CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 585

_id acadia15_263
id acadia15_263
authors Ahlquist, Sean
year 2015
title Social Sensory Architectures: Articulating Textile Hybrid Structures for Multi-Sensory Responsiveness and Collaborative Play
doi https://doi.org/10.52842/conf.acadia.2015.263
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 263-273
summary This paper describes the development of the StretchPLAY prototype as a part of the Social Sensory Surfaces research project, focusing on the design of tactile and responsive environments for children with Autism Spectrum Disorder (ASD). The project is directed specifically at issues with sensory processing, the inability of the nervous system to filter sensory input in order to indicate an appropriate response. This can be referred to as a “traffic jam” of sensory data where the intensity of such unfiltered information leads to an over-intensified sensory experience, and ultimately a dis-regulated state. To create a sensory regulating environments, a tactile structure is developed integrating physical, visual and auditory feedback. The structure is defined as a textile hybrid system integrating a seamless knitted textile to form a continuous topologically complex surface. Advancements in the fabrication of the boundary structure, of glass-fiber reinforced rods, enable the form to be more robustly structured than previous examples of textile hybrid or tent-like structures. The tensioned textile is activated as a tangible interface where sensing of touch and pressure on the surface triggers ranges of visual and auditory response. A specific child, a five-year old girl with ASD, is studied in order to tailor the technologies as a response to her sensory challenges. This project is a collaboration with students, researchers and faculty in the fields of architecture, computer science, information (human-computer interaction), music and civil engineering, along with practitioners in the field of ASD-based therapies.
keywords Textile Hybrid, Knitting, Sensory Environment, Tangible Interface, Responsive systems and environments
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_090
id caadria2015_090
authors Altabtabai, Jawad and Wei Yan
year 2015
title A User Interface for Parametric Architectural Design Reviews
doi https://doi.org/10.52842/conf.caadria.2015.065
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 65-74
summary Architectural form and performance are affected by the designer's graphical representation methods. Parametric CAD systems, as design and representation tools, have become ubiquitous in architectural practice and education. Literature in the area of parametric design reviews is scarce and focused within building inspection and construction coordination domains. Additionally, platforms marketed as design review tools lack basic functionality for conducting comprehensive, parametric, and performance-based reviews. We have developed a user interface prototype where geometric and non-geometric information of a Building Information Model were translated into an interactive gaming environment. The interface allows simultaneous occupation and simulation of spatial geometry, enabling the user to engage with object parameters, as well as, performance-based, perspectival, diagrammatic, and orthographic representations for total spatial and performance comprehension.
keywords Design cognition; Virtual/augmented reality and interactive environments; Human-computer interaction.
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2015_067
id caadria2015_067
authors Choi, Jungsik; Minchan Kim and Inhan Kim
year 2015
title A Methodology of Mapping Interface for Energy Performance Assessment Based on Open BIM
doi https://doi.org/10.52842/conf.caadria.2015.417
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 417-426
summary Early design phase energy modelling is used to provide the design team with feedback about the impact of various building configurations. For better energy-conscious and sustainable building design and operation, the construction of BIM data interoperability for energy performance assessment in the early design phase is important. The purpose of this study is to suggest a development of BIM data interoperability for energy performance assessment based on BIM. To archive this, the authors have investigated advantages of BIM-based energy performance assessment through comparison with traditional energy performance assessment; and suggest requirements for development of Open BIM environment such as BIM data creation and BIM data application. In addition, the authors also suggested on BIM data interoperability system and developed mapping interface.
keywords Building Information Modelling (BIM); Energy Performance Assessment (EPA); Data Interoperability; Energy Property; Industry Foundation Classes (IFC).
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia23_v3_19
id acadia23_v3_19
authors Dickey, Rachel
year 2023
title Material Interfaces
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary Based on our current daily rate, 85,410 hours is the average amount of time that an adult in the United States will spend on their phone in a lifetime (Howarth 2023). This is time spent texting, tweeting, emailing, snapping, chatting, posting, and interacting with an interface which each of us carry in our pocket. Kelly Dobson explains, “We psychologically view the cell phone as an extension of our bodies, which is why when you accidentally forget it or leave it behind you feel you have lost apart of yourself” (2013). In reality, this device is just one of many technologies which affect our relationship with our bodies and the physical world. Additionally, Zoom meetings, social media networks, on-line shopping, and delivery robots, all increasingly detach our bodies and our senses from our everyday experiences and interactions. In response to digital culture, Liam Young writes, “Perhaps the day will come when we turn off our target ads, navigational prompts, Tinder match notifications, and status updates to find a world stripped bare, where nothing is left but scaffolds and screens” (2015). Make no mistake; the collection of projects shared in these field notes is intended to be a counterpoint to such a prophesied future. However, the intent is not to try to compete with technology, but rather, to consider the built environment itself as an interface, encouraging interaction through feedback and responsivity directly related to human factors, finding ways to re-engage the body through design.
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id caadria2015_213
id caadria2015_213
authors Kornkasem, Sorachai and John B. Black
year 2015
title CAAD, Cognition & Spatial Thinking Training
doi https://doi.org/10.52842/conf.caadria.2015.561
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 561-570
summary The current study explored different spatial training methods and investigated the sequence of processed-based mental simulation that was facilitated by various structures of external spatial representations, including 3D technology in Computer Aided-Architectural Design (CAAD), spatial cues, and/or technical languages. The goal was to better understand how these components fostered planning experiences and affected spatial ability acquisition framed as the formation of spatial mental models, for further developing spatial training environments fundamental to Science, Technology, Engineering, and Mathematics (STEM) education, specifically for architecture education and cognition. Two experiments were conducted using a between-subjects design to examine the effects of spatial training methods on spatial ability performance. Across both studies learners improved in their spatial skills, specifically the learners in the 3D-augmented virtual environments over the 3D-direct physical manipulation conditions. This study is built upon the work in the fields of computer-user interface, visuospatial thinking and human learning.
keywords Spatial thinking training; cognitive processes; CAAD.
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2015_101
id ecaade2015_101
authors Markusiewicz, Jacek and Slyk, Jan
year 2015
title From Shaping to Information Modeling in Architectural Education: Implementation of Augmented Reality Technology in Computer-Aided Modeling
doi https://doi.org/10.52842/conf.ecaade.2015.2.083
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 83-90
summary While learning computer-aided modeling techniques, students of architecture should not only gain knowledge on how to model three-dimensional forms, but also how to define and understand the information beneath the shapes. Architectural presentation as an intellectual communication-focused process requires new media to channel information in a contemporary way. These can be text, image, sound, video or a digital model. The integration of augmented reality in teaching computer-aided modeling in architecture school provides more thorough learning experience as it opens new opportunities. The authors present the process of implementing AR technology in architectural education - its theoretical background, the outcome of students' work and technical solutions. They argue that the use of AR interface increases the effectiveness of user-model interaction in comparison to standard mouse-based techniques of three-dimensional manipulation due to the intuitive touch-screen interaction and direct control on the camera.
wos WOS:000372316000011
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2015_015
id caadria2015_015
authors Melenbrink, Nathan and Nathan King
year 2015
title Fulldome Interfacing
doi https://doi.org/10.52842/conf.caadria.2015.221
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 221-230
summary The ability to communicate design intent to potential users, clients, and communities is fundamental to the process of architectural design. Conventionally, this need is addressed through phased submissions of drawings, renderings, animations, and physical models—all with the intention of representing space and its constituent elements. Recent technological advancements however—including tools like those produced by OculusTM—have begun to present new opportunities for spatial representation through the use of simulated 3D environments that are both convenient for the design team and readily accepted by clients and end users. While immersive technologies do present novel representational opportunities, current workflows position the potential at the conclusion of the design process, not as part of it. The project presented here moves beyond mere representation and positions simulated 3D environments within the design process itself. To this end, an integrated real-time computational workflow that enables the use of simulated spatial experience as an iterative design tool was developed in order to create the illusion of being in a space while it is being designed and allowing experientially informed decision making. The Fulldome Interface creates a collaborative immersive environment that utilizes a novel computational design workflow (linking the parametric GrasshopperTM for RhinocerosTM design environment to the Unity3DTM gaming engine) that responds in real-time through dome-based stereoscopic projection that can be experienced by multiple occupants simultaneously.
keywords Immersive; fulldome; real-time; interface; parametric design
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2015_ws-collab
id ecaade2015_ws-collab
authors Novakova, Katerina; Henri Achten
year 2015
title ColLab Sketch: Multi-Platform Collaborative Sketching on the Internet
doi https://doi.org/10.52842/conf.ecaade.2015.2.037
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 37-38
summary Being overwhelmed by computing technologies, we are forwarding more and more of our skills into area of "thinking by head". Our designing capabilities are turning into capabilities of "how to work with very intelligent technology". The processes of human brain, nevertheless, are different to the processes in computer. Designers are said to think by hand. As architects we are looking for final forms that not only fulfil the technical requirements, but are beautiful as well. Therefore sketching is one of the skills that belongs to an architect in order to design and particularly to work in a team. The workshop will accordingly focus on sketching on electronic devices in comparison with sketching on paper. Is it actually possible to switch to tablets when sketching? If yes, which application is the best to use? In order to find that out, there will be a test of three applications: ColLab Sketch, Queeky and FlockDraw. The participants will be sketching on-line and helping to find the best way of communication by sketch. By drawing they will become a part of the research, their work will be post-produced and exhibited at the welcome dinner.
wos WOS:000372316000005
keywords Sketching; Internet-based Collaboration; Digital vs. Physical
series eCAADe
last changed 2022/06/07 08:00

_id ecaade2015_155
id ecaade2015_155
authors Rosenberg, Eliot; Haeusler, M Hank, Araullo, Rebekah and Gardner, Nicole
year 2015
title Smart Architecture-Bots & Industry 4.0 Principles for Architecture
doi https://doi.org/10.52842/conf.ecaade.2015.2.251
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 251-259
summary Industrial robots from the automotive industry are being repurposed for use in architecture fabrication research in academic institutions around the globe. They are adapted for a variety of fabrication techniques due to the versatility of their 6-axis arm configuration. Though their physical versatility is an advantage in research, their computational and sensory capabilities are rudimentary and have not evolved significantly in the past forty years of their existence. In the meantime the manufacturing industry has moved on by introducing new forms of manufacturing namely Industry 4.0. In this position paper we look at the characteristics necessary to bring architecture robotics into line with Industry 4.0 standards. By presenting the fabrication process as a relationship model of 'tool-process-outcome' we will examine the way in which these entities and their interrelations might be augmented vis-a-vis Cyber-Physical Systems (CPS), Social Robotics and Human-Computer Interaction (HCI) approaches such as the Tangible User Interface (TUI).
wos WOS:000372316000030
series eCAADe
email
last changed 2022/06/07 07:56

_id cf2015_175
id cf2015_175
authors Sauda, Eric; Beorkrem, Chris; Souvenir, Richard; Lanclos, Donna and Spurlock Scott
year 2015
title Intelligent Architectural Settings Using a Computer Vision Based Visual Analytic Interface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 175-189.
summary This paper presents a framework to enable the understanding and designing of interactive architectural settings. We present our work in interactive public displays in the lobbies of university building, demonstrating both the design and evaluative dimensions. We identify the need for a method to understand meaningful behavior in architectural settings. We then present a unique approach combining computer vision and ethnography in a visual analytic interface using the SENSING Toolkit, a computer vision framework for collecting and storing long-term, large-scale human motion, and VALSE (Visual Analytics for Large-Scale Ethnography) an interactive, visual analytic interface called designed to allow domain experts to query and understand the data. Finally, we propose a new concept of media rich spaces that we call intelligent architectural settings.
keywords Smart buildings, computer vision, ethnography, visual analytics.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_208
id caadria2015_208
authors Sharif, Shani and T. Russell Gentry
year 2015
title Design Cognition Shift from Craftsman to Digital Maker
doi https://doi.org/10.52842/conf.caadria.2015.683
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 683-692
summary The process of design and fabrication involves a complex cognitive activity, in which the human brain is part of a larger cognitive system that encompasses brain, body, tool, material and environment. In this system the cognition resides in the interaction of all these elements one with another in different stages of a design and making activity. This paper investigates the intermediary role of digital fabrication machines in changing the discourse of design cognition in relation to the action of making, inquiring into the diverging path from traditional craftwork. This research is shaped around the concept of transparent machine tools for an interactive participation in the process of design-making, shaping a human-machine interaction to unify the design and fabrication process.
keywords Digital fabrication; crafts; design cognition; distributed cognition; embodiment.
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_319
id ecaade2015_319
authors Teng, Teng and Johnson, Brian R.
year 2015
title Transformable Physical Design Media
doi https://doi.org/10.52842/conf.ecaade.2015.1.045
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 45-54
summary Computer-aided design tools have become an integral part of much architectural design practice, to the point where design is heavily dependent on the assistance of these tools. But current computer-aided design tools are fundamentally limited by the WIMP (windows, icons, menus, and pointer) interface, reliant on 2d input and output. Design of buildings and other 3D objects via 2D workflow is slowed by the conversions that designers must make. In this paper, we explore the potential of transformable physical design media through two design tool prototypes: Integrated spatial gesture-based direct 3D modeling and display system (InSpire), and tangible objects based massing study tool kits (CuBe). Both of these design tool prototypes allow designers to develop their design within a fully 3d environment with optical and haptic references, so that the interaction between designer and design object become much more intuitive and direct.We conclude by discussing some related subjects in the domain of HCI and argue that transformable physical design media represent a desirable solution for enhancing design experience. Architects and designers could benefit from the usage of transformable physical design media, especially during the early phases of architectural design by allowing designers to efficiently alter the topology properties.
wos WOS:000372317300005
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c66d211e-702b-11e5-b61e-53010ec74bd1
last changed 2022/06/07 07:58

_id caadria2015_122
id caadria2015_122
authors Wu, Kuan-Ying and June-Hao Hou
year 2015
title Spark Wall
doi https://doi.org/10.52842/conf.caadria.2015.075
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 75-83
summary Responsive environment uses human computer interface (HCI) to improve how human experience their surrounding. Many research aimed at different kind of interactive environment modules with new digital tectonics or computation components. However, those new environments are sometimes could be manipulated by components which are less use-friendly and complex than traditional counterparts. In this paper, we implemented a real responsive interface – the Spark wall system, which use 160 actuator modules as our responsive feedback interface and depth camera as sensing input. We built up multi-modal interface for different operating purposes allowing user control responsive environment with their human behavior. User could change their body posture to change the pattern of the wall and moreover define touch-input area on any surface. For the user’s perspective, a responsive environment should be simply and understandable control. A responsive artifact should also be able to dynamically correspond to different methods of operation according to the user's intentions.
keywords Responsive environment; human computer interface; surface computing; multi-modal interface; depth sensing.
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ecaade2015_280
id ecaade2015_280
authors Adilenidou, Yota
year 2015
title Error as Optimization - Using Cellular Automata Systems to Introduce Bias in Aggregation Models through Multigrids
doi https://doi.org/10.52842/conf.ecaade.2015.2.601
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 601-610
summary This paper is focusing on the idea of error as the origin of difference in form but also as the path and the necessity for optimization. It describes the use of Cellular Automata (CA) for a series of structural and formal elements, whose proliferation is guided through sets of differential grids (multigrids) and leads to the buildup of big span structures and edifices as, for example, a cathedral. Starting from the error as the main idea/tool for optimization, taxonomies of morphological errors occur and at a next step, they are informed with contextual elements to produce an architectural system. A toolbox is composed that can be implemented in different scales and environmental parameters, providing variation, optimization, complexity and detail density. Different sets of experiments were created starting from linear structural elements and continuing to space dividers and larger surface components.
wos WOS:000372316000067
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=5cf73be0-6e8f-11e5-b7a4-1b188b87ef84
last changed 2022/06/07 07:54

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
doi https://doi.org/10.52842/conf.acadia.2019.168
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2015_122
id ecaade2015_122
authors Agirbas, Asli
year 2015
title The Use of Digital Fabrication as a Sketching Tool in the Architectural Design Process - A Case Study
doi https://doi.org/10.52842/conf.ecaade.2015.2.319
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 319-324
summary Computer-aided manufacturing (CAM) technologies including computer numerically controlled (CNC) milling, laser cutting and 3D printing are becoming cheaper and globally more accessible. Accordingly, many design professionals, academics and students have been able to experience the benefits and challenges of using digital fabrication in their designs. The use of digital fabrication in the education of architecture students has become normal in many schools of architecture, and there is a growing demand for computer-aided manufacturing (CAM) logic and fabrication knowledge in student learning. Clearly, architecture students are acquiring material base-thinking, time management, production methods and various software skills through this digital fabrication. However, it appears to be the case that architecture students use digital fabrication mainly in the final stage of their design or in their finishing work. In this study, computer-aided manufacturing (CAM) technologies have been used as a sketch tool rather than simply for fabricating a final product in the architectural design process and the advantages of this educational practice are demonstrated.
wos WOS:000372316000037
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=79005d78-6fe6-11e5-b555-13a7f78815dc
last changed 2022/06/07 07:54

_id ecaade2024_35
id ecaade2024_35
authors Agkathidis, Asterios; Song, Yang; Symeonidou, Ioanna
year 2024
title AI-Assisted Design: Utilising artificial intelligence as a generative form-finding tool in architectural design studio teaching
doi https://doi.org/10.52842/conf.ecaade.2024.2.619
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 619–628
summary Artificial Intelligence (AI) tools are currently making a dynamic appearance in the architectural realm. Social media are being bombarded by word-to-image/image-to-image generated illustrations of fictive buildings generated by tools such as ‘Midjourney’, ‘DALL-E’, ‘Stable Diffusion’ and others. Architects appear to be fascinated by the rapidly generated and inspiring ‘designs’ while others criticise them as superficial and formalistic. In continuation to previous research on Generative Design, (Agkathidis, 2015), this paper aims to investigate whether there is an appropriate way to integrate these new technologies as a generative tool in the educational architectural design process. To answer this question, we developed a design workflow consisting of four phases and tested it for two semesters in an architectural design studio in parallel to other studio units using conventional design methods but working on the same site. The studio outputs were evaluated by guest critics, moderators and external examiners. Furthermore, the design framework was evaluated by the students through an anonymous survey. Our findings highlight the advantages and challenges of the utilisation of AI image synthesis tools in the educational design process of an architectural design approach.
keywords AI, GAI, Generative Design, Design Education
series eCAADe
email
last changed 2024/11/17 22:05

_id acadia15_311
id acadia15_311
authors Ahrens, Chandler
year 2015
title Klimasymmetry, Locating Thermal Tactility
doi https://doi.org/10.52842/conf.acadia.2015.311
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 311-322
summary The Klimasymmetry research project is part of ongoing investigations that ask how the design of a surface emanating radiant heating and cooling can influence the non-visual spatial boundaries created by asymmetrical thermal conditions. This research investigates the nature of the surface as an initiator of a thermal environment in an attempt to locate thermal tactility and the spatial perception according to radiant heat transfer. Surface qualities such as the quantity of area and thermal capacity of the material affects the ability of the panel to emit or absorb electromagnetic radiation, informing the geometry, topography, and location of each panel relative to the human body.
keywords Thermal behavior, Radiant panel system, Material computation, Digital Fabrication, Fabric forming, Glass Fiber Reinforced Gypsum
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_111
id caadria2015_111
authors Alani, Mostafa W. and Carlos R. Barrios
year 2015
title A Parametric Description for Metamorphosis of Islamic Geometric Patterns
doi https://doi.org/10.52842/conf.caadria.2015.593
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 593-602
summary This paper presents a parametric approach toward studying the characteristics of the Islamic geometric patterns (IGP). The presented computational system utilizes a parametric description of the geometry to initiate the process of metamorphosis exploration and to document the generated variations. The study found that changing the parameters in the description produces new variations that have a wide range of qualitative and quantitative properties; some match exactly the properties of traditionally existed geometries.
keywords Parametric Design; Metamorphosis; shape-code; key-shape; Islamic Geometric Pattern.
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_158206 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002