CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 582

_id caadria2015_014
id caadria2015_014
authors Lee, Ju Hyun; Michael J. Ostwald and Ning Gu
year 2015
title Multi-Cultural Design Communication
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 531-540
doi https://doi.org/10.52842/conf.caadria.2015.531
summary The paper examines a method combining cognitive and linguistic approaches to investigate design protocols. The method is applied in a pilot study to compare Australian and Swedish language protocols recorded in an experiment using a parametric design environment. The results demonstrate that the coding schemes can formally capture both cognitive and linguistic characteristics of the design process. This multi-focused approach directly contributes to a better understanding of the relationship between design and language.
keywords Design cognition; Language; Spatial language; Parametric design; Protocol analysis.
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2015_043
id caadria2015_043
authors Zboinska, Malgorzata A.
year 2015
title Enriching Creativity in Digital Architectural Design
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 819-828
doi https://doi.org/10.52842/conf.caadria.2015.819
summary Although conceptual design is one of the most important stages of creation, impacting the quality and cost of the final product, current research indicates that designers still lack adequate tools supporting early-stage design. This research challenges that notion, by proposing a hybrid digital design platform for conceptual architectural design. The platform contains four miscellaneous techniques: animation, free-form modelling, associative parametric modelling and per-formance-driven modelling. In a digital design experiment we demon-strate that the collective application of these techniques to early-stage design explorations intensifies the architect’s visual and cognitive rea-soning processes, and hence supports the emergence of promising de-sign artefacts which bear the traces of all the techniques applied in the course of their conception. Additionally, the study also points at some other promising virtues of the hybrid toolset, including: provision of diversified form-finding opportunities on various levels of design ab-straction; the potential to direct designers onto unplanned creation paths; the ability to increase the versatility and functionality of the solutions; and the capacity to sustain design activities of various character, ranging from highly intuitive ones to very rational ones.
keywords Conceptual design methods and tools; free-form modelling; animation; associative parametric modelling; performance-driven design.
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2015_220
id caadria2015_220
authors Cheng, Nancy Y.; Mehrnoush Latifi Khorasgani, Nicholas Williams, Daniel Prohasky and Jane Burry
year 2015
title Understanding Light in Building Skin Design
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 323-332
doi https://doi.org/10.52842/conf.caadria.2015.323
summary This paper describes a design approach for discerning solar gain and assigning appropriate external shading devices. The approach includes a macro analysis locating where and when the building receives direct sunlight and locating desired interior daylighting; along with a micro analysis of how folded sun-shading motifs filter or block direct sunlight. The approach uses a collaborative analytical workflow with feedback from virtual and physical simulations informing design explorations. This iterative, reciprocating process is illustrated by student efforts to design shading structures for a building based on incident solar radiation. Designers begin with cutting and folding paper study models, then lasercut 2D tessellation patterns to create sculptural shading screens to be examined with a heliodon. Physical daylighting modeling reveals aesthetic opportunities to develop with parametric design. Motifs are then digitally modeled and analysed for shading effectiveness. Analysing the solar radiation of simple motifs helps beginners learn the software for subsequent urban situations. The efficacy of these simulations is discussed along with ways that the results could be interpreted to initiate design decisions for a building skin.
keywords Solar simulation; collaborative design; folding surfaces; physical and digital simulation.
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2015_139
id ecaade2015_139
authors Krietemeyer, Bess and Rogler, Kurt
year 2015
title Real-Time Multi-Zone Building Performance Impacts of Occupant Interaction with Dynamic Façade Systems
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 669-678
doi https://doi.org/10.52842/conf.ecaade.2015.2.669
wos WOS:000372316000074
summary Recent developments in responsive electroactive materials are increasing the rate at which next-generation façade technologies can respond to environmental conditions, building energy demands, and the actions of building occupants. Simulating the real-time performance of dynamic façade systems is critical for understanding the impacts that occupant response will have on whole-building energy performance and architectural design. This paper describes a method for real-time analysis of the multi-zone building performance impacts of occupant interaction with a dynamic façade system, the Electroactive Dynamic Display System (EDDS). The objective is to optimize EDDS implementation and define system limitations, incorporate EDDS as a dynamic factor in multi-zone building energy analyses, and provide real-time feedback of building performance data based on environmental conditions and occupant interactions. Preliminary results of parametric simulation methods demonstrate the ability of dynamic façade systems to consider real-time occupant interaction in the analysis of daylighting and thermal performance of buildings.
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2015_325
id ecaade2015_325
authors Lange, Christian J.
year 2015
title Shanghai Lilong Tower Urbanism - Towards an Urbanism of Parametric Preservation
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 493-500
doi https://doi.org/10.52842/conf.ecaade.2015.2.493
wos WOS:000372316000056
summary This paper describes a design approach for a new urban building typology for Shanghai utilizing a set of parametric design techniques to arrive at an alternative solution to current models of urbanization. The goal in this approach was to find a solution that is adaptable and sensitive to the urban environment and has the capacity to preserve historic urban street patterns. The approach included an understanding of the historic urban fabric of Shanghai, a respective plot analysis and the development of a computational method to produce a new urban type. The parametric set-up was build upon an analytical workflow with integrated feedback procedures that informed the design exploration and resulted in multiple design solutions.
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia15_243
id acadia15_243
authors McKay, Mike
year 2015
title Relative Positioning
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 243-250
doi https://doi.org/10.52842/conf.acadia.2015.243
summary How we understand the world is directly affected by our position in it. Constellations are simply the result of cognitive alignments related to our location in the universe, the horizon simply based on proximity and time. Relative Positioning explores the power of position in architecture: specifically, how Anamorphic projection and perspectival techniques can generate space and challenge our understanding of its form. Architectural illusion and perspectival deceptions have been investigated since antiquity in order to alter the perception of a given space, primarily used in an illusionary or optical manner. However, Anamorphic projection offers the potential to create dynamic spatial experiences that go well beyond simple projections or images/shapes simply painted onto a surface. Within Relative Positioning, architectural form exists in 3-dimensions (real, physical) but is perceived via procession and emergent perceptions based on choreographed alignments and foci—making it possible for a duality of visual perception to occur. Much like the diagonal movement through Villa Savoye or the space created by Matta-Clark’s cut, views and alignments add value, create perceptual shifts. One no longer views the architectural form as a whole, but as a collection of cinematic moments, fragments, serial form: a tension of object-qualities that elicits spatial ambiguity that puts pressure on the ‘real’ and opens up a world of wonder and excitement. This is a new form of collage.
keywords Anamorphosis, perspective, perception
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id sigradi2015_3.268
id sigradi2015_3.268
authors Naboni, Roberto; Mirante, Lorenzo
year 2015
title Metamaterial computation and fabrication of auxetic patterns for architecture
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 129-136.
summary The paper investigates the potential of auxetics in architectural applications by means of computational design and additive manufacturing. This class of metamaterials expresses interesting behaviour related to the unusual characteristics of a negative Poisson’s ratio. Different patterns have been studied through a design workflow based on parametric software and the use of Particle Spring systems to support the form-finding process of bending-active auxetic structures. An advanced understanding of their bending capacity is explored with the use of variable infill patterns informed by structural analysis. Furthermore, principles for the design and fabrication of auxetic gridshells are discussed.
keywords Auxetics, Computational Design, Form-Finding, Synclastic Shell, 3D-printing
series SIGRADI
email
last changed 2016/03/10 09:55

_id caadria2016_809
id caadria2016_809
authors Nakapan, Walaiporn
year 2016
title Using the SAMR Model to transform mobile learning in a History of Art and Architecture Classroom
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 809-818
doi https://doi.org/10.52842/conf.caadria.2016.809
summary This paper presents the progress of a pilot classroom, which uses mobile devices to enhance instructor-student classroom interac- tions and students’ learning of the History of Art and Architecture. The main objective of this research was to find a way of improving classroom activities, for the coming year, by making the best possible use of technology to enable students to learn more successfully and improve their understanding of the lesson content. In this paper, class- room activities during 2014 and 2015 are analysed using the SAMR Model coupled with Bloom’s revised taxonomy and the EdTech Quin- tet Model. In addition, a plan for the redesign and improvement of ac- tivities in 2016 is proposed, the effectiveness of the SAMR model at improving in class activities is discussed and a perspective on how to develop the classroom using the “SAMR ladder” is included. The re- sults show that in 2015, 25% of the students in the class achieved an A grade, and less than 5% were graded F compared to 26% in 2012.
keywords Design education; mobile-based learning; History of Art and Architecture; SAMR model
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia15_497
id acadia15_497
authors Sandoval Olascoaga, Carlos; Victor-Faichney, John
year 2015
title Flows, Bits, Relationships: Construction of Deep Spatial Understanding
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 497-512
doi https://doi.org/10.52842/conf.acadia.2015.497
summary The number of variables acting upon urban landscapes is numerous and interconnected, closely resembling complex systems in constant dynamic transformation. Current analytical methods and descriptions of the city are domain specific, limited in scope, and discretize the city into quantifiable individual representations, resulting in an equally limited urban policy and design. If we are to produce urban systems capable of contributing to the robustness and resiliency of cities, we ought to understand and represent the comprehensive network of actors that construct contemporary urban landscapes. On one hand, the natural sciences approach the analysis of complex systems by primarily focusing on the development of models capable of describing their stochastic formation, remaining agnostic to the contextual properties of their individual components and oftentimes discretizing the otherwise continuous relationships among parts. signers work in groups. They need to share information either synchronously or asynchronously as they work with parametric modeling software, as with all computer-aided design tools. Receiving information from collaborators while working may intrude on their work and thought processes. Little research exists on how the reception of design updates influences designers in their work. Nor do we know much about designer preferences for collaboration. In this paper, we examine how sharing and receiving design updates affects designers’ performances and preferences. We present a system prototype to share changes on demand or in continuous mode while performing design tasks. A pilot study measuring the preferences of nine pairs of designers for different combinations of control modes and design tasks shows statistically significant differences between the task types and control modes. The types of tasks affect the preferences of users to the types of control modes. In an apparent contradiction, user preference of control modes contradicts task performance time.
keywords Networks, graphs, web-mapping, GIS, urban mapping, spatial analysis, urban databases, visual representation, spatial cognition
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id caadria2015_210
id caadria2015_210
authors Sweet, Kevin
year 2015
title Robotic Workflow
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 519-528
doi https://doi.org/10.52842/conf.caadria.2015.519
summary While new software interfaces are making the interaction between humans and robots more pedestrian, there is still an extremely complex workflow from the conception of data on the part of humans to the final action of the arm. In order to continue to promote and advance the use of these versatile tools in architecture, pedagogical strategies are needed to better enable users to engage with them quickly and obtain results while minimising frustration. This paper will outline a pedagogical strategy for introducing the multi-layered levels of knowledge and understanding required to operate a 6-axis robotic arm as developed in undergraduate architectural coursework. It will highlight the various learning modules created in order to deliver the necessary information for understanding the complex operational pipeline required to interact with and operate the robotic arm successfully.
keywords Robots; fabrication; parametric; parametric modelling; simulation.
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_13
id ecaade2015_13
authors Teixeira, Frederico Fialho
year 2015
title Biology, Real Time and Multimodal Design - Cell-Signaling as a Realtime Principle in Multimodal Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 551-562
doi https://doi.org/10.52842/conf.ecaade.2015.2.551
wos WOS:000372316000062
summary The common understanding of morphogenesis implies a three-dimensional evolutionary change in form witnessed in the developmental process of an organism. This evolutionary process emerges from cell growth, cellular differentiation and environmental changes that generate specific conditions between genotype and phenotype. The complex nature of these aspects is intrinsic to evolutionary biology, and its accurate implementation in bio-generated architectures potentiates a twofold understanding of different morphogenetic strategies and its spatial consequences. Within this premise the morphogenetic factors of cell-differentiation and cell-signaling become a crucial aspect in a real-time communication system between an archetype and space, thus performing within particular modes in which design correlates to space. The paper hypothesizes and tests the use of Cell-Signaling as system of communication that governs fundamental cellular activities within the process of Gastrulation. This process occurs in early cell-embryo development and where communication between cells is favorably active and cellular the structure is established. The Emosphera project is a technical re-contextualization of this specific morphogenetic process. The principles denote a genetic code of the object can be scripted in a CAD environment and reproduced real-time by means of communication through a multimedia platform, which render form as a consequential aspect.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7ba1d042-6e8e-11e5-bb2e-ab80b3ab7d57
last changed 2022/06/07 07:58

_id cf2015_485
id cf2015_485
authors Anaf, Márcia and Harris, Ana Lúcia Nogueira de Camargo
year 2015
title The geometry of Chuck Hoberman as the basis for the development of dynamic experimental structures
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 485.
summary The cognitive-theoretical foundation referring to teach drawing as a way of thinking, as well as the construction of the environment by means of drawing using transforming geometries and the formal and para-formal computational process, creating unusual geometries through generative design processes and methodologies, can be seen as some of the main possibilities in exploring dynamic experimental structures for an Adaptive Architecture. This article presents the development of a model for articulated facades, inspired by Hoberman´s Tessellates, and his Adaptive Building Initiative (ABI) project to develop facades models that respond in real time to environmental changes. In addition, we describe an experiment based on the retractable structures, inspired by Hoberman´s work and experimentations. Solutions for responsive facades can offer more flexible architectural solutions providing better use of natural light and contributing to saving energy. Using Rhinoceros and the Grasshopper for modeling and test the responsiveness, the parametric model was created to simulate geometric panels of hexagonal grids that would open and close in reaction to translational motion effects, regulating the amount of light that reaches the building.
keywords Parametric architecture, Hoberman´s Tessellates, Adaptive Building Initiative (ABI), Articulated Facades, Complex Geometries, Retractable structures, Retractable polyhedra.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_33
id ecaade2015_33
authors Oxman, Rivka and Gu, Ning
year 2015
title Theories and Models of Parametric Design Thinking
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 477-482
doi https://doi.org/10.52842/conf.ecaade.2015.2.477
wos WOS:000372316000054
summary Due to significant recent design-related technological developments, design theories and processes are undergoing re-formulation and an epistemological shift. The tools and practices of parametric design are beginning to impact new forms of Parametric Design Thinking (PDT). The present work is motivated by the need to explore and formulate the body of theoretical concepts of parametric design. It is built around the intersection of three areas of knowledge: cognitive models of design, digital models of design, and parametric tools and scripts. The work identifies forms of cognitive mechanisms in parametric design; types of logical flow of information that can be applied in digital processes for performance-based design; generative design and form finding. It explores the impact of parametric models and tools upon styles of design thinking from conception to production. These are presented as a body of knowledge in the search for thinking and process models of PDT in design.
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2015_073
id caadria2015_073
authors Yu, Rongrong and John Gero
year 2015
title An Empirical Foundation for Design Patterns in Parametric Design
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 551-560
doi https://doi.org/10.52842/conf.caadria.2015.551
summary This paper presents the results from exploring the impact of using a parametric design tool on designers’ behaviour in terms of using design patterns in the early conceptual development stage. It is based on an empirical cognitive study in which eight architectural designers were asked to complete two architectural design tasks with similar complexity respectively in a parametric design environment (PDE) and a Geometric modelling environment (GME). Protocol analysis was employed to study the designers’ behaviour. To explore the development of design patterns during the design process, we utilise the technique of Markov model analysis. Through Markov models analysis of the PDE and GME results, we found that there are significantly more Function to Structure transitions in PDE than in GME. During this transition process, designers select an existing structure/solution for the particular function/design problem based on their experience or knowledge, which is a process of applying an existing design pattern to the problem. From this result we can infer that when architects apply programming and scripting in their design, such as in a PDE, they exhibit the characteristic of using design patterns.
keywords Design pattern; parametric modelling; protocol studies.
series CAADRIA
email
last changed 2022/06/07 07:57

_id ijac201513105
id ijac201513105
authors Yu, Rongrong; John Gero, Ning Gu
year 2015
title Architects' Cognitive Behaviour in Parametric Design
source International Journal of Architectural Computing vol. 13 - no. 1, 83–102
summary This paper presents the results of a protocol study of professional architects' cognitive behaviour in a parametric design environment. A design experiment was conducted in which eight professional architects completed an architectural conceptual design task in a typical parametric design environment -Rhino and Grasshopper. Protocol analysis was then applied to analyse the cognitive behaviour of the architects. In analysing the protocol data, the FBS ontology adopted for developing the coding scheme was sub-divided into design knowledge and rule algorithm classes as the means to capture designers' cognitive behaviour. Applying the method of cumulative analysis, results of the relative cognitive effort expended on design knowledge and rule algorithm classes have been compared and are discussed in the paper.
series journal
last changed 2019/05/24 09:55

_id cf2015_331
id cf2015_331
authors Brodeschi, Michal; Pilosof, Nirit Putievsky and Kalay, Yehuda E.
year 2015
title The definition of semantic of spaces in virtual built environments oriented to BIM implementation
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 331-346.
summary The BIM today can be a provider of inputs to performance analysis of different phenomena such as thermal comfort, energy consumption or winds. All these assessments are fundamental to the post occupation of the building. The attainment of approximate information of how the future building would behave under these conditions will reduce the waste of materials and energy resources. The same idea is used for evaluating the users occupation. Through simulation of human behavior is possible to evaluate which design elements can be improved. In complex structures such as hospital buildings or airports is quite complex for architects to determine optimal design solutions based on the tools available nowadays. These due to the fact users are not contemplated in the model. Part of the data used for the simulation can be derived from the BIM model. The three-dimensional model provides parametric information, however are not semantically enriched. They provide parameters to elements but not the connection between them, not the relationship. It means that during a simulation Virtual Users can recognize the elements represented in BIM models, but not what they mean, due to the lack of semantics. At the same time the built environment may assume different functions depending on the physical configuration or activities that are performed on it. The status of the space may reveal differences and these changes occur constantly and are dynamic. In an initial state, a room can be noisy and a moment later, quiet. This can determine what type of activities the space can support according to each change in status. In this study we demonstrate how the spaces can express different semantic information according to the activity performed on it. The aim of this paper is to simulate the activities carried out in the building and how they can generate different semantics to spaces according to the use given to it. Then we analyze the conditions to the implementation of this knowledge in the BIM model.
keywords BIM, Virtual Sensitive Environments, Building Use Simulation, Semantics.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_92
id ecaade2015_92
authors Daher, Elie; Kubicki, Sylvain and Halin, Gilles
year 2015
title A Parametric Process for Shelters and Refugees’ Camps Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 541-548
doi https://doi.org/10.52842/conf.ecaade.2015.2.541
wos WOS:000372316000061
summary Many situations related to natural environment and human activities increase the risk related to housing and create a demand for rapid post-disaster solutions. The solutions implemented by both the non-governmental organizations (NGOs) and the local and national organizations should fulfill the requirements of the temporarily displaced populations. However post-disaster design faces many challenges in its process making the response always more complex. At the same time, computer-based design is a growing approach in both architectural practice and research. The research described in this paper aims to help in finding solutions to design issues by addressing the potential of computer-based architectural design support. It is applied to shelter and camp development and takes into account physical, contextual and climatic parameters. The outcome is a design process for shelter and camp, which has been validated by a parametric prototype experiment in a case study. This should support humanitarian teams and contribute to enhancing the quality of design as well as to reducing the time required for the design and construction processes.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=02a874e6-6e90-11e5-8511-3bb4258a8962
last changed 2022/06/07 07:56

_id cf2015_226
id cf2015_226
authors Gallas, Mohamed-Anis and Delfosse, Vincent
year 2015
title Sketch-based and parametric modeling: Association of two-externalization processes for early daylight optimization
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 226-238.
summary This paper focuses on sketch-based and parametric modeling as two externalization devices used in architectural design practice. The first part of this paper addresses features and ability of these externalization tools to support design activities during the early design steps. The second part proposes an association process of a sketch-based modeling tool (SketSha-Archi®) and a parametric modeling tool (Grasshopper®) to create an advanced process for daylight optimization. The process aimed to associate the hand-sketching freedom with the precise exploration functions of digital tools (parametric modeling and evaluation tools).
keywords Sketch-based modeling; parametric modeling; early design stages; daylight simulation; optimization process.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_109
id ecaade2015_109
authors Markusiewicz, Jacek, Strzala, Marcin and Koszewski, Krzysztof
year 2015
title Modular Light Cloud. Design, Programming and Making - Towards the Integration of Creative Actions
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 91-101
doi https://doi.org/10.52842/conf.ecaade.2015.2.091
wos WOS:000372316000012
summary Modular Light Cloud is an installation that is conceived to explore the boundaries of architecture and art. Its interactivity is a metaphor of mutual influences that derive from activities performed in space - associated with motion, sound and light.It is an experimental project focused on the integration of architectural elements, structure, information technology, performing arts, electronics and digital fabrication in architectural education.The project was completed in a two-week student workshop in collaboration with a contemporary dance artist. The students were taught the basics of parametric design, programming of electronic components and digital fabrication during tutorial classes. The making process combined three stages of development: design, construction and programming of interaction.The final form consists of two irregular spatial trusses made of aluminum profiles connected with 3d printed nodes. The profiles are equipped with LED strips and electronic components: light sensors, sound and communication between them. These systems control the intensity of light emitted by the diodes based on the inputs.The result is a working prototype presented as interactive installation featuring contemporary dance artist. It was displayed at art festivals and other events.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e17b2300-6f83-11e5-836f-4becdc2939a0
last changed 2022/06/07 07:59

_id ecaade2015_235
id ecaade2015_235
authors Ahmar, Salma El and Fioravanti, Antonio
year 2015
title Biomimetic-Computational Design for Double Facades in Hot Climates - A Porous Folded Façade for Office Buildings
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 687-696
doi https://doi.org/10.52842/conf.ecaade.2015.2.687
wos WOS:000372316000076
summary Biomimetic design is an approach that is gaining momentum among architects and designers. Computational design and performance simulation software represent powerful tools that help in applying biomimetic ideas in architectural design and in understanding how such proposals would behave. This paper addresses the challenge of reducing cooling loads while trying to maintain daylight needs of office buildings in hot climatic regions. Specifically, it focuses on double skin facades whose application in hot climates is somewhat controversial. Ideas from nature serve as inspiration in designing a porous, folded double façade for an existing building, aiming at increasing heat lost by convection in the façade cavity as well as reducing heat gained by radiation. The cooling loads and daylight autonomy of an office room are compared before and after the proposed design to evaluate its performance.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=f87306fc-6e90-11e5-845a-00190f04dc4c
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_641985 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002