CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id ijac201513204
id ijac201513204
authors Cupkova, Dana and Nicolas Azel
year 2015
title Mass Regimes: Geometric Actuation of Thermal Behavior
source International Journal of Architectural Computing vol. 13 - no. 2, 169-194
summary The Mass Regimes is a research project that investigates the effect of complex geometry on processes of passive heat distribution in thermal mass systems. In the context of systems thinking, this research intends to instrumentalize design principles that engage a wider range of design tactics for choreographing thermal gradients between buildings and their environment. Research for this project has brought about a deeper understanding of how specific geometric manipulations of surface area over the same mass (Figure 1) affect the rate of thermal transfer. Leveraging physical simulations of geometric populations, along with current computational and design tools, the project sheds light on performative trends that may enhance creative design explorations in the use of passive systems. Preliminary analysis of varied geometric populations suggest an exciting trend and the possibility for a more synthetic incorporation of morphology, one in which surface geometry can be passively utilized to generate effects with more fidelity over the pace of thermal absorption and the release of sensible heat.
series journal
last changed 2019/05/24 09:55

_id ecaade2015_21
id ecaade2015_21
authors Klemmt, Christoph and Bollinger, Klaus
year 2015
title Cell-Based Venation Systems
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 573-580
doi https://doi.org/10.52842/conf.ecaade.2015.2.573
wos WOS:000372316000064
summary Venation structures in leaves fulfil both circulatory as well as structural functions within the organism they belong to. A possible digital simulation algorithm for the growth of venation patterns based on the leaf surface has been described by the Department of Computer Science at the University of Calgary.Cell-based growth algorithms to generate surface meshes have been developed by biological and medical scientists as well as artists, in order to gain an understanding of developmental biology or to generate artistic form. This paper suggests the combination of the two algorithms in order to generate the morphologies of leaves and other structures while at the same time generating the corresponding venation system.The resulting algorithm develops large non-manifold mesh structures based on local rules of division of the individual cells. The venation system develops in parallel based on the flow of the plant hormone auxin from those cells towards the start point or petiole of the leaf. Different local behaviours of the cells towards their adjacent neighbours, towards their rules of division and towards the rules of developing veins have been investigated. The eventual aim of the algorithms is their application as tools to develop architectural and structural morphologies.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=29c4389a-6e8f-11e5-8666-279b88fbd56c
last changed 2022/06/07 07:52

_id caadria2015_181
id caadria2015_181
authors Pantic, Igor and Soomeen Hahm
year 2015
title Isomorphic Agency
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 179-188
doi https://doi.org/10.52842/conf.caadria.2015.179
summary This paper deals with the topic of agent based design systems and their application in the process of generative design, with the goal of creating a series of volumetric arrangements of varying surface qualities. To test this approach, we created a custom made tool for Agent Based Modelling - Isomorphic Agency - whose design and functionality are described in this paper. Furthermore, we conduct a series of design exercises which combine different parameters, examining the resulting geometries and underlying organizational principles.
keywords multi agent systems; generative design; design research
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2015_023
id caadria2015_023
authors Weizmann, Michael; Oded Amir and Yasha Jacob Grobman
year 2015
title Topological Interlocking in Architectural Design
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 107-116
doi https://doi.org/10.52842/conf.caadria.2015.107
summary The paper presents the initial results of a study that examines the potential of using the concept of topological interlocking as a structural and organizational mechanism for architecture in general, and for building façades in particular. The paper opens with a review of existing research on the notion of topological interlocking. It then presents a catalogue that characterizes the various types of topological interlocking systems and compares the potential of these types to be employed in architectural design. This is followed by a discussion regarding the results of fabrication experiments that examine the specific types, which appear to have the best potential for architectural design.
keywords Structural fragmentation, building facade, parametric design, surface tessellation, complex geometry.
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia15_431
id acadia15_431
authors Winn; Kelly
year 2015
title Transient Thermal Exchange and Developmental Form for Tactile Surfaces
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 431-441
doi https://doi.org/10.52842/conf.acadia.2015.431
summary The idea of an emergent or generative form based on repeating rules of development borrowed from the field of developmental biology has provided fertile ground for inspiration for architectural theory and computational design. With simple constraints developed iteratively, complex geometry and form generation can be distilled down to a list of developmental rules or functions in order to deterministically generate form. The ideas and illustrations of naturalists on organic form and developmental biology leading back to the turn of the 20th c., such as the work of D'arcy Wentworth Thompson and Ernst Haeckel, have inspired architects from Louis Sullivan all the way to contemporary generative design. This study revisits this design tradition of biomimetic geometries based on deterministic rules for the iterative development of forms based on biological analogs and models for growth. A series of semi-regular compound patterns were developed using parametric modeling and iterative rules. These geometries were then applied to surface topologies as a decorative tactile embellishment resulting in complex thermodynamic conditions. A series of physical prototypes where then developed with different high-relief patterns and pattern densities. Positive prototype geometries were then produced using stereolithography for casting plaster molds for the production molding of finished ceramic pieces for thermal analysis using digital thermography. By studying the performance of these complex geometries as physical prototypes under controlled experimentation, high-relief surfaces and the resulting thermodynamic conditions can be understood not just qualitative experience, but also quantitatively through measured performance metrics and innovative tools for analytical analysis.
keywords Tactile surfaces, developmental biology, biomimicry, l-systems, ceramic materials, heat transfer, thermography, ergonomics
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id cf2015_279
id cf2015_279
authors Abdelmohsen, Sherif M. and Massoud, Passaint M.
year 2015
title Making Sense of those Batteries and Wires: Parametric Design between Emergence and Autonomy
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 279-296.
summary This paper reports on the process and outcomes of a digital design studio that integrates parametric design and generative systems in architectural and urban design projects. It explores the interrelationship between the emergence of innovative formal representations using parametric design systems on the one hand, and design autonomy; more specifically the conscious process of generating and developing an architectural concept, on the other. Groups of undergraduate students working on an architectural project are asked to identify a specific conceptual parti that addresses an aspect of architectural quality, define strategies that satisfy those aspects, and computational methodologies to implement those strategies, such as rule-based systems, self-organization systems, and genetic algorithms. The paper describes the educational approach and studio outcomes, discusses implications for CAAD education and curricula, and addresses issues to be considered for parametric and generative software development.
keywords Parametric modeling, generative design, emergence, autonomy, design exploration, CAAD curriculum.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_280
id ecaade2015_280
authors Adilenidou, Yota
year 2015
title Error as Optimization - Using Cellular Automata Systems to Introduce Bias in Aggregation Models through Multigrids
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 601-610
doi https://doi.org/10.52842/conf.ecaade.2015.2.601
wos WOS:000372316000067
summary This paper is focusing on the idea of error as the origin of difference in form but also as the path and the necessity for optimization. It describes the use of Cellular Automata (CA) for a series of structural and formal elements, whose proliferation is guided through sets of differential grids (multigrids) and leads to the buildup of big span structures and edifices as, for example, a cathedral. Starting from the error as the main idea/tool for optimization, taxonomies of morphological errors occur and at a next step, they are informed with contextual elements to produce an architectural system. A toolbox is composed that can be implemented in different scales and environmental parameters, providing variation, optimization, complexity and detail density. Different sets of experiments were created starting from linear structural elements and continuing to space dividers and larger surface components.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=5cf73be0-6e8f-11e5-b7a4-1b188b87ef84
last changed 2022/06/07 07:54

_id acadia15_263
id acadia15_263
authors Ahlquist, Sean
year 2015
title Social Sensory Architectures: Articulating Textile Hybrid Structures for Multi-Sensory Responsiveness and Collaborative Play
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 263-273
doi https://doi.org/10.52842/conf.acadia.2015.263
summary This paper describes the development of the StretchPLAY prototype as a part of the Social Sensory Surfaces research project, focusing on the design of tactile and responsive environments for children with Autism Spectrum Disorder (ASD). The project is directed specifically at issues with sensory processing, the inability of the nervous system to filter sensory input in order to indicate an appropriate response. This can be referred to as a “traffic jam” of sensory data where the intensity of such unfiltered information leads to an over-intensified sensory experience, and ultimately a dis-regulated state. To create a sensory regulating environments, a tactile structure is developed integrating physical, visual and auditory feedback. The structure is defined as a textile hybrid system integrating a seamless knitted textile to form a continuous topologically complex surface. Advancements in the fabrication of the boundary structure, of glass-fiber reinforced rods, enable the form to be more robustly structured than previous examples of textile hybrid or tent-like structures. The tensioned textile is activated as a tangible interface where sensing of touch and pressure on the surface triggers ranges of visual and auditory response. A specific child, a five-year old girl with ASD, is studied in order to tailor the technologies as a response to her sensory challenges. This project is a collaboration with students, researchers and faculty in the fields of architecture, computer science, information (human-computer interaction), music and civil engineering, along with practitioners in the field of ASD-based therapies.
keywords Textile Hybrid, Knitting, Sensory Environment, Tangible Interface, Responsive systems and environments
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia15_311
id acadia15_311
authors Ahrens, Chandler
year 2015
title Klimasymmetry, Locating Thermal Tactility
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 311-322
doi https://doi.org/10.52842/conf.acadia.2015.311
summary The Klimasymmetry research project is part of ongoing investigations that ask how the design of a surface emanating radiant heating and cooling can influence the non-visual spatial boundaries created by asymmetrical thermal conditions. This research investigates the nature of the surface as an initiator of a thermal environment in an attempt to locate thermal tactility and the spatial perception according to radiant heat transfer. Surface qualities such as the quantity of area and thermal capacity of the material affects the ability of the panel to emit or absorb electromagnetic radiation, informing the geometry, topography, and location of each panel relative to the human body.
keywords Thermal behavior, Radiant panel system, Material computation, Digital Fabrication, Fabric forming, Glass Fiber Reinforced Gypsum
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_090
id caadria2015_090
authors Altabtabai, Jawad and Wei Yan
year 2015
title A User Interface for Parametric Architectural Design Reviews
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 65-74
doi https://doi.org/10.52842/conf.caadria.2015.065
summary Architectural form and performance are affected by the designer's graphical representation methods. Parametric CAD systems, as design and representation tools, have become ubiquitous in architectural practice and education. Literature in the area of parametric design reviews is scarce and focused within building inspection and construction coordination domains. Additionally, platforms marketed as design review tools lack basic functionality for conducting comprehensive, parametric, and performance-based reviews. We have developed a user interface prototype where geometric and non-geometric information of a Building Information Model were translated into an interactive gaming environment. The interface allows simultaneous occupation and simulation of spatial geometry, enabling the user to engage with object parameters, as well as, performance-based, perspectival, diagrammatic, and orthographic representations for total spatial and performance comprehension.
keywords Design cognition; Virtual/augmented reality and interactive environments; Human-computer interaction.
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2015_13.316
id sigradi2015_13.316
authors Ariza, Inés; Gazit, Merav
year 2015
title On-site Robotic Assembly of Double-curved Self-supporting Structures
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 746-753.
summary Robotic assembly of architectural structures has been an area of research for a few decades. Yet, current methods impose a large number of constraints on the geometry of those structures. In this paper we introduce a method for robotic assembly that enables the construction of double curved self-supporting structures. Latest research challenges have focused on the assembly of sophisticated brick structures and on sensor feedback systems for handling accuracy. We propose an alternative strategy to tackle tolerance handling in complex structures that rely on geometry. The intelligence of the system lies in two main aspects: a subdivision technique that incorporates the robot’s constraints as well as the structural equilibrium of the structure during each step of assembly, in order to omit the use of scaffolding; and a match between geometric information and the robot’s movements in a robot programming environment. As a proof of concept, we fabricated a portion of a full-scale double-curved structure. The structure was assembled without scaffolding by a portable KUKA KR10 on a randomly picked site. This project aims to demonstrate an easy and simple method for robotic assembly that enables the realization of digitally generated complex geometries as concrete complex structures.
keywords Robotic Assembly, Self-supporting Structure, On-site Assembly, Double Curvature, Construction Tolerances
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia15_123
id acadia15_123
authors Askarinejad, Ali; Chaaraoui, Rizkallah
year 2015
title Spatial Nets: the Computational and Material Study of Reticular Geometries
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 123-135
doi https://doi.org/10.52842/conf.acadia.2015.123
summary Reticular systems are in many aspects a distinct taxonomy of volumetric geometries. In comparison with the conventional embodiment of a ‘volume’ that encapsulates a certain quantity of space with a shell reticular geometries emerge from the accumulation of micro elements to define a gradient of space. Observed in biological systems, such structures result from their material properties and formation processes as well as often ‘simple’ axioms that produce complex results. In micro or macro levels, from forest tree canopies to plant cell walls these porous volumes are not shaped to have a singular ‘solution’ for a purpose; they provide the fundamental geometric characteristics of a ‘line cloud’ that is simultaneously flexible in response to its environment, porous to other systems (light, air, liquids) and less susceptible to critical damage. The porosity of such systems and their volumetric depth also result in kinetic spatial qualities in a 4D architectural space. Built upon a ‘weaving’ organization and the high performance material properties of carbon fiber composite, this research focuses on a formal grammar that initiates the complex system of a reticular volume. A finite ‘lexical’ axiom is consisted of the basic characters of H, M and L responding to the anchor points on the highest, medium and lower levels of the extruding loom. The genome thus produces a string of data that in the second phase of programming are assigned to 624 points on the loom. The code aims to distribute the nodes across the flat line cloud and organize the sequence for the purpose of overlapping the tensioned strings. The virtually infinite results are then assessed through an evolutionary solver for confining an array of favorable results that can be then selected from by the designer. This research focuses on an approximate control over the fundamental geometric characteristics of a reticular system such as node density and directionality. The proposal frames the favorable result of the weave to be three-dimensional and volumetric – avoiding distinctly linear or surface formations.
keywords Reticular Geometries, Weaving, Line Clouds, Three-dimensional Form-finding, Carbon fiber, Prepreg composite, Volumetric loom, Fiberous Materials, Weaving fabrication, Formal Language, Lexical design, Evolutionary solver
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_084
id caadria2015_084
authors Asl, Mohammad Rahmani; Chengde Wu, Gil Rosen-Thal and Wei Yan
year 2015
title A New Implementation of Head-Coupled Perspective for Virtual Architecture
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 251-260
doi https://doi.org/10.52842/conf.caadria.2015.251
summary The process of projecting 3D scenes onto a two-dimensional (2D) surface results in the loss of depth cues, which are essential for immersive experience in the scenes. Various solutions are provided to address this problem, but there are still fundamental issues need to be addressed in the existing approaches for compensating the change in the 2D image due to the change in observer’s position. Existing studies use head-coupled perspective, stereoscopy, and motion parallax methods to achieve a realistic image representation but a true natural image could not be perceived because of the inaccuracy in the calculations. This paper describes in detail an implementation method of the technique to correctly project a 3D virtual environment model onto a 2D surface to yield a more natural interaction with the virtual world. The proposed method overcomes the inaccuracies in the existing head-coupled perspective viewing and can be used with common stereoscopic displays to naturally represent virtual architecture.
keywords Virtual reality; virtual architecture; head-coupled perspective; depth perception.
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2015_005
id cf2015_005
authors Celani, Gabriela; Sperling, David M. and Franco, Juarez M. S. (eds.)
year 2015
title Preface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 5-13.
summary Since 1985 the Computer-Aided Architectural Design Futures Foundation has fostered high level discussions about the search for excellence in the built environment through the use of new technologies with an exploratory and critical perspective. In 2015, the 16th CAAD Futures Conference was held, for the first time, in South America, in the lively megalopolis of Sao Paulo, Brazil. In order to establish a connection to local issues, the theme of the conference was "The next city". The city of Sao Paulo was torn down and almost completely rebuilt twice, from the mid 1800s to the mid 1900s, evolving from a city built in rammed-earth to a city built in bricks and then from a city built in bricks to a city built in concrete. In the 21st century, with the widespread use of digital technologies both in the design and production of buildings, cities are changing even faster, in terms of layout, materials, shapes, textures, production methods and, above all, in terms of the information that is now embedded in built systems.Among the 200 abstracts received in the first phase, 64 were selected for presentation in the conference and publication in the Electronic Proceedings, either as long or short papers, after 3 tough evaluation stages. Each paper was reviewed by at least three different experts from an international committee of more than 80 highly experienced researchers. The authors come from 23 different countries. Among all papers, 10 come from Latin-American institutions, which have been usually under-represented in CAAD Futures. The 33 highest rated long papers are also being published in a printed book by Springer. For this reason, only their abstracts were included in this Electronic Proceedings, at the end of each chapter.The papers in this book have been organized under the following topics: (1) modeling, analyzing and simulating the city, (2) sustainability and performance of the built environment, (3) automated and parametric design, (4) building information modeling (BIM), (5) fabrication and materiality, and (6) shape studies. The first topic includes papers describing different uses of computation applied to the study of the urban environment. The second one represents one of the most important current issues in the study and design of the built environment. The third topic, automated and parametric design, is an established field of research that is finally becoming more available to practitioners. Fabrication has been a hot topic in CAAD conferences, and is becoming ever more popular. This new way of making design and buildings will soon start affecting the way cities look like. Finally, shape studies are an established and respected field in design computing that is traditionally discussed in CAAD conferences.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_170
id caadria2015_170
authors Chen, Yu Chen and Chao-Ming Wang
year 2015
title The Research of Human-Computer Interaction by Combining Affective Computing into Chinese Calligraphy Art
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 55-64
doi https://doi.org/10.52842/conf.caadria.2015.055
summary Calligraphy is one of the important cultures in Chinese world. The rich strokes, structures and forms make the Chinese calligraphy an art. As the writing script is closely correlated to the emotions of the writer, a lot of scholars explore the correlation between the Chinese calligraphy lines and affect from the perspectives of psychology and art. In this study, it introduces the affective-computing technology and combines the digital media from the perspective of Chinese calligraphy and emotions, to develop an interactive calligraphy-art device. It re-interprets the Chinese calligraphy art with the digital tool and installs the pulse sensor and pressure sensor in the Chinese pen brush, so as to detect the user’s pulse and writing power. Moreover, it converts the physiological signals into affect and provides visual feedback in real time, which includes the changes and motions of the Chinese calligraphy lines. The study proposes contacting the traditional Chinese calligraphy with a new human-computer interaction mode. With the visual feedback effect during the interaction, it allows the user to know the close correlation between the Chinese calligraphy and the emotions. Through the work, the Chinese calligraphy art can be carried forward.
keywords Chinese Calligraphy Art; Human-Computer Interaction; Affective Computing.
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2015_12.107
id sigradi2015_12.107
authors Chiarella, Mauro; Martín-Pastor, Andrés
year 2015
title Thinking Graphic and Design Collaborative. Developable geometries for folded architectural compositions
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 702-707.
summary The design, manufacturing and assembly of SSFS (Same Slope - Folded Surface) Pavilion, is presented as a collaborative design experience recently developed between two Ibero-American universities (USevilla-UNL). In this experimental research, Graphic Thought feeds on the strategic use of developable geometries like to achieve outstanding manufacturing and installation of a temporary Folded composition. The practical exercise, results in a procedural model of open applications, nonlinear, for the generation of pavilions with different solutions adapted to each particular context.
keywords Temporary Architecture, Graphic Thought, CAD-CAM, Collaborative Design, Folded Compositions
series SIGRADI
email
last changed 2016/03/10 09:48

_id caadria2016_415
id caadria2016_415
authors Crolla, Kristof and Adam Fingrut
year 2016
title Protocol of Error: The design and construction of a bending-active gridshell from natural bamboo
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 415-424
doi https://doi.org/10.52842/conf.caadria.2016.415
summary This paper advocates alternative methods to overcome the impossibility of realising ‘perfect’ digital designs. It discusses Hong Kong’s 2015 ‘ZCB Bamboo Pavilion’ as a methodological case study for the design and construction of architecture from unprocessed natu- ral bamboo. The paper critically evaluates protocols set up to deal with errors resulting from precise digital design systems merging with inconsistent natural resources and onsite craftsmanship. The paper starts with the geometric and tectonic description of the project, illus- trating a complex and restrictive construction context. Bamboo’s unique growth pattern, structural build-up and suitability as a bending- active material are discussed and Cantonese bamboo scaffolding craftsmanship is addressed as a starting point for the project. The pa- per covers protocols, construction drawings and assembly methods developed to allow for the incorporation and of large building toler- ances and dimensional variation of bamboo. The final as-built 3d scanned structure is compared with the original digital model. The pa- per concludes by discussing the necessity of computational architec- tural design to proactively operate within a field of real-world inde- terminacy, to focus on the development of protocols that deal with imperfections, and to redirect design from the virtual world towards the latent opportunities of the physical.
keywords Bamboo; bending-active gridshells; physics simulation; form-finding; indeterminacy
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2015_030
id caadria2015_030
authors Daas, Mahesh and Andrew Wit
year 2015
title Pedagogy of Architectural Robotics
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 3-12
doi https://doi.org/10.52842/conf.caadria.2015.003
summary As computation and robotics become more prevalent in all aspects of architecture, their impact on education assumes greater importance. The paper presents the outcomes of a collaborative undergraduate architectural design studio that investigates the realms of architectural robotics and computation by stepping into the fecund intersections between multiple disciplines. The pedagogical prototype, Unsolicited: An Inconvenient Studio, broadly focused on the topics of robotics and responsive architectures. The notion of robotics was interpreted to include a range of robotic technologies and their formal manifestations in the form of biomorphic, mechanomorphic, polymorphic, and amorphic robots, and interactive architecture. Taught using a recently developed framework that focuses on self-organizing systems and the creation of innovative technology-driven design entrepreneurs rather than merely on the creation of designed artefacts, students found themselves not only innovating with new digital technologies but also bridging architecture, urbanism and computer science. The paper describes the pedagogy, processes, and outcomes of the studio.
keywords Robotics; interactive architecture; pedagogy; innovation; studio.
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2015_185
id caadria2015_185
authors De Oliveira, Maria João and Vasco Moreira Rato
year 2015
title From Morphogenetic Data to Performative Behaviour
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 765-774
doi https://doi.org/10.52842/conf.caadria.2015.765
summary This paper presents part of CORK’EWS, a research work developed within the framework of the Digital Architecture Advanced Program 2012/13 at ISCTE-IUL. The main goal of this investigation was to develop a parametric, customizable and adaptive wall system designed for environmental performance. Moreover, the system is based on standard industrial products: expanded cork blocks produced by Amorim Insulation industries. CAD/CAM resources were the essential tools of the research process, where fundamental and practical knowledge is integrated to understand the microstructure morphological properties of the raw material – cork – and its derivate – natural expanded cork. These properties were upscale and adapted to create a wall with an optimized solar control environmental performance. The result is a digitally fabricated prototype of a new customizable industrial product, adaptable to specific environmental conditions and installation setups being therefore easily commercialized. From microstructural morphology to macroscale construction, the research explores new application possibilities through morphogenesis and opens new possible markets for these customizable products.
keywords Morphogenesis; performance; shading systems; cork.
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2015_11.196
id sigradi2015_11.196
authors Duarte, Rovenir Bertola
year 2015
title The injection of analog streams in algorithms: a “sin” of UNStudio
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 672-676.
summary After the proliferation of script programs in architecture seems clear the possibility of transformation of the architectural design process and paradigm shift. According Carpo, the approach of writing architecture and code brings us to the “variability of paradigm” (Carpo, 2011b). Although it is premature to talk about paradigm shifts can speculate on the proliferation of a more codified kind of thinking. So, what are the consequences of this thinking more structured and encoded, for architectural design? Is it possible to graft something not coded language in a binary environment such as digital? The UNStudio experience and Deleuze’s ideas seem to reveal some way (the “sin”).
series SIGRADI
email
last changed 2016/03/10 09:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_290971 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002