.ecaade.2015.2.243
wos WOS:000372316000029
summary In the past years the creative industry has made great advancements in the area of robotics. Accessible robot simulation and control environments based on visual programming systems such as Grasshopper and Dynamo now allow even novice users to quickly and intuitively explore the potential of robotic fabrication, while expert users can use their programming knowledge to create complex, parametric robotic programs. The great advantage of using visual programming for robot control lies in the quick iterations that allow the user to change both geometry and toolpaths as well as machinic parameters and then simulate the results within a single environment. However, at the end of such an iterative optimization process the data is condensed into a robot control data file, which is then copied over to the robot and thus loses its parametric relationship with the code that generated it. In this research we present a newly developed system that allows a dynamic link between the robot and the controlling PC for parametrically adjusting robotic toolpaths and collecting feedback data from the robot itself - enabling entirely new approaches towards robotic fabrication by even more closely linking design and fabrication.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=9d9da7bc-70ef-11e5-b2fd-efbb508168fd
last changed 2022/06/07 07:54

_id ecaadesigradi2019_561
id ecaadesigradi2019_561
authors Cress, Kevan and Beesley, Philip
year 2019
title Architectural Design in Open-Source Software - Developing MeasureIt-ARCH, an Open Source tool to create Dimensioned and Annotated Architectural drawings within the Blender 3D creation suite.
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 621-630
doi https://doi.org/10.52842/conf.ecaade.2019.1.621
summary MeasureIt-ARCH is A GNU GPL licensed, dimension, annotation, and drawing tool for use in the open source software Blender. By providing free and open tools for the reading and editing of architectural drawings, MeasurIt-ARCH allows works of architecture to be shared, read, and modified by anyone. The digitization of architectural practice over the last 3 decades has brought with it a new set of inter-disciplinary discourses for the profession. An attempt to utilise 'Open-Source' methodologies, co-opted from the world of software development, in order to make high quality design more affordable, participatory and responsible has emerged. The most prominent of these discussions are embodied in Carlo Raitti and Mathew Claudel's manifesto 'Open-Source Architecture' (Ratti 2015) and affordable housing initiatives like the Wikihouse project (Parvin 2016). MeasurIt-ARCH aims to be the first step towards creating a completely Open-Source design pipeline, by augmenting Blender to a level where it can be used produce small scale architectural works without the need for any proprietary software, serving as an exploratory critique on the user experience and implementations of industry standard dimensioning tools that exist on the market today.
keywords Blender; Open-Source; Computer Aided Design ; OSArc
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2016_415
id caadria2016_415
authors Crolla, Kristof and Adam Fingrut
year 2016
title Protocol of Error: The design and construction of a bending-active gridshell from natural bamboo
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 415-424
doi https://doi.org/10.52842/conf.caadria.2016.415
summary This paper advocates alternative methods to overcome the impossibility of realising ‘perfect’ digital designs. It discusses Hong Kong’s 2015 ‘ZCB Bamboo Pavilion’ as a methodological case study for the design and construction of architecture from unprocessed natu- ral bamboo. The paper critically evaluates protocols set up to deal with errors resulting from precise digital design systems merging with inconsistent natural resources and onsite craftsmanship. The paper starts with the geometric and tectonic description of the project, illus- trating a complex and restrictive construction context. Bamboo’s unique growth pattern, structural build-up and suitability as a bending- active material are discussed and Cantonese bamboo scaffolding craftsmanship is addressed as a starting point for the project. The pa- per covers protocols, construction drawings and assembly methods developed to allow for the incorporation and of large building toler- ances and dimensional variation of bamboo. The final as-built 3d scanned structure is compared with the original digital model. The pa- per concludes by discussing the necessity of computational architec- tural design to proactively operate within a field of real-world inde- terminacy, to focus on the development of protocols that deal with imperfections, and to redirect design from the virtual world towards the latent opportunities of the physical.
keywords Bamboo; bending-active gridshells; physics simulation; form-finding; indeterminacy
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2017_031
id caadria2017_031
authors Crolla, Kristof, Williams, Nicholas, Muehlbauer, Manuel and Burry, Jane
year 2017
title SmartNodes Pavilion - Towards Custom-optimized Nodes Applications in Construction
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 467-476
doi https://doi.org/10.52842/conf.caadria.2017.467
summary Recent developments in Additive Manufacturing are creating possibilities to make not only rapid prototypes, but directly manufactured customised components. This paper investigates the potential for combining standard building materials with customised nodes that are individually optimised in response to local load conditions in non-standard, irregular, or doubly curved frame structures. This research iteration uses as a vehicle for investigation the SmartNodes Pavilion, a temporary structure with 3D printed nodes built for the 2015 Bi-City Biennale of Urbanism/Architecture in Hong Kong. The pavilion is the most recent staged output of the SmartNodes Project. It builds on the findings in earlier iterations by introducing topologically constrained node forms that marry the principals of the evolved optimised node shape with topological constraints imposed to meet the printing challenges. The 4m high canopy scale prototype structure in this early design research iteration represents the node forms using plastic Fused Deposition Modelling (FDM).
keywords Digital Fabrication; Additive Manufacturing; File to Factory; Design Optimisation; 3D printing for construction
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_247
id ecaade2015_247
authors Garcia, Manuel Jimenez and Retsin, Gilles
year 2015
title Design Methods for Large Scale Printing
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 331-339
doi https://doi.org/10.52842/conf.ecaade.2015.2.331
wos WOS:000372316000039
summary With an exponential increase in the possibilities of computation and computer-controlled fabrication, high density information is becoming a reality in digital design and architecture. However, construction methods and industrial fabrication processes have not yet been reshaped to accommodate the recent changes in those disciplines. Although it is possible to build up complex simulations with millions of particles, the simulation is often disconnected from the actual fabrication process. Our research proposes a bridge between both stages, where one drives the other, producing a smooth transition from design to production. A particle in the digital domain becomes a drop of material in the construction method.The architect's medium of expression has become much more than a representational tool in the last century, and more recently it has evolved even beyond a series of rules to drive from design to production. The design system is the instruction itself; embedding structure, material and tectonics and gets delivered to the very end of the construction chain, where it gets materialised. The research showcased in this paper investigates tectonic systems associated with large scale 3D printing and additive manufacturing methods, inheriting both material properties and fabrication constraints at all stages from design to production. Computational models and custom design software packages are designed and developed as strategies to organise material in space in response to specific structural and logistical input.Although the research has developed a wide spectrum of 3D printing methods, this paper focuses only on two of the most recent projects, where different material and computational logics were investigated. The first, titled Filamentrics, intends to develop free-form space frames, overcoming their homogeneity by introducing robotic plastic extrusion. Through the use of custom made extruders a vast range of high resolution prototypes were developed, evolving the design process towards the fabrication of precise structures that can be materialised using additive manufacturing but without the use of a layered 3D printing method. Instead, material limitations were studied and embedded in custom algorithms that allow depositing material in the air for internal connectivity. The final result is a 3x2x2.5m structure that demonstrates the viability of this construction method for being implemented in more industrial scenarios.While Filamentrics is reshaping the way we could design and build light weight structures, the second project Microstrata aims to establish new construction methods for compression based materials. A layering 3D printing method combines both the deposition of the binder and the distribution of an interconnected network of capillaries. These capillaries are organised following structural principles, configuring a series of channels which are left empty within the mass. In a second stage aluminium is cast in this hollow space to build a continuous tension reinforcement.
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=07a6d8e0-6fe7-11e5-9994-cb14cd908012
last changed 2022/06/07 07:51

_id ecaade2015_200
id ecaade2015_200
authors Gargaro, Silvia and Fioravanti, Antonio
year 2015
title Towards a Context Knowledge Taxonomy - Combined Methodologies to Improve a Fast-Search Concept Extraction for an Ontology Population
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 137-147
doi https://doi.org/10.52842/conf.ecaade.2015.1.137
wos WOS:000372317300015
summary Context in Architectural Design can be defined-related-comparable to hypothesis and boundary conditions in mathematics. An eco-system that influences it by means of natural and artificial events, space and time dimension. The research has the aim to analyze the critical issues related to Context by providing a contribution to the study of interactions between Context Knowledge and Architectural Design and how it can be used to improve the performance of the buildings and reducing design mistakes. The research focusing on formal ontologies, has developed a model that enables a semantic approach to design application programs, to manage information, to answer design questions and to have a clear relation between the formal representation of the context domain and its meanings. This context model provides an advancement on the state of the art in simplified design assumptions, in term of ontology ambiguity and complexity reduction, by using algorithms to extract and optimize branches of the graph. The extraction does not limit the number of relations, that can be extended and improve context taxonomy coherency and accuracy.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c8741aa2-702c-11e5-a273-83f9e53dafcf
last changed 2022/06/07 07:51

_id acadia15_451
id acadia15_451
authors Jyoti, Aurgho
year 2015
title High Rise Morphologies: Architectural Form Finding in a Performative Design Search Space of Dense Urban Contexts
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 451-467
doi https://doi.org/10.52842/conf.acadia.2015.451
summary A routine is a fixed program, a sequence of actions regularly followed. And the concept can be adapted at different levels in the understanding of the dynamics of cities. Today's built environments are in fact increasingly characterized by series of iterations daily performed by infrastructures, networks, buildings, and people ? as part of a well-structured pattern of components. In this sense, the city becomes a system that not only creates routine, but also pushes its urban mechanisms, its architectural spaces, and its human interactions towards performance, efficiency and the 'standard.' A-priori and top-down implementations of new technologies emphasize routine-based built environments, leaving almost no room for the (extra)ordinary. But how can the spaces, infrastructures, and places that define the social experience of tangible environments not incorporate elements of inherent spontaneity, informality, and even error that let us break routine patterns?
keywords Architectural Form Finding, Optimisation, Performative Design Environment, Urban Daylight, Solar Irradiation, Direct Sunlight, Point Cloud, Voxelised Colonies
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id caadria2016_787
id caadria2016_787
authors Knapp, Chris; Jonathan Nelson, Andrew Kudless and Sascha Bohnenberger
year 2016
title Lightweight material prototypes using dense bundled systems to emulate an ambient environment
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 787-796
doi https://doi.org/10.52842/conf.caadria.2016.787
summary This paper describes and reflects upon a computational de- sign and digital fabrication research project that was developed and implemented over 2014-2015, with subsequent development continu- ing for applications at present. The aim of the research was to develop methods of modelling, analysis, and fabrication that facilitate integra- tive approaches to architectural design and construction. In this con- text, the development of material prototypes, digital simulations, and parametric frameworks were pursued in parallel in order to inform and reform successive iterations throughout the process, leading to a re- fined workflow for engineering, production, and speculation upon fu- ture directions of the work.
keywords Digital fabrication; biomimicry; ambient environments; grasshopper; computational design
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia15_333
id acadia15_333
authors Koltick, Nicole
year 2015
title Autonomous Botanist: the Poetic Potentials of a New Robotic Species
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 333-341
doi https://doi.org/10.52842/conf.acadia.2015.333
summary This project begins by asking questions about ethics and empathy towards robots, and contemplates the future of their behavior in ways not informed by pragmatics or economy. What if a robot had a hobby? How do robots make aesthetic decisions? What is a robot’s point of view? It seeks to shift perception of robotic agency and allow the audience to embody the robotic gardeners’ vision, behavior and influence its aesthetics. By amplifying perceptual differences between humans and robots and we allow for both tangible and virtual embodiment experiences from multiple scales and perspectives.
keywords Non-anthropocentric aesthetics, speculative realism, robotics, synthetic ecologies
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaade2015_109
id ecaade2015_109
authors Markusiewicz, Jacek, Strzala, Marcin and Koszewski, Krzysztof
year 2015
title Modular Light Cloud. Design, Programming and Making - Towards the Integration of Creative Actions
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 91-101
doi https://doi.org/10.52842/conf.ecaade.2015.2.091
wos WOS:000372316000012
summary Modular Light Cloud is an installation that is conceived to explore the boundaries of architecture and art. Its interactivity is a metaphor of mutual influences that derive from activities performed in space - associated with motion, sound and light.It is an experimental project focused on the integration of architectural elements, structure, information technology, performing arts, electronics and digital fabrication in architectural education.The project was completed in a two-week student workshop in collaboration with a contemporary dance artist. The students were taught the basics of parametric design, programming of electronic components and digital fabrication during tutorial classes. The making process combined three stages of development: design, construction and programming of interaction.The final form consists of two irregular spatial trusses made of aluminum profiles connected with 3d printed nodes. The profiles are equipped with LED strips and electronic components: light sensors, sound and communication between them. These systems control the intensity of light emitted by the diodes based on the inputs.The result is a working prototype presented as interactive installation featuring contemporary dance artist. It was displayed at art festivals and other events.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e17b2300-6f83-11e5-836f-4becdc2939a0
last changed 2022/06/07 07:59

_id ecaade2015_246
id ecaade2015_246
authors Andraos, Sebastian
year 2015
title DMR: A Semantic Robotic Control Language
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 261-268
doi https://doi.org/10.52842/conf.ecaade.2015.2.261
wos WOS:000372316000031
summary DMR is a semantic robot-control language that attempts to change our relationship with machines and create true human-robot collaboration through intuitive interfacing. To this end, DMR is demonstrated in the DMR Interface, an Android app, which accepts semantic vocal commands as well as containing a GUI for feedback and verification. This app is combined with a robot-mounted 3D camera to enable robotic interaction with the surroundings or compensate for unpredictable environments. This combination of tools gives users access to adaptive automation whereby a robot is no longer given explicit instructions but instead is given a job to do and will adapt its movements to execute this regardless of any slight changes to the goal or environment. The major advantages of this system come in the vagueness of the instructions given and a constant feedback of task accomplishment, approaching the manner in which we subconsciously control our bodies or would guide another person to achieve a goal.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=1d9c3f50-6fe2-11e5-8742-0b2879594625
last changed 2022/06/07 07:54

_id ecaade2015_329
id ecaade2015_329
authors Kieferle, Joachim and Woessner, Uwe
year 2015
title BIM Interactive - About combining BIM and Virtual Reality - A Bidirectional Interaction Method for BIM Models in Different Environments
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 69-75
doi https://doi.org/10.52842/conf.ecaade.2015.1.069
wos WOS:000372317300008
summary The basic concept of BIM is a consistent 3D model of buildings containing all main data as base for collaboration for all disciplines. Since BIM-software is normally run on single workstations, the potential for direct collaboration is somehow limited. The focus of our ongoing research is to overcome these restrictions and to provide a platform for development and optimization by combining BIM and Virtual Reality (VR), linking BIM (Revit) with VR (COVISE). Projects as well as data can be visualized in VR and reviewed 1:1 scale even in team meetings. Compared to various existing approaches, our new approach is to have bidirectional data exchange between the systems. Changes in Revit are directly reflected in VR and vice versa, continuously updating the model and its underlying database. We have been able to implement a range of interactions, however it's still a long way to identify further useful interactions and to implement them.
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2015_213
id caadria2015_213
authors Kornkasem, Sorachai and John B. Black
year 2015
title CAAD, Cognition & Spatial Thinking Training
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 561-570
doi https://doi.org/10.52842/conf.caadria.2015.561
summary The current study explored different spatial training methods and investigated the sequence of processed-based mental simulation that was facilitated by various structures of external spatial representations, including 3D technology in Computer Aided-Architectural Design (CAAD), spatial cues, and/or technical languages. The goal was to better understand how these components fostered planning experiences and affected spatial ability acquisition framed as the formation of spatial mental models, for further developing spatial training environments fundamental to Science, Technology, Engineering, and Mathematics (STEM) education, specifically for architecture education and cognition. Two experiments were conducted using a between-subjects design to examine the effects of spatial training methods on spatial ability performance. Across both studies learners improved in their spatial skills, specifically the learners in the 3D-augmented virtual environments over the 3D-direct physical manipulation conditions. This study is built upon the work in the fields of computer-user interface, visuospatial thinking and human learning.
keywords Spatial thinking training; cognitive processes; CAAD.
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2015_015
id caadria2015_015
authors Melenbrink, Nathan and Nathan King
year 2015
title Fulldome Interfacing
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 221-230
doi https://doi.org/10.52842/conf.caadria.2015.221
summary The ability to communicate design intent to potential users, clients, and communities is fundamental to the process of architectural design. Conventionally, this need is addressed through phased submissions of drawings, renderings, animations, and physical models—all with the intention of representing space and its constituent elements. Recent technological advancements however—including tools like those produced by OculusTM—have begun to present new opportunities for spatial representation through the use of simulated 3D environments that are both convenient for the design team and readily accepted by clients and end users. While immersive technologies do present novel representational opportunities, current workflows position the potential at the conclusion of the design process, not as part of it. The project presented here moves beyond mere representation and positions simulated 3D environments within the design process itself. To this end, an integrated real-time computational workflow that enables the use of simulated spatial experience as an iterative design tool was developed in order to create the illusion of being in a space while it is being designed and allowing experientially informed decision making. The Fulldome Interface creates a collaborative immersive environment that utilizes a novel computational design workflow (linking the parametric GrasshopperTM for RhinocerosTM design environment to the Unity3DTM gaming engine) that responds in real-time through dome-based stereoscopic projection that can be experienced by multiple occupants simultaneously.
keywords Immersive; fulldome; real-time; interface; parametric design
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2015_8.186
id sigradi2015_8.186
authors Robles, Rosa Maria Mendoza; Al-Attili, Aghlab
year 2015
title Virtual Environments as an Experimental Tool for Studies of Surveillance
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 355-362.
summary Space accepts pervasive technologies as an architectural feature inherent to design. As such, architecture is developing various links to video surveillance, crafting a new use and a new user of space. Consequently, a new type and layer of interaction is taking place in architectural space. We extend the experimental nature of 3D Virtual Environments to encompass our surveillance studies, and explore the Closed Circuit Television (CCTV). This paper contributes to the thinking of the architect positioning herself as the user of space while designing, replacing her as an empowered orchestrator of all the technologies attached to buildings.
keywords Surveillance, CCTV, 3D Models, Design, Simulation
series SIGRADI
email
last changed 2016/03/10 09:59

_id ecaade2015_324
id ecaade2015_324
authors Abdelmohsen, Sherif and Massoud, Passaint
year 2015
title Integrating Responsive and Kinetic Systems in the Design Studio: A Pedagogical Framework
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 71-80
doi https://doi.org/10.52842/conf.ecaade.2015.2.071
wos WOS:000372316000010
summary Responsive architecture is one of the growing areas of computational design that is not getting adequate attention in CAAD curricula. A pedagogical approach to designing responsive systems requires more than the typical knowledge, tools or skill sets in architectural design studios. This paper presents a framework for integrating responsive and kinetic systems in the architectural design studio. The framework builds on findings of two design studios conducted at The American University in Cairo, Egypt. In both studios, students were asked to design elements of responsive architecture that work towards the development of their projects. The paper demonstrates the process and outcomes of both studios. It then demonstrates how concepts of integrated project delivery are incorporated to propose a framework that engages students in designing, fabricating and operating responsive systems in different phases of the design process. A discussion follows regarding dynamics of design studio in light of the proposed framework.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7e59e026-6e8f-11e5-9e59-876225eebea0
last changed 2022/06/07 07:54

_id cf2015_486
id cf2015_486
authors Aydin, Asli and Özkar, Mine
year 2015
title Material computability of indeterminate plaster behavior
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 486.
summary In this study, we revisit the concepts of abstraction and materialization with regards to the theoretical framework of new materialism. Underlining the changing relationship between design through abstraction (DtA) and design through materialization (DtM) in design history, we propose an integration of the two towards achieving design emergence. Additional to a theoretical framework, we provide a showcase through material experiments of plaster and abstractions in the form of shape computation. We discuss results as parameters for future digital implementations and potentials for design practice and education.
keywords Shape computation, new materialism.
series CAAD Futures
type normal paper
email
last changed 2015/06/29 09:30

_id caadria2015_226
id caadria2015_226
authors Bidgoli, Ardavan and Daniel Cardoso-Llach
year 2015
title Towards A Motion Grammar for Robotic Stereotomy
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 723-732
doi https://doi.org/10.52842/conf.caadria.2015.723
summary This paper presents progress towards the definition of a motion grammar for robotic stereotomy. It describes a vocabulary of motions able to generate complex forms by cutting, slicing, and/or carving 3-D blocks of material using a robotic arm and a custom made cutting tool. While shape grammars usually deal with graphical descriptions of designs, a motion grammar seeks to address the 3-D harmonic movements of machine, tool, and material substrate choreographically, suggesting motion as a generative vehicle of exploration in both designing and making. Several models and prototypes are presented and discussed.
keywords Generative Fabrication; Robots in Architecture; Hot Wire cutting; Shape Grammars; Stereotomy; Computational Making.
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2015_397
id cf2015_397
authors Blonder, Arielle and Grobman, Yasha Jacob
year 2015
title Alternative Fabrication Process for Free-Form FRP Architectural Elements Relying on Fabric Materiality Towards Freedom from Molds and Surface Articulation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 397-410.
summary FRP (fiber reinforced polymers) is a family of composite materials combining fibers and polymers to offer exceptional mechanical properties. Its unique material properties have led to its wide application across industries. Although we witness a growing interest in the material in the architectural field in recent years, a significant barrier to its application lies in the need for a mold. The paper describes a new alternative fabrication process for architectural FRP elements that relies on fabric materiality. It suggests a mold free process, combining form finding and garment making techniques, to allow for complex morphologies, surface articulation and variation. The paper describes both the fabrication process through physical experiments, as well as the design process through the use of two design software tools. It demonstrates the potential for sustainable variation of large component facade system.
keywords FRP, Fabrication, Architecture, Mold, Materiality, Variation
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_170
id ecaade2015_170
authors Cavusoglu, Ömer Halil
year 2015
title The Position of BIM Tools in Conceptual Design Phase: Parametric Design and Energy Modeling Capabilities
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 607-612
doi https://doi.org/10.52842/conf.ecaade.2015.1.607
wos WOS:000372317300065
summary Numerous researchers point out that, in the early stages of architectural design, many significant decisions are taken to directly affect functional qualities, the performance of the building, aesthetics, and the relationship of the building with the natural environment and climate, even if there is no certain and valid information to create and obtain adequate design.In this paper, I particularly focus on the early stages of architectural design and search for the opportunities provided by Building Information Modeling (BIM) tools, towards the concept of performance analysis and parametric form seeking. Study also includes case study implementations which visualize the early processes of architectural design with benefits of BIM under different conditions to evaluate its opportunities during these design processes.
series eCAADe
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_489604 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002